Abstract

We present a general analysis of the influence of nonlinear optical absorption on terahertz generation via optical-difference frequency generation when reaching for the quantum conversion efficiency limit. By casting the equations governing the process in a suitably normalized form, including either two-photon- or three-photon absorption terms, we have been able to plot universal charts for phase-matched optical-to-terahertz conversion for different values of the nonlinear absorption coefficients. We apply our analysis to some experiments reported to date in order to understand to what extent multiphoton absorption could have played a role and also to predict the maximum achievable conversion efficiency at higher peak pump intensities.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nature 1, 97-105 (2007).
  2. Y.J.Ding, Q.Hu, M.Kock, and C.E.Stutz, eds., “Special issue on THz materials, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 257-520 (2008).
  3. R. W. Boyd, Nonlinear Optics (Academic Press, 2008).
  4. X. Mu, Y. J. Ding, and I. B. Zotova, “Exploring fundamental limits to terahertz generation in electro-optic materials: from bulk to nanolayers,” Laser Phys. 18, 530-546 (2008).
    [CrossRef]
  5. Y. Ding, “High-power tunable terahertz sources based on parametric processes and applications,” IEEE J. Sel. Top. Quantum Electron. 13, 705-720 (2007).
    [CrossRef]
  6. Y. J. Ding, “Quasi-single-cycle terahertz pulses based on broadband-phase-matched difference-frequency generation in second-order nonlinear medium: high output powers and conversion efficiencies,” IEEE J. Sel. Top. Quantum Electron. 10, 1171-1179 (2004).
    [CrossRef]
  7. V. Ya. Gaivoronskii, M. M. Nazarov, D. A. Sapozhnikov, E. V. Shepelyavyi, S. A. Shkel'nyuk, A. P. Shkurinov, and A. V. Shuvaev, “Competition between linear and nonlinear processes during generation of pulsed terahertz radiation in a ZnTe crystal,” Quantum Electron. 35, 407-414 (2005).
    [CrossRef]
  8. Q. Xing, L. Lang, Z. Tian, N. Zhang, S. Li, K. Wang, L. Chai, and Q. Wang, “The effect of two-photon absorption and optical excitation area on the generation of THz radiation,” Opt. Commun. 267, 422-426 (2006).
    [CrossRef]
  9. M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, A. Riva Sanseverino, and C. Leone, “Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: a material comparison,” IEEE J. Quantum Electron., http://arxiv.org/abs/0906.3683.
  10. M. Cherchi, S. Bivona, A. C. Cino, A. C. Busacca, and R. L. Oliveri are preparing a manuscript to be called “Universal charts for optical difference frequency generation in the terahertz domain.” http://arxiv.org/abs/0906.3697.
  11. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918-1939 (1962).
    [CrossRef]
  12. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919-933 (1973).
    [CrossRef]
  13. C. H. Henry and C. G. B. Garrett, “Theory of parametric gain near a lattice resonance,” Phys. Rev. 171, 1058-1064 (1968).
    [CrossRef]
  14. J. R. Morris and Y. R. Shen, “Theory of far-infrared generation by optical mixing,” Phys. Rev. A 15, 1143-1156 (1977).
    [CrossRef]
  15. K. L. Vodopyanov, “Optical generation of narrow-band terahertz packets in periodically-inverted electro-optic crystals: conversion efficiency and optimal laser pulse format,” Opt. Express 14, 2263-2276 (2006).
    [CrossRef] [PubMed]
  16. V. Nathan, A. H. Guenther, and S. S. Mitra, “Review of multiphoton absorption in crystalline solids,” J. Opt. Soc. Am. B 2, 294-316 (1985).
    [CrossRef]
  17. M. Cherchi, S. Stivala, A. Pasquazi, A. C. Busacca, S. Riva Sanseverino, A. C. Cino, L. Colace, and G. Assanto, “Second-harmonic generation in surface periodically poled lithium niobate waveguides: on the role of multiphoton absorption,” Appl. Phys. B 93, 559-565 (2008).
    [CrossRef]
  18. A. Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, and R. M. Osgood, “Nonlinear absorption in a GaAs waveguide just above half the band gap,” IEEE J. Quantum Electron. 30, 1172-1175 (1994).
    [CrossRef]
  19. R. Jones, A. Liu, H. Rong, and M. Paniccia, “Lossless optical modulation in a silicon waveguide using stimulated Raman scattering,” Opt. Express 13, 1716-1723 (2005).
    [CrossRef] [PubMed]
  20. W. C. Hurlbut, Y.-S. Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, “Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared,” Opt. Lett. 32, 668-670 (2007).
    [CrossRef] [PubMed]
  21. K. R. Allakhverdiev, T. Baykara, S. Joosten, E. Günay, A. A. Kaya, A. Kulibekov, A. Seilmeier, and E. Yu. Salaev, “Anisotropy of two-photon absorption in gallium selenide at 1064 nm,” Opt. Commun. 261, 60-64 (2006).
    [CrossRef]
  22. I. B. Zotova and Y. J. Ding, “Spectral measurements of two-photon absorption coefficients for CdSe and GaSe crystals,” Appl. Opt. 40, 6654-6658 (2001).
    [CrossRef]
  23. J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hulburt, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched Gallium Arsenide,” IEEE J. Sel. Top. Quantum Electron. 14, 354-362 (2008).
    [CrossRef]
  24. K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photonics Rev. 2, 11-25 (2008).
    [CrossRef]
  25. T. T. Kajava and A. L. Gaeta, “Q switching of a diode-pumped Nd:YAG laser with GaAs,” Opt. Lett. 21, 1244-1246 (1996).
    [CrossRef] [PubMed]
  26. N. R. Shetty, M. F. Becker, and R. M. Walser, “An anomalous absorption model to account for accumulation in N-on-1 damage in Si and GaAs,” in Laser Induced Damage in Optical Materials: 1986H.E.Bennett, A.H.Guenther, D.Milam, and B.E.Newman, eds. (ASTM International, 1988), pp. 634-648.
    [CrossRef]

2008

X. Mu, Y. J. Ding, and I. B. Zotova, “Exploring fundamental limits to terahertz generation in electro-optic materials: from bulk to nanolayers,” Laser Phys. 18, 530-546 (2008).
[CrossRef]

M. Cherchi, S. Stivala, A. Pasquazi, A. C. Busacca, S. Riva Sanseverino, A. C. Cino, L. Colace, and G. Assanto, “Second-harmonic generation in surface periodically poled lithium niobate waveguides: on the role of multiphoton absorption,” Appl. Phys. B 93, 559-565 (2008).
[CrossRef]

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hulburt, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched Gallium Arsenide,” IEEE J. Sel. Top. Quantum Electron. 14, 354-362 (2008).
[CrossRef]

K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photonics Rev. 2, 11-25 (2008).
[CrossRef]

2007

W. C. Hurlbut, Y.-S. Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, “Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared,” Opt. Lett. 32, 668-670 (2007).
[CrossRef] [PubMed]

Y. Ding, “High-power tunable terahertz sources based on parametric processes and applications,” IEEE J. Sel. Top. Quantum Electron. 13, 705-720 (2007).
[CrossRef]

M. Tonouchi, “Cutting-edge terahertz technology,” Nature 1, 97-105 (2007).

2006

Q. Xing, L. Lang, Z. Tian, N. Zhang, S. Li, K. Wang, L. Chai, and Q. Wang, “The effect of two-photon absorption and optical excitation area on the generation of THz radiation,” Opt. Commun. 267, 422-426 (2006).
[CrossRef]

K. R. Allakhverdiev, T. Baykara, S. Joosten, E. Günay, A. A. Kaya, A. Kulibekov, A. Seilmeier, and E. Yu. Salaev, “Anisotropy of two-photon absorption in gallium selenide at 1064 nm,” Opt. Commun. 261, 60-64 (2006).
[CrossRef]

K. L. Vodopyanov, “Optical generation of narrow-band terahertz packets in periodically-inverted electro-optic crystals: conversion efficiency and optimal laser pulse format,” Opt. Express 14, 2263-2276 (2006).
[CrossRef] [PubMed]

2005

R. Jones, A. Liu, H. Rong, and M. Paniccia, “Lossless optical modulation in a silicon waveguide using stimulated Raman scattering,” Opt. Express 13, 1716-1723 (2005).
[CrossRef] [PubMed]

V. Ya. Gaivoronskii, M. M. Nazarov, D. A. Sapozhnikov, E. V. Shepelyavyi, S. A. Shkel'nyuk, A. P. Shkurinov, and A. V. Shuvaev, “Competition between linear and nonlinear processes during generation of pulsed terahertz radiation in a ZnTe crystal,” Quantum Electron. 35, 407-414 (2005).
[CrossRef]

2004

Y. J. Ding, “Quasi-single-cycle terahertz pulses based on broadband-phase-matched difference-frequency generation in second-order nonlinear medium: high output powers and conversion efficiencies,” IEEE J. Sel. Top. Quantum Electron. 10, 1171-1179 (2004).
[CrossRef]

2001

1996

1994

A. Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, and R. M. Osgood, “Nonlinear absorption in a GaAs waveguide just above half the band gap,” IEEE J. Quantum Electron. 30, 1172-1175 (1994).
[CrossRef]

1985

1977

J. R. Morris and Y. R. Shen, “Theory of far-infrared generation by optical mixing,” Phys. Rev. A 15, 1143-1156 (1977).
[CrossRef]

1973

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919-933 (1973).
[CrossRef]

1968

C. H. Henry and C. G. B. Garrett, “Theory of parametric gain near a lattice resonance,” Phys. Rev. 171, 1058-1064 (1968).
[CrossRef]

1962

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Allakhverdiev, K. R.

K. R. Allakhverdiev, T. Baykara, S. Joosten, E. Günay, A. A. Kaya, A. Kulibekov, A. Seilmeier, and E. Yu. Salaev, “Anisotropy of two-photon absorption in gallium selenide at 1064 nm,” Opt. Commun. 261, 60-64 (2006).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Assanto, G.

M. Cherchi, S. Stivala, A. Pasquazi, A. C. Busacca, S. Riva Sanseverino, A. C. Cino, L. Colace, and G. Assanto, “Second-harmonic generation in surface periodically poled lithium niobate waveguides: on the role of multiphoton absorption,” Appl. Phys. B 93, 559-565 (2008).
[CrossRef]

Baykara, T.

K. R. Allakhverdiev, T. Baykara, S. Joosten, E. Günay, A. A. Kaya, A. Kulibekov, A. Seilmeier, and E. Yu. Salaev, “Anisotropy of two-photon absorption in gallium selenide at 1064 nm,” Opt. Commun. 261, 60-64 (2006).
[CrossRef]

Becker, M. F.

N. R. Shetty, M. F. Becker, and R. M. Walser, “An anomalous absorption model to account for accumulation in N-on-1 damage in Si and GaAs,” in Laser Induced Damage in Optical Materials: 1986H.E.Bennett, A.H.Guenther, D.Milam, and B.E.Newman, eds. (ASTM International, 1988), pp. 634-648.
[CrossRef]

Bivona, S.

M. Cherchi, S. Bivona, A. C. Cino, A. C. Busacca, and R. L. Oliveri are preparing a manuscript to be called “Universal charts for optical difference frequency generation in the terahertz domain.” http://arxiv.org/abs/0906.3697.

M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, A. Riva Sanseverino, and C. Leone, “Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: a material comparison,” IEEE J. Quantum Electron., http://arxiv.org/abs/0906.3683.

Bliss, D.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hulburt, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched Gallium Arsenide,” IEEE J. Sel. Top. Quantum Electron. 14, 354-362 (2008).
[CrossRef]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic Press, 2008).

Busacca, A. C.

M. Cherchi, S. Stivala, A. Pasquazi, A. C. Busacca, S. Riva Sanseverino, A. C. Cino, L. Colace, and G. Assanto, “Second-harmonic generation in surface periodically poled lithium niobate waveguides: on the role of multiphoton absorption,” Appl. Phys. B 93, 559-565 (2008).
[CrossRef]

M. Cherchi, S. Bivona, A. C. Cino, A. C. Busacca, and R. L. Oliveri are preparing a manuscript to be called “Universal charts for optical difference frequency generation in the terahertz domain.” http://arxiv.org/abs/0906.3697.

M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, A. Riva Sanseverino, and C. Leone, “Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: a material comparison,” IEEE J. Quantum Electron., http://arxiv.org/abs/0906.3683.

Chai, L.

Q. Xing, L. Lang, Z. Tian, N. Zhang, S. Li, K. Wang, L. Chai, and Q. Wang, “The effect of two-photon absorption and optical excitation area on the generation of THz radiation,” Opt. Commun. 267, 422-426 (2006).
[CrossRef]

Cherchi, M.

M. Cherchi, S. Stivala, A. Pasquazi, A. C. Busacca, S. Riva Sanseverino, A. C. Cino, L. Colace, and G. Assanto, “Second-harmonic generation in surface periodically poled lithium niobate waveguides: on the role of multiphoton absorption,” Appl. Phys. B 93, 559-565 (2008).
[CrossRef]

M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, A. Riva Sanseverino, and C. Leone, “Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: a material comparison,” IEEE J. Quantum Electron., http://arxiv.org/abs/0906.3683.

M. Cherchi, S. Bivona, A. C. Cino, A. C. Busacca, and R. L. Oliveri are preparing a manuscript to be called “Universal charts for optical difference frequency generation in the terahertz domain.” http://arxiv.org/abs/0906.3697.

Cino, A. C.

M. Cherchi, S. Stivala, A. Pasquazi, A. C. Busacca, S. Riva Sanseverino, A. C. Cino, L. Colace, and G. Assanto, “Second-harmonic generation in surface periodically poled lithium niobate waveguides: on the role of multiphoton absorption,” Appl. Phys. B 93, 559-565 (2008).
[CrossRef]

M. Cherchi, S. Bivona, A. C. Cino, A. C. Busacca, and R. L. Oliveri are preparing a manuscript to be called “Universal charts for optical difference frequency generation in the terahertz domain.” http://arxiv.org/abs/0906.3697.

M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, A. Riva Sanseverino, and C. Leone, “Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: a material comparison,” IEEE J. Quantum Electron., http://arxiv.org/abs/0906.3683.

Colace, L.

M. Cherchi, S. Stivala, A. Pasquazi, A. C. Busacca, S. Riva Sanseverino, A. C. Cino, L. Colace, and G. Assanto, “Second-harmonic generation in surface periodically poled lithium niobate waveguides: on the role of multiphoton absorption,” Appl. Phys. B 93, 559-565 (2008).
[CrossRef]

Ding, Y.

Y. Ding, “High-power tunable terahertz sources based on parametric processes and applications,” IEEE J. Sel. Top. Quantum Electron. 13, 705-720 (2007).
[CrossRef]

Ding, Y. J.

X. Mu, Y. J. Ding, and I. B. Zotova, “Exploring fundamental limits to terahertz generation in electro-optic materials: from bulk to nanolayers,” Laser Phys. 18, 530-546 (2008).
[CrossRef]

Y. J. Ding, “Quasi-single-cycle terahertz pulses based on broadband-phase-matched difference-frequency generation in second-order nonlinear medium: high output powers and conversion efficiencies,” IEEE J. Sel. Top. Quantum Electron. 10, 1171-1179 (2004).
[CrossRef]

I. B. Zotova and Y. J. Ding, “Spectral measurements of two-photon absorption coefficients for CdSe and GaSe crystals,” Appl. Opt. 40, 6654-6658 (2001).
[CrossRef]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Fejer, M. M.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hulburt, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched Gallium Arsenide,” IEEE J. Sel. Top. Quantum Electron. 14, 354-362 (2008).
[CrossRef]

W. C. Hurlbut, Y.-S. Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, “Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared,” Opt. Lett. 32, 668-670 (2007).
[CrossRef] [PubMed]

Gaeta, A. L.

Garrett, C. G. B.

C. H. Henry and C. G. B. Garrett, “Theory of parametric gain near a lattice resonance,” Phys. Rev. 171, 1058-1064 (1968).
[CrossRef]

Guenther, A. H.

Günay, E.

K. R. Allakhverdiev, T. Baykara, S. Joosten, E. Günay, A. A. Kaya, A. Kulibekov, A. Seilmeier, and E. Yu. Salaev, “Anisotropy of two-photon absorption in gallium selenide at 1064 nm,” Opt. Commun. 261, 60-64 (2006).
[CrossRef]

Harris, J. S.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hulburt, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched Gallium Arsenide,” IEEE J. Sel. Top. Quantum Electron. 14, 354-362 (2008).
[CrossRef]

Henry, C. H.

C. H. Henry and C. G. B. Garrett, “Theory of parametric gain near a lattice resonance,” Phys. Rev. 171, 1058-1064 (1968).
[CrossRef]

Hulburt, W.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hulburt, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched Gallium Arsenide,” IEEE J. Sel. Top. Quantum Electron. 14, 354-362 (2008).
[CrossRef]

Hurlbut, W. C.

Ironside, C. N.

A. Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, and R. M. Osgood, “Nonlinear absorption in a GaAs waveguide just above half the band gap,” IEEE J. Quantum Electron. 30, 1172-1175 (1994).
[CrossRef]

Jones, R.

Joosten, S.

K. R. Allakhverdiev, T. Baykara, S. Joosten, E. Günay, A. A. Kaya, A. Kulibekov, A. Seilmeier, and E. Yu. Salaev, “Anisotropy of two-photon absorption in gallium selenide at 1064 nm,” Opt. Commun. 261, 60-64 (2006).
[CrossRef]

Kajava, T. T.

Kaya, A. A.

K. R. Allakhverdiev, T. Baykara, S. Joosten, E. Günay, A. A. Kaya, A. Kulibekov, A. Seilmeier, and E. Yu. Salaev, “Anisotropy of two-photon absorption in gallium selenide at 1064 nm,” Opt. Commun. 261, 60-64 (2006).
[CrossRef]

Kozlov, V. G.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hulburt, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched Gallium Arsenide,” IEEE J. Sel. Top. Quantum Electron. 14, 354-362 (2008).
[CrossRef]

Kulibekov, A.

K. R. Allakhverdiev, T. Baykara, S. Joosten, E. Günay, A. A. Kaya, A. Kulibekov, A. Seilmeier, and E. Yu. Salaev, “Anisotropy of two-photon absorption in gallium selenide at 1064 nm,” Opt. Commun. 261, 60-64 (2006).
[CrossRef]

Kuo, P. S.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hulburt, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched Gallium Arsenide,” IEEE J. Sel. Top. Quantum Electron. 14, 354-362 (2008).
[CrossRef]

W. C. Hurlbut, Y.-S. Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, “Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared,” Opt. Lett. 32, 668-670 (2007).
[CrossRef] [PubMed]

Lang, L.

Q. Xing, L. Lang, Z. Tian, N. Zhang, S. Li, K. Wang, L. Chai, and Q. Wang, “The effect of two-photon absorption and optical excitation area on the generation of THz radiation,” Opt. Commun. 267, 422-426 (2006).
[CrossRef]

Lee, Y.-S.

Leone, C.

M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, A. Riva Sanseverino, and C. Leone, “Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: a material comparison,” IEEE J. Quantum Electron., http://arxiv.org/abs/0906.3683.

Li, S.

Q. Xing, L. Lang, Z. Tian, N. Zhang, S. Li, K. Wang, L. Chai, and Q. Wang, “The effect of two-photon absorption and optical excitation area on the generation of THz radiation,” Opt. Commun. 267, 422-426 (2006).
[CrossRef]

Lin, A.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hulburt, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched Gallium Arsenide,” IEEE J. Sel. Top. Quantum Electron. 14, 354-362 (2008).
[CrossRef]

Liu, A.

Lynch, C.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hulburt, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched Gallium Arsenide,” IEEE J. Sel. Top. Quantum Electron. 14, 354-362 (2008).
[CrossRef]

Mitra, S. S.

Morris, J. R.

J. R. Morris and Y. R. Shen, “Theory of far-infrared generation by optical mixing,” Phys. Rev. A 15, 1143-1156 (1977).
[CrossRef]

Mu, X.

X. Mu, Y. J. Ding, and I. B. Zotova, “Exploring fundamental limits to terahertz generation in electro-optic materials: from bulk to nanolayers,” Laser Phys. 18, 530-546 (2008).
[CrossRef]

Nathan, V.

Nazarov, M. M.

V. Ya. Gaivoronskii, M. M. Nazarov, D. A. Sapozhnikov, E. V. Shepelyavyi, S. A. Shkel'nyuk, A. P. Shkurinov, and A. V. Shuvaev, “Competition between linear and nonlinear processes during generation of pulsed terahertz radiation in a ZnTe crystal,” Quantum Electron. 35, 407-414 (2005).
[CrossRef]

Oliveri, R. L.

M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, A. Riva Sanseverino, and C. Leone, “Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: a material comparison,” IEEE J. Quantum Electron., http://arxiv.org/abs/0906.3683.

M. Cherchi, S. Bivona, A. C. Cino, A. C. Busacca, and R. L. Oliveri are preparing a manuscript to be called “Universal charts for optical difference frequency generation in the terahertz domain.” http://arxiv.org/abs/0906.3697.

Osgood, R. M.

A. Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, and R. M. Osgood, “Nonlinear absorption in a GaAs waveguide just above half the band gap,” IEEE J. Quantum Electron. 30, 1172-1175 (1994).
[CrossRef]

Paniccia, M.

Pasquazi, A.

M. Cherchi, S. Stivala, A. Pasquazi, A. C. Busacca, S. Riva Sanseverino, A. C. Cino, L. Colace, and G. Assanto, “Second-harmonic generation in surface periodically poled lithium niobate waveguides: on the role of multiphoton absorption,” Appl. Phys. B 93, 559-565 (2008).
[CrossRef]

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Riva Sanseverino, A.

M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, A. Riva Sanseverino, and C. Leone, “Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: a material comparison,” IEEE J. Quantum Electron., http://arxiv.org/abs/0906.3683.

Riva Sanseverino, S.

M. Cherchi, S. Stivala, A. Pasquazi, A. C. Busacca, S. Riva Sanseverino, A. C. Cino, L. Colace, and G. Assanto, “Second-harmonic generation in surface periodically poled lithium niobate waveguides: on the role of multiphoton absorption,” Appl. Phys. B 93, 559-565 (2008).
[CrossRef]

Rong, H.

Salaev, E. Yu.

K. R. Allakhverdiev, T. Baykara, S. Joosten, E. Günay, A. A. Kaya, A. Kulibekov, A. Seilmeier, and E. Yu. Salaev, “Anisotropy of two-photon absorption in gallium selenide at 1064 nm,” Opt. Commun. 261, 60-64 (2006).
[CrossRef]

Sapozhnikov, D. A.

V. Ya. Gaivoronskii, M. M. Nazarov, D. A. Sapozhnikov, E. V. Shepelyavyi, S. A. Shkel'nyuk, A. P. Shkurinov, and A. V. Shuvaev, “Competition between linear and nonlinear processes during generation of pulsed terahertz radiation in a ZnTe crystal,” Quantum Electron. 35, 407-414 (2005).
[CrossRef]

Scelsi, G.

A. Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, and R. M. Osgood, “Nonlinear absorption in a GaAs waveguide just above half the band gap,” IEEE J. Quantum Electron. 30, 1172-1175 (1994).
[CrossRef]

Schaar, J. E.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hulburt, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched Gallium Arsenide,” IEEE J. Sel. Top. Quantum Electron. 14, 354-362 (2008).
[CrossRef]

Seilmeier, A.

K. R. Allakhverdiev, T. Baykara, S. Joosten, E. Günay, A. A. Kaya, A. Kulibekov, A. Seilmeier, and E. Yu. Salaev, “Anisotropy of two-photon absorption in gallium selenide at 1064 nm,” Opt. Commun. 261, 60-64 (2006).
[CrossRef]

Shen, Y. R.

J. R. Morris and Y. R. Shen, “Theory of far-infrared generation by optical mixing,” Phys. Rev. A 15, 1143-1156 (1977).
[CrossRef]

Shepelyavyi, E. V.

V. Ya. Gaivoronskii, M. M. Nazarov, D. A. Sapozhnikov, E. V. Shepelyavyi, S. A. Shkel'nyuk, A. P. Shkurinov, and A. V. Shuvaev, “Competition between linear and nonlinear processes during generation of pulsed terahertz radiation in a ZnTe crystal,” Quantum Electron. 35, 407-414 (2005).
[CrossRef]

Shetty, N. R.

N. R. Shetty, M. F. Becker, and R. M. Walser, “An anomalous absorption model to account for accumulation in N-on-1 damage in Si and GaAs,” in Laser Induced Damage in Optical Materials: 1986H.E.Bennett, A.H.Guenther, D.Milam, and B.E.Newman, eds. (ASTM International, 1988), pp. 634-648.
[CrossRef]

Shkel'nyuk, S. A.

V. Ya. Gaivoronskii, M. M. Nazarov, D. A. Sapozhnikov, E. V. Shepelyavyi, S. A. Shkel'nyuk, A. P. Shkurinov, and A. V. Shuvaev, “Competition between linear and nonlinear processes during generation of pulsed terahertz radiation in a ZnTe crystal,” Quantum Electron. 35, 407-414 (2005).
[CrossRef]

Shkurinov, A. P.

V. Ya. Gaivoronskii, M. M. Nazarov, D. A. Sapozhnikov, E. V. Shepelyavyi, S. A. Shkel'nyuk, A. P. Shkurinov, and A. V. Shuvaev, “Competition between linear and nonlinear processes during generation of pulsed terahertz radiation in a ZnTe crystal,” Quantum Electron. 35, 407-414 (2005).
[CrossRef]

Shuvaev, A. V.

V. Ya. Gaivoronskii, M. M. Nazarov, D. A. Sapozhnikov, E. V. Shepelyavyi, S. A. Shkel'nyuk, A. P. Shkurinov, and A. V. Shuvaev, “Competition between linear and nonlinear processes during generation of pulsed terahertz radiation in a ZnTe crystal,” Quantum Electron. 35, 407-414 (2005).
[CrossRef]

Stegeman, G. I.

A. Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, and R. M. Osgood, “Nonlinear absorption in a GaAs waveguide just above half the band gap,” IEEE J. Quantum Electron. 30, 1172-1175 (1994).
[CrossRef]

Stivala, S.

M. Cherchi, S. Stivala, A. Pasquazi, A. C. Busacca, S. Riva Sanseverino, A. C. Cino, L. Colace, and G. Assanto, “Second-harmonic generation in surface periodically poled lithium niobate waveguides: on the role of multiphoton absorption,” Appl. Phys. B 93, 559-565 (2008).
[CrossRef]

M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, A. Riva Sanseverino, and C. Leone, “Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: a material comparison,” IEEE J. Quantum Electron., http://arxiv.org/abs/0906.3683.

Taormina, A.

M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, A. Riva Sanseverino, and C. Leone, “Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: a material comparison,” IEEE J. Quantum Electron., http://arxiv.org/abs/0906.3683.

Tian, Z.

Q. Xing, L. Lang, Z. Tian, N. Zhang, S. Li, K. Wang, L. Chai, and Q. Wang, “The effect of two-photon absorption and optical excitation area on the generation of THz radiation,” Opt. Commun. 267, 422-426 (2006).
[CrossRef]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nature 1, 97-105 (2007).

Villeneuve, A.

A. Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, and R. M. Osgood, “Nonlinear absorption in a GaAs waveguide just above half the band gap,” IEEE J. Quantum Electron. 30, 1172-1175 (1994).
[CrossRef]

Vodopyanov, K. L.

K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photonics Rev. 2, 11-25 (2008).
[CrossRef]

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hulburt, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched Gallium Arsenide,” IEEE J. Sel. Top. Quantum Electron. 14, 354-362 (2008).
[CrossRef]

W. C. Hurlbut, Y.-S. Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, “Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared,” Opt. Lett. 32, 668-670 (2007).
[CrossRef] [PubMed]

K. L. Vodopyanov, “Optical generation of narrow-band terahertz packets in periodically-inverted electro-optic crystals: conversion efficiency and optimal laser pulse format,” Opt. Express 14, 2263-2276 (2006).
[CrossRef] [PubMed]

Walser, R. M.

N. R. Shetty, M. F. Becker, and R. M. Walser, “An anomalous absorption model to account for accumulation in N-on-1 damage in Si and GaAs,” in Laser Induced Damage in Optical Materials: 1986H.E.Bennett, A.H.Guenther, D.Milam, and B.E.Newman, eds. (ASTM International, 1988), pp. 634-648.
[CrossRef]

Wang, K.

Q. Xing, L. Lang, Z. Tian, N. Zhang, S. Li, K. Wang, L. Chai, and Q. Wang, “The effect of two-photon absorption and optical excitation area on the generation of THz radiation,” Opt. Commun. 267, 422-426 (2006).
[CrossRef]

Wang, Q.

Q. Xing, L. Lang, Z. Tian, N. Zhang, S. Li, K. Wang, L. Chai, and Q. Wang, “The effect of two-photon absorption and optical excitation area on the generation of THz radiation,” Opt. Commun. 267, 422-426 (2006).
[CrossRef]

Xing, Q.

Q. Xing, L. Lang, Z. Tian, N. Zhang, S. Li, K. Wang, L. Chai, and Q. Wang, “The effect of two-photon absorption and optical excitation area on the generation of THz radiation,” Opt. Commun. 267, 422-426 (2006).
[CrossRef]

Ya. Gaivoronskii, V.

V. Ya. Gaivoronskii, M. M. Nazarov, D. A. Sapozhnikov, E. V. Shepelyavyi, S. A. Shkel'nyuk, A. P. Shkurinov, and A. V. Shuvaev, “Competition between linear and nonlinear processes during generation of pulsed terahertz radiation in a ZnTe crystal,” Quantum Electron. 35, 407-414 (2005).
[CrossRef]

Yang, C. C.

A. Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, and R. M. Osgood, “Nonlinear absorption in a GaAs waveguide just above half the band gap,” IEEE J. Quantum Electron. 30, 1172-1175 (1994).
[CrossRef]

Yariv, A.

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919-933 (1973).
[CrossRef]

Yu, X.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hulburt, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched Gallium Arsenide,” IEEE J. Sel. Top. Quantum Electron. 14, 354-362 (2008).
[CrossRef]

Zhang, N.

Q. Xing, L. Lang, Z. Tian, N. Zhang, S. Li, K. Wang, L. Chai, and Q. Wang, “The effect of two-photon absorption and optical excitation area on the generation of THz radiation,” Opt. Commun. 267, 422-426 (2006).
[CrossRef]

Zotova, I. B.

X. Mu, Y. J. Ding, and I. B. Zotova, “Exploring fundamental limits to terahertz generation in electro-optic materials: from bulk to nanolayers,” Laser Phys. 18, 530-546 (2008).
[CrossRef]

I. B. Zotova and Y. J. Ding, “Spectral measurements of two-photon absorption coefficients for CdSe and GaSe crystals,” Appl. Opt. 40, 6654-6658 (2001).
[CrossRef]

Appl. Opt.

Appl. Phys. B

M. Cherchi, S. Stivala, A. Pasquazi, A. C. Busacca, S. Riva Sanseverino, A. C. Cino, L. Colace, and G. Assanto, “Second-harmonic generation in surface periodically poled lithium niobate waveguides: on the role of multiphoton absorption,” Appl. Phys. B 93, 559-565 (2008).
[CrossRef]

IEEE J. Quantum Electron.

A. Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, and R. M. Osgood, “Nonlinear absorption in a GaAs waveguide just above half the band gap,” IEEE J. Quantum Electron. 30, 1172-1175 (1994).
[CrossRef]

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919-933 (1973).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

Y. Ding, “High-power tunable terahertz sources based on parametric processes and applications,” IEEE J. Sel. Top. Quantum Electron. 13, 705-720 (2007).
[CrossRef]

Y. J. Ding, “Quasi-single-cycle terahertz pulses based on broadband-phase-matched difference-frequency generation in second-order nonlinear medium: high output powers and conversion efficiencies,” IEEE J. Sel. Top. Quantum Electron. 10, 1171-1179 (2004).
[CrossRef]

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hulburt, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched Gallium Arsenide,” IEEE J. Sel. Top. Quantum Electron. 14, 354-362 (2008).
[CrossRef]

J. Opt. Soc. Am. B

Laser Photonics Rev.

K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photonics Rev. 2, 11-25 (2008).
[CrossRef]

Laser Phys.

X. Mu, Y. J. Ding, and I. B. Zotova, “Exploring fundamental limits to terahertz generation in electro-optic materials: from bulk to nanolayers,” Laser Phys. 18, 530-546 (2008).
[CrossRef]

Nature

M. Tonouchi, “Cutting-edge terahertz technology,” Nature 1, 97-105 (2007).

Opt. Commun.

Q. Xing, L. Lang, Z. Tian, N. Zhang, S. Li, K. Wang, L. Chai, and Q. Wang, “The effect of two-photon absorption and optical excitation area on the generation of THz radiation,” Opt. Commun. 267, 422-426 (2006).
[CrossRef]

K. R. Allakhverdiev, T. Baykara, S. Joosten, E. Günay, A. A. Kaya, A. Kulibekov, A. Seilmeier, and E. Yu. Salaev, “Anisotropy of two-photon absorption in gallium selenide at 1064 nm,” Opt. Commun. 261, 60-64 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

C. H. Henry and C. G. B. Garrett, “Theory of parametric gain near a lattice resonance,” Phys. Rev. 171, 1058-1064 (1968).
[CrossRef]

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918-1939 (1962).
[CrossRef]

Phys. Rev. A

J. R. Morris and Y. R. Shen, “Theory of far-infrared generation by optical mixing,” Phys. Rev. A 15, 1143-1156 (1977).
[CrossRef]

Quantum Electron.

V. Ya. Gaivoronskii, M. M. Nazarov, D. A. Sapozhnikov, E. V. Shepelyavyi, S. A. Shkel'nyuk, A. P. Shkurinov, and A. V. Shuvaev, “Competition between linear and nonlinear processes during generation of pulsed terahertz radiation in a ZnTe crystal,” Quantum Electron. 35, 407-414 (2005).
[CrossRef]

Other

Y.J.Ding, Q.Hu, M.Kock, and C.E.Stutz, eds., “Special issue on THz materials, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 257-520 (2008).

R. W. Boyd, Nonlinear Optics (Academic Press, 2008).

M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, A. Riva Sanseverino, and C. Leone, “Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: a material comparison,” IEEE J. Quantum Electron., http://arxiv.org/abs/0906.3683.

M. Cherchi, S. Bivona, A. C. Cino, A. C. Busacca, and R. L. Oliveri are preparing a manuscript to be called “Universal charts for optical difference frequency generation in the terahertz domain.” http://arxiv.org/abs/0906.3697.

N. R. Shetty, M. F. Becker, and R. M. Walser, “An anomalous absorption model to account for accumulation in N-on-1 damage in Si and GaAs,” in Laser Induced Damage in Optical Materials: 1986H.E.Bennett, A.H.Guenther, D.Milam, and B.E.Newman, eds. (ASTM International, 1988), pp. 634-648.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Universal charts for phase-matched DFG in the presence of two-photon absorption. (a),(c) Optimum conversion length ζ max vs. normalized pump peak power P ̂ u 0 ; (b),(d) corresponding maximum conversion efficiency for R = 1 and R = 10 2 . Each curve corresponds to a different value of the normalized 2PA coefficient β ̂ . (d),(e) Optimum conversion power P ̂ u 0 , max vs. β ̂ and corresponding maximum conversion efficiency max ( η max ) . Each curve corresponds to a different value of the ratio R. The effects of FCA are neglected.

Fig. 2
Fig. 2

Universal charts for phase-matched DFG in the presence of three-photon absorption. Same as Fig. 1, but in terms of the 3PA coefficient γ ̂ .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

{ d w ̂ d ζ = i u ̂ v ̂ * 1 i κ 2 w ̂ d v ̂ d ζ = i u ̂ w ̂ * d u ̂ d ζ = i v ̂ w ̂ } .
{ 2 PA v ̂ = 1 2 ( β ̂ v v | v ̂ | 2 + 2 β ̂ v u | u ̂ | 2 ) v ̂ 2 PA u ̂ = 1 2 ( β ̂ u u | u ̂ | 2 + 2 β ̂ u v | v ̂ | 2 ) u ̂ } .
{ 3 PA v ̂ = 1 2 ( γ ̂ v v v | v ̂ | 4 + 6 γ ̂ v v u | v ̂ | 2 | u ̂ | 2 + 3 γ ̂ v u u | u ̂ | 4 ) v ̂ 3 PA u ̂ = 1 2 ( γ ̂ u u u | u ̂ | 4 + 6 γ ̂ u u v | u ̂ | 2 | v ̂ | 2 + 3 γ ̂ u v v | v ̂ | 4 ) u ̂ } .
FCA 2 w τ eff σ w [ P ¯ v A w v ( β ̂ v v | v ̂ | 2 2 ω v + 2 β ̂ v u | u ̂ | 2 ( ω v + ω u ) ) | v ̂ | 2 + P ¯ u A w u ( β ̂ u u | u ̂ | 2 2 ω u + 2 β ̂ u v | v ̂ | 2 ( ω u + ω v ) ) | u ̂ | 2 ] w ̂ 2 ,
FCA 3 w τ eff σ w [ P ¯ v A w v ( γ ̂ v v v | v ̂ | 4 3 ω v + 6 γ ̂ v v u | v ̂ | 2 | u ̂ | 2 ( 2 ω v + ω u ) + 3 γ ̂ v u u | u ̂ | 4 ( ω v + 2 ω u ) ) | v ̂ | 2 + P ¯ u A w u ( γ ̂ u u u | u ̂ | 4 3 ω u + 6 γ ̂ u u v | u ̂ | 2 | v ̂ | 2 ( 2 ω u + ω v ) + 3 γ ̂ u u v | v ̂ | 4 ( ω u + 2 ω v ) ) | u ̂ | 2 ] w ̂ 2 ,

Metrics