Abstract

We report the fabrication of L3 nanocavities defined into a free-standing silicon nitride (SiN) membrane coated with a thin (10nm) film of fluorescent red-emitting conjugated polymer. We find that structures both with and without the conjugated polymer are characterized by a number of different confined optical modes with quality factors ranging between 450 and 1200. We characterize the polarization of the modes and discuss the enhancement of emission intensity from both the SiN and the polymer using spectral imaging.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839-846 (2003).
    [CrossRef] [PubMed]
  2. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
    [CrossRef] [PubMed]
  3. W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
    [CrossRef] [PubMed]
  4. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200-203 (2004).
    [CrossRef] [PubMed]
  5. S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127104 (2006).
    [CrossRef]
  6. H. Y. Ryu, M. Notomi, and Y. H. Lee, “High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities,” Appl. Phys. Lett. 83, 4294-4296 (2003).
    [CrossRef]
  7. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202-1214 (2005).
    [CrossRef] [PubMed]
  8. T. Tanabe, A. Shinya, E. Kuramochi, S. Kondo, H. Taniyama, and M. Notomi, “Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode,” Appl. Phys. Lett. 91, 021110 (2007).
    [CrossRef]
  9. M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
    [CrossRef]
  10. Y. Ruan, M. K. Kim, Y. H. Lee, B. Luther-Davies, and A. Rode, “Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography,” Appl. Phys. Lett. 90, 071102 (2007).
    [CrossRef]
  11. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Mater. 4, 207-210 (2005).
    [CrossRef]
  12. A. M. Adawi, A. R. A. Chalcraft, D. M. Whittaker, and D. G. Lidzey, “Refractive index dependence of L3 photonic crystal nano-cavities,” Opt. Express 15, 14299-14305 (2007).
    [CrossRef] [PubMed]
  13. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
    [CrossRef]
  14. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photon. 1, 449-458 (2007).
    [CrossRef]
  15. A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. J. Krenner, R. Meyer, G. Böhm, and J. J. Finley, “Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals,” Phys. Rev. B 71, 241304 (2005).
    [CrossRef]
  16. T. Kuroda, N. Ikeda, T. Mano, Y. Sugimoto, T. Ochiai, K. Kuroda, S. Ohkouchi, N. Koguchi, K. Sakoda, and K. Asakawa, “Acceleration and suppression of photoemission of GaAs quantum dots embedded in photonic crystal microcavities,” Appl. Phys. Lett. 93, 111103 (2008).
    [CrossRef]
  17. T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14, 377-386 (2006).
    [CrossRef] [PubMed]
  18. H. Kawashima, Y. Tanaka, N. Ikeda, Y. Sugimoto, T. Hasama, and H. Ishikawa, “Optical bistable response in AlGaAs-based photonic crystal microcavities and related nonlinearities,” IEEE J. Quantum Electron. 44, 841-849 (2008).
    [CrossRef]
  19. M. Kitamura, S. Iwamoto, and Y. Arakawa, “Enhanced light emission from an organic photonic crystal with a nanocavity,” Appl. Phys. Lett. 87, 151119 (2007).
    [CrossRef]
  20. A. M. Adawi and D. G. Lidzey, “A design for an optical-nanocavity optimized for use with surface-bound light-emitting materials,” New J. Phys. 10, 065011 (2008).
    [CrossRef]
  21. M. Barth, J. Kouba, J. Stingl, B. Löchel, and O. Benson, “Modification of visible spontaneous emission with silicon nitride photonic crystal nanocavities,” Opt. Express 15, 17231-17240 (2007).
    [CrossRef] [PubMed]
  22. M. M. Makarova, J. Vuckovic, H. Sanda, and Y. Nishi, “Silicon-based photonic crystal nanocavity light emitters,” Appl. Phys. Lett. 89, 221101 (2006).
    [CrossRef]
  23. M. Barth, N. Nüsse, J. Stingl, B. Löchel, and O. Benson, “Emission properties of high-Q silicon nitride photonic crystal heterostructure cavities,” Appl. Phys. Lett. 93, 021112 (2008).
    [CrossRef]
  24. M. W. McCutcheon and M. Lončar, “Design of a silicon nitride photonic crystal nanocavity with a quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express 16, 19136-19145 (2008).
    [CrossRef]
  25. N. M. Park, C. J. Choi, T. Y. Seong, and S. J. Park, “Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride,” Phys. Rev. Lett. 86, 1355-1357 (2001).
    [CrossRef] [PubMed]
  26. K. S. Cho, N. M. Park, T. Y. Kim, K. H. Kim, G. Y. Sung, and J. H. Shin, “High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer,” Appl. Phys. Lett. 86, 071909 (2005).
    [CrossRef]
  27. Z. H. Cen, T P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett. 94, 041102 (2009).
    [CrossRef]
  28. M. C. Netti, M. D. B. Charlton, G. J. Parker, and J. J. Baumberg, “Visible photonic band gap engineering in silicon nitride waveguides,” Appl. Phys. Lett. 76, 991-993 (2000).
    [CrossRef]
  29. H. G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nature Photon. 2, 622-626 (2008).
    [CrossRef]
  30. K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
    [CrossRef]
  31. R. T. Neal, M. E. Zoorob, M. D. Charlton, G. J. Parker, C. E. Finlayson, and J. J. Baumberg, “Photonic bandgaps in patterned waveguides of silicon-rich silicon dioxide,” Appl. Phys. Lett. 84, 2415-2417 (2004).
    [CrossRef]
  32. M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404, 740-743 (2000).
    [CrossRef] [PubMed]
  33. M. C. Netti, A. Harris, J. J. Baumberg, D. M. Whittaker, M. B. D. Charlton, M. E. Zoorob, and G. J. Parker, “Optical trirefringence in photonic crystal waveguides,” Phys. Rev. Lett. 86, 1526-1529 (2001).
    [CrossRef] [PubMed]
  34. G. E. Khalil, A. M. Adawi, A. M. Fox, A. Iraqi, and D. G. Lidzey, “Single molecule spectroscopy of red- and green-emitting fluorene-based copolymers,” J. Chem. Phys. 130, 044903 (2009).
    [CrossRef] [PubMed]
  35. G. Heliotis, P. N. Stavrinou, D. D. C. Bradley, E. Gu, C. Griffin, C. W. Jeon, and M. D. Dawson, “Spectral conversion of InGaN ultraviolet microarray light-emitting diodes using fluorene-based red-, green-, blue-, and white-light-emitting polymer overlayer films,” Appl. Phys. Lett. 87, 103505 (2005).
    [CrossRef]
  36. G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium,” J. Appl. Phys. 96, 6959-6965 (2004).
    [CrossRef]
  37. A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90, 241117 (2007).
    [CrossRef]
  38. Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82, 1661-1663 (2003).
    [CrossRef]
  39. D. M. Whittaker, I. S. Culshaw, V. N. Astratov, and M. S. Skolnick, “Photonic band structure of patterned waveguides with dielectric and metallic cladding,” Phys. Rev. B 65, 073102 (2002).
    [CrossRef]
  40. L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B 73, 235114 (2006).
    [CrossRef]
  41. F. A. Boroumand, P. W. Fry, and D. G. Lidzey, “Nanoscale conjugated-polymer light-emitting diodes,” Nano Lett. 5, 67-71 (2005).
    [CrossRef] [PubMed]

2009 (2)

Z. H. Cen, T P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett. 94, 041102 (2009).
[CrossRef]

G. E. Khalil, A. M. Adawi, A. M. Fox, A. Iraqi, and D. G. Lidzey, “Single molecule spectroscopy of red- and green-emitting fluorene-based copolymers,” J. Chem. Phys. 130, 044903 (2009).
[CrossRef] [PubMed]

2008 (6)

H. G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nature Photon. 2, 622-626 (2008).
[CrossRef]

H. Kawashima, Y. Tanaka, N. Ikeda, Y. Sugimoto, T. Hasama, and H. Ishikawa, “Optical bistable response in AlGaAs-based photonic crystal microcavities and related nonlinearities,” IEEE J. Quantum Electron. 44, 841-849 (2008).
[CrossRef]

A. M. Adawi and D. G. Lidzey, “A design for an optical-nanocavity optimized for use with surface-bound light-emitting materials,” New J. Phys. 10, 065011 (2008).
[CrossRef]

M. Barth, N. Nüsse, J. Stingl, B. Löchel, and O. Benson, “Emission properties of high-Q silicon nitride photonic crystal heterostructure cavities,” Appl. Phys. Lett. 93, 021112 (2008).
[CrossRef]

M. W. McCutcheon and M. Lončar, “Design of a silicon nitride photonic crystal nanocavity with a quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express 16, 19136-19145 (2008).
[CrossRef]

T. Kuroda, N. Ikeda, T. Mano, Y. Sugimoto, T. Ochiai, K. Kuroda, S. Ohkouchi, N. Koguchi, K. Sakoda, and K. Asakawa, “Acceleration and suppression of photoemission of GaAs quantum dots embedded in photonic crystal microcavities,” Appl. Phys. Lett. 93, 111103 (2008).
[CrossRef]

2007 (8)

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photon. 1, 449-458 (2007).
[CrossRef]

A. M. Adawi, A. R. A. Chalcraft, D. M. Whittaker, and D. G. Lidzey, “Refractive index dependence of L3 photonic crystal nano-cavities,” Opt. Express 15, 14299-14305 (2007).
[CrossRef] [PubMed]

T. Tanabe, A. Shinya, E. Kuramochi, S. Kondo, H. Taniyama, and M. Notomi, “Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode,” Appl. Phys. Lett. 91, 021110 (2007).
[CrossRef]

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[CrossRef]

Y. Ruan, M. K. Kim, Y. H. Lee, B. Luther-Davies, and A. Rode, “Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography,” Appl. Phys. Lett. 90, 071102 (2007).
[CrossRef]

M. Barth, J. Kouba, J. Stingl, B. Löchel, and O. Benson, “Modification of visible spontaneous emission with silicon nitride photonic crystal nanocavities,” Opt. Express 15, 17231-17240 (2007).
[CrossRef] [PubMed]

M. Kitamura, S. Iwamoto, and Y. Arakawa, “Enhanced light emission from an organic photonic crystal with a nanocavity,” Appl. Phys. Lett. 87, 151119 (2007).
[CrossRef]

A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90, 241117 (2007).
[CrossRef]

2006 (6)

L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B 73, 235114 (2006).
[CrossRef]

M. M. Makarova, J. Vuckovic, H. Sanda, and Y. Nishi, “Silicon-based photonic crystal nanocavity light emitters,” Appl. Phys. Lett. 89, 221101 (2006).
[CrossRef]

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
[CrossRef]

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef] [PubMed]

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127104 (2006).
[CrossRef]

T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14, 377-386 (2006).
[CrossRef] [PubMed]

2005 (6)

A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. J. Krenner, R. Meyer, G. Böhm, and J. J. Finley, “Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals,” Phys. Rev. B 71, 241304 (2005).
[CrossRef]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Mater. 4, 207-210 (2005).
[CrossRef]

G. Heliotis, P. N. Stavrinou, D. D. C. Bradley, E. Gu, C. Griffin, C. W. Jeon, and M. D. Dawson, “Spectral conversion of InGaN ultraviolet microarray light-emitting diodes using fluorene-based red-, green-, blue-, and white-light-emitting polymer overlayer films,” Appl. Phys. Lett. 87, 103505 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202-1214 (2005).
[CrossRef] [PubMed]

K. S. Cho, N. M. Park, T. Y. Kim, K. H. Kim, G. Y. Sung, and J. H. Shin, “High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer,” Appl. Phys. Lett. 86, 071909 (2005).
[CrossRef]

F. A. Boroumand, P. W. Fry, and D. G. Lidzey, “Nanoscale conjugated-polymer light-emitting diodes,” Nano Lett. 5, 67-71 (2005).
[CrossRef] [PubMed]

2004 (3)

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium,” J. Appl. Phys. 96, 6959-6965 (2004).
[CrossRef]

R. T. Neal, M. E. Zoorob, M. D. Charlton, G. J. Parker, C. E. Finlayson, and J. J. Baumberg, “Photonic bandgaps in patterned waveguides of silicon-rich silicon dioxide,” Appl. Phys. Lett. 84, 2415-2417 (2004).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

2003 (4)

K. J. Vahala, “Optical microcavities,” Nature 424, 839-846 (2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

H. Y. Ryu, M. Notomi, and Y. H. Lee, “High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities,” Appl. Phys. Lett. 83, 4294-4296 (2003).
[CrossRef]

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82, 1661-1663 (2003).
[CrossRef]

2002 (1)

D. M. Whittaker, I. S. Culshaw, V. N. Astratov, and M. S. Skolnick, “Photonic band structure of patterned waveguides with dielectric and metallic cladding,” Phys. Rev. B 65, 073102 (2002).
[CrossRef]

2001 (2)

M. C. Netti, A. Harris, J. J. Baumberg, D. M. Whittaker, M. B. D. Charlton, M. E. Zoorob, and G. J. Parker, “Optical trirefringence in photonic crystal waveguides,” Phys. Rev. Lett. 86, 1526-1529 (2001).
[CrossRef] [PubMed]

N. M. Park, C. J. Choi, T. Y. Seong, and S. J. Park, “Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride,” Phys. Rev. Lett. 86, 1355-1357 (2001).
[CrossRef] [PubMed]

2000 (2)

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404, 740-743 (2000).
[CrossRef] [PubMed]

M. C. Netti, M. D. B. Charlton, G. J. Parker, and J. J. Baumberg, “Visible photonic band gap engineering in silicon nitride waveguides,” Appl. Phys. Lett. 76, 991-993 (2000).
[CrossRef]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
[CrossRef]

Adawi, A. M.

G. E. Khalil, A. M. Adawi, A. M. Fox, A. Iraqi, and D. G. Lidzey, “Single molecule spectroscopy of red- and green-emitting fluorene-based copolymers,” J. Chem. Phys. 130, 044903 (2009).
[CrossRef] [PubMed]

A. M. Adawi and D. G. Lidzey, “A design for an optical-nanocavity optimized for use with surface-bound light-emitting materials,” New J. Phys. 10, 065011 (2008).
[CrossRef]

A. M. Adawi, A. R. A. Chalcraft, D. M. Whittaker, and D. G. Lidzey, “Refractive index dependence of L3 photonic crystal nano-cavities,” Opt. Express 15, 14299-14305 (2007).
[CrossRef] [PubMed]

Akahane, Y.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Mater. 4, 207-210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202-1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82, 1661-1663 (2003).
[CrossRef]

Andreani, L. C.

L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B 73, 235114 (2006).
[CrossRef]

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127104 (2006).
[CrossRef]

Andrew, P.

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium,” J. Appl. Phys. 96, 6959-6965 (2004).
[CrossRef]

Arakawa, Y.

M. Kitamura, S. Iwamoto, and Y. Arakawa, “Enhanced light emission from an organic photonic crystal with a nanocavity,” Appl. Phys. Lett. 87, 151119 (2007).
[CrossRef]

Asakawa, K.

T. Kuroda, N. Ikeda, T. Mano, Y. Sugimoto, T. Ochiai, K. Kuroda, S. Ohkouchi, N. Koguchi, K. Sakoda, and K. Asakawa, “Acceleration and suppression of photoemission of GaAs quantum dots embedded in photonic crystal microcavities,” Appl. Phys. Lett. 93, 111103 (2008).
[CrossRef]

Asano, T.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photon. 1, 449-458 (2007).
[CrossRef]

T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14, 377-386 (2006).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Mater. 4, 207-210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202-1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82, 1661-1663 (2003).
[CrossRef]

Astratov, V. N.

D. M. Whittaker, I. S. Culshaw, V. N. Astratov, and M. S. Skolnick, “Photonic band structure of patterned waveguides with dielectric and metallic cladding,” Phys. Rev. B 65, 073102 (2002).
[CrossRef]

Badolato, A.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127104 (2006).
[CrossRef]

Barnes, W. L.

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium,” J. Appl. Phys. 96, 6959-6965 (2004).
[CrossRef]

Barrelet, C. J.

H. G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nature Photon. 2, 622-626 (2008).
[CrossRef]

Barth, M.

M. Barth, N. Nüsse, J. Stingl, B. Löchel, and O. Benson, “Emission properties of high-Q silicon nitride photonic crystal heterostructure cavities,” Appl. Phys. Lett. 93, 021112 (2008).
[CrossRef]

M. Barth, J. Kouba, J. Stingl, B. Löchel, and O. Benson, “Modification of visible spontaneous emission with silicon nitride photonic crystal nanocavities,” Opt. Express 15, 17231-17240 (2007).
[CrossRef] [PubMed]

Baumberg, J. J.

R. T. Neal, M. E. Zoorob, M. D. Charlton, G. J. Parker, C. E. Finlayson, and J. J. Baumberg, “Photonic bandgaps in patterned waveguides of silicon-rich silicon dioxide,” Appl. Phys. Lett. 84, 2415-2417 (2004).
[CrossRef]

M. C. Netti, A. Harris, J. J. Baumberg, D. M. Whittaker, M. B. D. Charlton, M. E. Zoorob, and G. J. Parker, “Optical trirefringence in photonic crystal waveguides,” Phys. Rev. Lett. 86, 1526-1529 (2001).
[CrossRef] [PubMed]

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404, 740-743 (2000).
[CrossRef] [PubMed]

M. C. Netti, M. D. B. Charlton, G. J. Parker, and J. J. Baumberg, “Visible photonic band gap engineering in silicon nitride waveguides,” Appl. Phys. Lett. 76, 991-993 (2000).
[CrossRef]

Benson, O.

M. Barth, N. Nüsse, J. Stingl, B. Löchel, and O. Benson, “Emission properties of high-Q silicon nitride photonic crystal heterostructure cavities,” Appl. Phys. Lett. 93, 021112 (2008).
[CrossRef]

M. Barth, J. Kouba, J. Stingl, B. Löchel, and O. Benson, “Modification of visible spontaneous emission with silicon nitride photonic crystal nanocavities,” Opt. Express 15, 17231-17240 (2007).
[CrossRef] [PubMed]

Böhm, G.

A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. J. Krenner, R. Meyer, G. Böhm, and J. J. Finley, “Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals,” Phys. Rev. B 71, 241304 (2005).
[CrossRef]

Boroumand, F. A.

F. A. Boroumand, P. W. Fry, and D. G. Lidzey, “Nanoscale conjugated-polymer light-emitting diodes,” Nano Lett. 5, 67-71 (2005).
[CrossRef] [PubMed]

Bouwmeester, D.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127104 (2006).
[CrossRef]

Bradley, D. D. C.

G. Heliotis, P. N. Stavrinou, D. D. C. Bradley, E. Gu, C. Griffin, C. W. Jeon, and M. D. Dawson, “Spectral conversion of InGaN ultraviolet microarray light-emitting diodes using fluorene-based red-, green-, blue-, and white-light-emitting polymer overlayer films,” Appl. Phys. Lett. 87, 103505 (2005).
[CrossRef]

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium,” J. Appl. Phys. 96, 6959-6965 (2004).
[CrossRef]

Cen, Z. H.

Z. H. Cen, T P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett. 94, 041102 (2009).
[CrossRef]

Chalcraft, A. R. A.

A. M. Adawi, A. R. A. Chalcraft, D. M. Whittaker, and D. G. Lidzey, “Refractive index dependence of L3 photonic crystal nano-cavities,” Opt. Express 15, 14299-14305 (2007).
[CrossRef] [PubMed]

A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90, 241117 (2007).
[CrossRef]

Chang, H. S.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef] [PubMed]

Chang, W. H.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef] [PubMed]

Charlton, M. B. D.

M. C. Netti, A. Harris, J. J. Baumberg, D. M. Whittaker, M. B. D. Charlton, M. E. Zoorob, and G. J. Parker, “Optical trirefringence in photonic crystal waveguides,” Phys. Rev. Lett. 86, 1526-1529 (2001).
[CrossRef] [PubMed]

Charlton, M. D.

R. T. Neal, M. E. Zoorob, M. D. Charlton, G. J. Parker, C. E. Finlayson, and J. J. Baumberg, “Photonic bandgaps in patterned waveguides of silicon-rich silicon dioxide,” Appl. Phys. Lett. 84, 2415-2417 (2004).
[CrossRef]

Charlton, M. D. B.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404, 740-743 (2000).
[CrossRef] [PubMed]

M. C. Netti, M. D. B. Charlton, G. J. Parker, and J. J. Baumberg, “Visible photonic band gap engineering in silicon nitride waveguides,” Appl. Phys. Lett. 76, 991-993 (2000).
[CrossRef]

Chen, T P.

Z. H. Cen, T P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett. 94, 041102 (2009).
[CrossRef]

Chen, W. Y.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef] [PubMed]

Cho, K. S.

K. S. Cho, N. M. Park, T. Y. Kim, K. H. Kim, G. Y. Sung, and J. H. Shin, “High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer,” Appl. Phys. Lett. 86, 071909 (2005).
[CrossRef]

Choi, C. J.

N. M. Park, C. J. Choi, T. Y. Seong, and S. J. Park, “Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride,” Phys. Rev. Lett. 86, 1355-1357 (2001).
[CrossRef] [PubMed]

Choi, Y. S.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127104 (2006).
[CrossRef]

Chyi, J. I.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef] [PubMed]

Crozier, K. B.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
[CrossRef]

Culshaw, I. S.

D. M. Whittaker, I. S. Culshaw, V. N. Astratov, and M. S. Skolnick, “Photonic band structure of patterned waveguides with dielectric and metallic cladding,” Phys. Rev. B 65, 073102 (2002).
[CrossRef]

Dawson, M. D.

G. Heliotis, P. N. Stavrinou, D. D. C. Bradley, E. Gu, C. Griffin, C. W. Jeon, and M. D. Dawson, “Spectral conversion of InGaN ultraviolet microarray light-emitting diodes using fluorene-based red-, green-, blue-, and white-light-emitting polymer overlayer films,” Appl. Phys. Lett. 87, 103505 (2005).
[CrossRef]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Ding, L.

Z. H. Cen, T P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett. 94, 041102 (2009).
[CrossRef]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Fan, S.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
[CrossRef]

Finlayson, C. E.

R. T. Neal, M. E. Zoorob, M. D. Charlton, G. J. Parker, C. E. Finlayson, and J. J. Baumberg, “Photonic bandgaps in patterned waveguides of silicon-rich silicon dioxide,” Appl. Phys. Lett. 84, 2415-2417 (2004).
[CrossRef]

Finley, J. J.

A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. J. Krenner, R. Meyer, G. Böhm, and J. J. Finley, “Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals,” Phys. Rev. B 71, 241304 (2005).
[CrossRef]

Fox, A. M.

G. E. Khalil, A. M. Adawi, A. M. Fox, A. Iraqi, and D. G. Lidzey, “Single molecule spectroscopy of red- and green-emitting fluorene-based copolymers,” J. Chem. Phys. 130, 044903 (2009).
[CrossRef] [PubMed]

A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90, 241117 (2007).
[CrossRef]

Fry, P. W.

F. A. Boroumand, P. W. Fry, and D. G. Lidzey, “Nanoscale conjugated-polymer light-emitting diodes,” Nano Lett. 5, 67-71 (2005).
[CrossRef] [PubMed]

Fujita, M.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photon. 1, 449-458 (2007).
[CrossRef]

Fung, S.

Z. H. Cen, T P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett. 94, 041102 (2009).
[CrossRef]

Gerace, D.

L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B 73, 235114 (2006).
[CrossRef]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Goh, W. P.

Z. H. Cen, T P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett. 94, 041102 (2009).
[CrossRef]

Griffin, C.

G. Heliotis, P. N. Stavrinou, D. D. C. Bradley, E. Gu, C. Griffin, C. W. Jeon, and M. D. Dawson, “Spectral conversion of InGaN ultraviolet microarray light-emitting diodes using fluorene-based red-, green-, blue-, and white-light-emitting polymer overlayer films,” Appl. Phys. Lett. 87, 103505 (2005).
[CrossRef]

Gu, E.

G. Heliotis, P. N. Stavrinou, D. D. C. Bradley, E. Gu, C. Griffin, C. W. Jeon, and M. D. Dawson, “Spectral conversion of InGaN ultraviolet microarray light-emitting diodes using fluorene-based red-, green-, blue-, and white-light-emitting polymer overlayer films,” Appl. Phys. Lett. 87, 103505 (2005).
[CrossRef]

Harris, A.

M. C. Netti, A. Harris, J. J. Baumberg, D. M. Whittaker, M. B. D. Charlton, M. E. Zoorob, and G. J. Parker, “Optical trirefringence in photonic crystal waveguides,” Phys. Rev. Lett. 86, 1526-1529 (2001).
[CrossRef] [PubMed]

Hasama, T.

H. Kawashima, Y. Tanaka, N. Ikeda, Y. Sugimoto, T. Hasama, and H. Ishikawa, “Optical bistable response in AlGaAs-based photonic crystal microcavities and related nonlinearities,” IEEE J. Quantum Electron. 44, 841-849 (2008).
[CrossRef]

Heliotis, G.

G. Heliotis, P. N. Stavrinou, D. D. C. Bradley, E. Gu, C. Griffin, C. W. Jeon, and M. D. Dawson, “Spectral conversion of InGaN ultraviolet microarray light-emitting diodes using fluorene-based red-, green-, blue-, and white-light-emitting polymer overlayer films,” Appl. Phys. Lett. 87, 103505 (2005).
[CrossRef]

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium,” J. Appl. Phys. 96, 6959-6965 (2004).
[CrossRef]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Hennessy, K.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127104 (2006).
[CrossRef]

Hofbauer, F.

A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. J. Krenner, R. Meyer, G. Böhm, and J. J. Finley, “Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals,” Phys. Rev. B 71, 241304 (2005).
[CrossRef]

Hopkinson, M.

A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90, 241117 (2007).
[CrossRef]

Hsieh, T. P.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef] [PubMed]

Hsu, T. M.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef] [PubMed]

Hu, E. L.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127104 (2006).
[CrossRef]

Ikeda, N.

H. Kawashima, Y. Tanaka, N. Ikeda, Y. Sugimoto, T. Hasama, and H. Ishikawa, “Optical bistable response in AlGaAs-based photonic crystal microcavities and related nonlinearities,” IEEE J. Quantum Electron. 44, 841-849 (2008).
[CrossRef]

T. Kuroda, N. Ikeda, T. Mano, Y. Sugimoto, T. Ochiai, K. Kuroda, S. Ohkouchi, N. Koguchi, K. Sakoda, and K. Asakawa, “Acceleration and suppression of photoemission of GaAs quantum dots embedded in photonic crystal microcavities,” Appl. Phys. Lett. 93, 111103 (2008).
[CrossRef]

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[CrossRef]

Iraqi, A.

G. E. Khalil, A. M. Adawi, A. M. Fox, A. Iraqi, and D. G. Lidzey, “Single molecule spectroscopy of red- and green-emitting fluorene-based copolymers,” J. Chem. Phys. 130, 044903 (2009).
[CrossRef] [PubMed]

Ishikawa, H.

H. Kawashima, Y. Tanaka, N. Ikeda, Y. Sugimoto, T. Hasama, and H. Ishikawa, “Optical bistable response in AlGaAs-based photonic crystal microcavities and related nonlinearities,” IEEE J. Quantum Electron. 44, 841-849 (2008).
[CrossRef]

Iwamoto, S.

M. Kitamura, S. Iwamoto, and Y. Arakawa, “Enhanced light emission from an organic photonic crystal with a nanocavity,” Appl. Phys. Lett. 87, 151119 (2007).
[CrossRef]

Jeon, C. W.

G. Heliotis, P. N. Stavrinou, D. D. C. Bradley, E. Gu, C. Griffin, C. W. Jeon, and M. D. Dawson, “Spectral conversion of InGaN ultraviolet microarray light-emitting diodes using fluorene-based red-, green-, blue-, and white-light-emitting polymer overlayer films,” Appl. Phys. Lett. 87, 103505 (2005).
[CrossRef]

Kaniber, M.

A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. J. Krenner, R. Meyer, G. Böhm, and J. J. Finley, “Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals,” Phys. Rev. B 71, 241304 (2005).
[CrossRef]

Kawashima, H.

H. Kawashima, Y. Tanaka, N. Ikeda, Y. Sugimoto, T. Hasama, and H. Ishikawa, “Optical bistable response in AlGaAs-based photonic crystal microcavities and related nonlinearities,” IEEE J. Quantum Electron. 44, 841-849 (2008).
[CrossRef]

Khalil, G. E.

G. E. Khalil, A. M. Adawi, A. M. Fox, A. Iraqi, and D. G. Lidzey, “Single molecule spectroscopy of red- and green-emitting fluorene-based copolymers,” J. Chem. Phys. 130, 044903 (2009).
[CrossRef] [PubMed]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Kilic, O.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
[CrossRef]

Kim, K. H.

K. S. Cho, N. M. Park, T. Y. Kim, K. H. Kim, G. Y. Sung, and J. H. Shin, “High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer,” Appl. Phys. Lett. 86, 071909 (2005).
[CrossRef]

Kim, M. K.

Y. Ruan, M. K. Kim, Y. H. Lee, B. Luther-Davies, and A. Rode, “Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography,” Appl. Phys. Lett. 90, 071102 (2007).
[CrossRef]

Kim, S.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
[CrossRef]

Kim, T. Y.

K. S. Cho, N. M. Park, T. Y. Kim, K. H. Kim, G. Y. Sung, and J. H. Shin, “High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer,” Appl. Phys. Lett. 86, 071909 (2005).
[CrossRef]

Kitamura, M.

M. Kitamura, S. Iwamoto, and Y. Arakawa, “Enhanced light emission from an organic photonic crystal with a nanocavity,” Appl. Phys. Lett. 87, 151119 (2007).
[CrossRef]

Koguchi, N.

T. Kuroda, N. Ikeda, T. Mano, Y. Sugimoto, T. Ochiai, K. Kuroda, S. Ohkouchi, N. Koguchi, K. Sakoda, and K. Asakawa, “Acceleration and suppression of photoemission of GaAs quantum dots embedded in photonic crystal microcavities,” Appl. Phys. Lett. 93, 111103 (2008).
[CrossRef]

Kondo, S.

T. Tanabe, A. Shinya, E. Kuramochi, S. Kondo, H. Taniyama, and M. Notomi, “Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode,” Appl. Phys. Lett. 91, 021110 (2007).
[CrossRef]

Kono, S.

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[CrossRef]

Kouba, J.

Krauss, T. F.

A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90, 241117 (2007).
[CrossRef]

Krenner, H. J.

A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. J. Krenner, R. Meyer, G. Böhm, and J. J. Finley, “Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals,” Phys. Rev. B 71, 241304 (2005).
[CrossRef]

Kress, A.

A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. J. Krenner, R. Meyer, G. Böhm, and J. J. Finley, “Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals,” Phys. Rev. B 71, 241304 (2005).
[CrossRef]

Kuramochi, E.

T. Tanabe, A. Shinya, E. Kuramochi, S. Kondo, H. Taniyama, and M. Notomi, “Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode,” Appl. Phys. Lett. 91, 021110 (2007).
[CrossRef]

Kuroda, K.

T. Kuroda, N. Ikeda, T. Mano, Y. Sugimoto, T. Ochiai, K. Kuroda, S. Ohkouchi, N. Koguchi, K. Sakoda, and K. Asakawa, “Acceleration and suppression of photoemission of GaAs quantum dots embedded in photonic crystal microcavities,” Appl. Phys. Lett. 93, 111103 (2008).
[CrossRef]

Kuroda, T.

T. Kuroda, N. Ikeda, T. Mano, Y. Sugimoto, T. Ochiai, K. Kuroda, S. Ohkouchi, N. Koguchi, K. Sakoda, and K. Asakawa, “Acceleration and suppression of photoemission of GaAs quantum dots embedded in photonic crystal microcavities,” Appl. Phys. Lett. 93, 111103 (2008).
[CrossRef]

Lam, S.

A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90, 241117 (2007).
[CrossRef]

Lee, Y. H.

Y. Ruan, M. K. Kim, Y. H. Lee, B. Luther-Davies, and A. Rode, “Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography,” Appl. Phys. Lett. 90, 071102 (2007).
[CrossRef]

H. Y. Ryu, M. Notomi, and Y. H. Lee, “High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities,” Appl. Phys. Lett. 83, 4294-4296 (2003).
[CrossRef]

Lidzey, D. G.

G. E. Khalil, A. M. Adawi, A. M. Fox, A. Iraqi, and D. G. Lidzey, “Single molecule spectroscopy of red- and green-emitting fluorene-based copolymers,” J. Chem. Phys. 130, 044903 (2009).
[CrossRef] [PubMed]

A. M. Adawi and D. G. Lidzey, “A design for an optical-nanocavity optimized for use with surface-bound light-emitting materials,” New J. Phys. 10, 065011 (2008).
[CrossRef]

A. M. Adawi, A. R. A. Chalcraft, D. M. Whittaker, and D. G. Lidzey, “Refractive index dependence of L3 photonic crystal nano-cavities,” Opt. Express 15, 14299-14305 (2007).
[CrossRef] [PubMed]

F. A. Boroumand, P. W. Fry, and D. G. Lidzey, “Nanoscale conjugated-polymer light-emitting diodes,” Nano Lett. 5, 67-71 (2005).
[CrossRef] [PubMed]

Lieber, C. M.

H. G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nature Photon. 2, 622-626 (2008).
[CrossRef]

Liu, H.-Y.

A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90, 241117 (2007).
[CrossRef]

Liu, Y.

Z. H. Cen, T P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett. 94, 041102 (2009).
[CrossRef]

Liu, Z.

Z. H. Cen, T P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett. 94, 041102 (2009).
[CrossRef]

Löchel, B.

M. Barth, N. Nüsse, J. Stingl, B. Löchel, and O. Benson, “Emission properties of high-Q silicon nitride photonic crystal heterostructure cavities,” Appl. Phys. Lett. 93, 021112 (2008).
[CrossRef]

M. Barth, J. Kouba, J. Stingl, B. Löchel, and O. Benson, “Modification of visible spontaneous emission with silicon nitride photonic crystal nanocavities,” Opt. Express 15, 17231-17240 (2007).
[CrossRef] [PubMed]

Loncar, M.

Lousse, V.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
[CrossRef]

Luther-Davies, B.

Y. Ruan, M. K. Kim, Y. H. Lee, B. Luther-Davies, and A. Rode, “Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography,” Appl. Phys. Lett. 90, 071102 (2007).
[CrossRef]

Makarova, M. M.

M. M. Makarova, J. Vuckovic, H. Sanda, and Y. Nishi, “Silicon-based photonic crystal nanocavity light emitters,” Appl. Phys. Lett. 89, 221101 (2006).
[CrossRef]

Mano, T.

T. Kuroda, N. Ikeda, T. Mano, Y. Sugimoto, T. Ochiai, K. Kuroda, S. Ohkouchi, N. Koguchi, K. Sakoda, and K. Asakawa, “Acceleration and suppression of photoemission of GaAs quantum dots embedded in photonic crystal microcavities,” Appl. Phys. Lett. 93, 111103 (2008).
[CrossRef]

McCutcheon, M. W.

Meyer, R.

A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. J. Krenner, R. Meyer, G. Böhm, and J. J. Finley, “Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals,” Phys. Rev. B 71, 241304 (2005).
[CrossRef]

Neal, R. T.

R. T. Neal, M. E. Zoorob, M. D. Charlton, G. J. Parker, C. E. Finlayson, and J. J. Baumberg, “Photonic bandgaps in patterned waveguides of silicon-rich silicon dioxide,” Appl. Phys. Lett. 84, 2415-2417 (2004).
[CrossRef]

Netti, M. C.

M. C. Netti, A. Harris, J. J. Baumberg, D. M. Whittaker, M. B. D. Charlton, M. E. Zoorob, and G. J. Parker, “Optical trirefringence in photonic crystal waveguides,” Phys. Rev. Lett. 86, 1526-1529 (2001).
[CrossRef] [PubMed]

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404, 740-743 (2000).
[CrossRef] [PubMed]

M. C. Netti, M. D. B. Charlton, G. J. Parker, and J. J. Baumberg, “Visible photonic band gap engineering in silicon nitride waveguides,” Appl. Phys. Lett. 76, 991-993 (2000).
[CrossRef]

Nishi, Y.

M. M. Makarova, J. Vuckovic, H. Sanda, and Y. Nishi, “Silicon-based photonic crystal nanocavity light emitters,” Appl. Phys. Lett. 89, 221101 (2006).
[CrossRef]

Noda, S.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photon. 1, 449-458 (2007).
[CrossRef]

T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14, 377-386 (2006).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Mater. 4, 207-210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202-1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82, 1661-1663 (2003).
[CrossRef]

Notomi, M.

T. Tanabe, A. Shinya, E. Kuramochi, S. Kondo, H. Taniyama, and M. Notomi, “Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode,” Appl. Phys. Lett. 91, 021110 (2007).
[CrossRef]

H. Y. Ryu, M. Notomi, and Y. H. Lee, “High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities,” Appl. Phys. Lett. 83, 4294-4296 (2003).
[CrossRef]

Nüsse, N.

M. Barth, N. Nüsse, J. Stingl, B. Löchel, and O. Benson, “Emission properties of high-Q silicon nitride photonic crystal heterostructure cavities,” Appl. Phys. Lett. 93, 021112 (2008).
[CrossRef]

O'Brien, D.

A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90, 241117 (2007).
[CrossRef]

Ochiai, T.

T. Kuroda, N. Ikeda, T. Mano, Y. Sugimoto, T. Ochiai, K. Kuroda, S. Ohkouchi, N. Koguchi, K. Sakoda, and K. Asakawa, “Acceleration and suppression of photoemission of GaAs quantum dots embedded in photonic crystal microcavities,” Appl. Phys. Lett. 93, 111103 (2008).
[CrossRef]

Ohkouchi, S.

T. Kuroda, N. Ikeda, T. Mano, Y. Sugimoto, T. Ochiai, K. Kuroda, S. Ohkouchi, N. Koguchi, K. Sakoda, and K. Asakawa, “Acceleration and suppression of photoemission of GaAs quantum dots embedded in photonic crystal microcavities,” Appl. Phys. Lett. 93, 111103 (2008).
[CrossRef]

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[CrossRef]

Oulton, R.

A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90, 241117 (2007).
[CrossRef]

Park, H. G.

H. G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nature Photon. 2, 622-626 (2008).
[CrossRef]

Park, N. M.

K. S. Cho, N. M. Park, T. Y. Kim, K. H. Kim, G. Y. Sung, and J. H. Shin, “High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer,” Appl. Phys. Lett. 86, 071909 (2005).
[CrossRef]

N. M. Park, C. J. Choi, T. Y. Seong, and S. J. Park, “Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride,” Phys. Rev. Lett. 86, 1355-1357 (2001).
[CrossRef] [PubMed]

Park, S. J.

N. M. Park, C. J. Choi, T. Y. Seong, and S. J. Park, “Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride,” Phys. Rev. Lett. 86, 1355-1357 (2001).
[CrossRef] [PubMed]

Parker, G. J.

R. T. Neal, M. E. Zoorob, M. D. Charlton, G. J. Parker, C. E. Finlayson, and J. J. Baumberg, “Photonic bandgaps in patterned waveguides of silicon-rich silicon dioxide,” Appl. Phys. Lett. 84, 2415-2417 (2004).
[CrossRef]

M. C. Netti, A. Harris, J. J. Baumberg, D. M. Whittaker, M. B. D. Charlton, M. E. Zoorob, and G. J. Parker, “Optical trirefringence in photonic crystal waveguides,” Phys. Rev. Lett. 86, 1526-1529 (2001).
[CrossRef] [PubMed]

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404, 740-743 (2000).
[CrossRef] [PubMed]

M. C. Netti, M. D. B. Charlton, G. J. Parker, and J. J. Baumberg, “Visible photonic band gap engineering in silicon nitride waveguides,” Appl. Phys. Lett. 76, 991-993 (2000).
[CrossRef]

Petroff, P. M.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127104 (2006).
[CrossRef]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
[CrossRef]

Qian, F.

H. G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nature Photon. 2, 622-626 (2008).
[CrossRef]

Rakher, M. T.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127104 (2006).
[CrossRef]

Reinelt, N.

A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. J. Krenner, R. Meyer, G. Böhm, and J. J. Finley, “Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals,” Phys. Rev. B 71, 241304 (2005).
[CrossRef]

Rode, A.

Y. Ruan, M. K. Kim, Y. H. Lee, B. Luther-Davies, and A. Rode, “Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography,” Appl. Phys. Lett. 90, 071102 (2007).
[CrossRef]

Ruan, Y.

Y. Ruan, M. K. Kim, Y. H. Lee, B. Luther-Davies, and A. Rode, “Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography,” Appl. Phys. Lett. 90, 071102 (2007).
[CrossRef]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Ryu, H. Y.

H. Y. Ryu, M. Notomi, and Y. H. Lee, “High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities,” Appl. Phys. Lett. 83, 4294-4296 (2003).
[CrossRef]

Sahin, M.

A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90, 241117 (2007).
[CrossRef]

Sakoda, K.

T. Kuroda, N. Ikeda, T. Mano, Y. Sugimoto, T. Ochiai, K. Kuroda, S. Ohkouchi, N. Koguchi, K. Sakoda, and K. Asakawa, “Acceleration and suppression of photoemission of GaAs quantum dots embedded in photonic crystal microcavities,” Appl. Phys. Lett. 93, 111103 (2008).
[CrossRef]

Samuel, I. D. W.

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium,” J. Appl. Phys. 96, 6959-6965 (2004).
[CrossRef]

Sanda, H.

M. M. Makarova, J. Vuckovic, H. Sanda, and Y. Nishi, “Silicon-based photonic crystal nanocavity light emitters,” Appl. Phys. Lett. 89, 221101 (2006).
[CrossRef]

Sanvitto, D.

A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90, 241117 (2007).
[CrossRef]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Seong, T. Y.

N. M. Park, C. J. Choi, T. Y. Seong, and S. J. Park, “Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride,” Phys. Rev. Lett. 86, 1355-1357 (2001).
[CrossRef] [PubMed]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Shin, J. H.

K. S. Cho, N. M. Park, T. Y. Kim, K. H. Kim, G. Y. Sung, and J. H. Shin, “High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer,” Appl. Phys. Lett. 86, 071909 (2005).
[CrossRef]

Shinya, A.

T. Tanabe, A. Shinya, E. Kuramochi, S. Kondo, H. Taniyama, and M. Notomi, “Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode,” Appl. Phys. Lett. 91, 021110 (2007).
[CrossRef]

Shirane, M.

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[CrossRef]

Skolnick, M. S.

A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90, 241117 (2007).
[CrossRef]

D. M. Whittaker, I. S. Culshaw, V. N. Astratov, and M. S. Skolnick, “Photonic band structure of patterned waveguides with dielectric and metallic cladding,” Phys. Rev. B 65, 073102 (2002).
[CrossRef]

Solgaard, O.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
[CrossRef]

Song, B. S.

T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14, 377-386 (2006).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Mater. 4, 207-210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202-1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Song, B.-S.

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82, 1661-1663 (2003).
[CrossRef]

Stavrinou, P. N.

G. Heliotis, P. N. Stavrinou, D. D. C. Bradley, E. Gu, C. Griffin, C. W. Jeon, and M. D. Dawson, “Spectral conversion of InGaN ultraviolet microarray light-emitting diodes using fluorene-based red-, green-, blue-, and white-light-emitting polymer overlayer films,” Appl. Phys. Lett. 87, 103505 (2005).
[CrossRef]

Stingl, J.

M. Barth, N. Nüsse, J. Stingl, B. Löchel, and O. Benson, “Emission properties of high-Q silicon nitride photonic crystal heterostructure cavities,” Appl. Phys. Lett. 93, 021112 (2008).
[CrossRef]

M. Barth, J. Kouba, J. Stingl, B. Löchel, and O. Benson, “Modification of visible spontaneous emission with silicon nitride photonic crystal nanocavities,” Opt. Express 15, 17231-17240 (2007).
[CrossRef] [PubMed]

Strauf, S.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127104 (2006).
[CrossRef]

Sugimoto, Y.

H. Kawashima, Y. Tanaka, N. Ikeda, Y. Sugimoto, T. Hasama, and H. Ishikawa, “Optical bistable response in AlGaAs-based photonic crystal microcavities and related nonlinearities,” IEEE J. Quantum Electron. 44, 841-849 (2008).
[CrossRef]

T. Kuroda, N. Ikeda, T. Mano, Y. Sugimoto, T. Ochiai, K. Kuroda, S. Ohkouchi, N. Koguchi, K. Sakoda, and K. Asakawa, “Acceleration and suppression of photoemission of GaAs quantum dots embedded in photonic crystal microcavities,” Appl. Phys. Lett. 93, 111103 (2008).
[CrossRef]

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[CrossRef]

Sung, G. Y.

K. S. Cho, N. M. Park, T. Y. Kim, K. H. Kim, G. Y. Sung, and J. H. Shin, “High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer,” Appl. Phys. Lett. 86, 071909 (2005).
[CrossRef]

Szymanski, D.

A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90, 241117 (2007).
[CrossRef]

Tanabe, T.

T. Tanabe, A. Shinya, E. Kuramochi, S. Kondo, H. Taniyama, and M. Notomi, “Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode,” Appl. Phys. Lett. 91, 021110 (2007).
[CrossRef]

Tanaka, Y.

H. Kawashima, Y. Tanaka, N. Ikeda, Y. Sugimoto, T. Hasama, and H. Ishikawa, “Optical bistable response in AlGaAs-based photonic crystal microcavities and related nonlinearities,” IEEE J. Quantum Electron. 44, 841-849 (2008).
[CrossRef]

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82, 1661-1663 (2003).
[CrossRef]

Taniyama, H.

T. Tanabe, A. Shinya, E. Kuramochi, S. Kondo, H. Taniyama, and M. Notomi, “Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode,” Appl. Phys. Lett. 91, 021110 (2007).
[CrossRef]

Tian, B.

H. G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nature Photon. 2, 622-626 (2008).
[CrossRef]

Tomita, A.

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[CrossRef]

Turnbull, G. A.

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium,” J. Appl. Phys. 96, 6959-6965 (2004).
[CrossRef]

Uesugi, T.

Ushida, J.

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[CrossRef]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424, 839-846 (2003).
[CrossRef] [PubMed]

Vuckovic, J.

M. M. Makarova, J. Vuckovic, H. Sanda, and Y. Nishi, “Silicon-based photonic crystal nanocavity light emitters,” Appl. Phys. Lett. 89, 221101 (2006).
[CrossRef]

Whittaker, D. M.

A. M. Adawi, A. R. A. Chalcraft, D. M. Whittaker, and D. G. Lidzey, “Refractive index dependence of L3 photonic crystal nano-cavities,” Opt. Express 15, 14299-14305 (2007).
[CrossRef] [PubMed]

A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90, 241117 (2007).
[CrossRef]

D. M. Whittaker, I. S. Culshaw, V. N. Astratov, and M. S. Skolnick, “Photonic band structure of patterned waveguides with dielectric and metallic cladding,” Phys. Rev. B 65, 073102 (2002).
[CrossRef]

M. C. Netti, A. Harris, J. J. Baumberg, D. M. Whittaker, M. B. D. Charlton, M. E. Zoorob, and G. J. Parker, “Optical trirefringence in photonic crystal waveguides,” Phys. Rev. Lett. 86, 1526-1529 (2001).
[CrossRef] [PubMed]

Wong, J. I.

Z. H. Cen, T P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett. 94, 041102 (2009).
[CrossRef]

Wu, Y.

H. G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nature Photon. 2, 622-626 (2008).
[CrossRef]

Xia, R.

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium,” J. Appl. Phys. 96, 6959-6965 (2004).
[CrossRef]

Yang, M.

Z. H. Cen, T P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett. 94, 041102 (2009).
[CrossRef]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Zhu, F R.

Z. H. Cen, T P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett. 94, 041102 (2009).
[CrossRef]

Zoorob, M. E.

R. T. Neal, M. E. Zoorob, M. D. Charlton, G. J. Parker, C. E. Finlayson, and J. J. Baumberg, “Photonic bandgaps in patterned waveguides of silicon-rich silicon dioxide,” Appl. Phys. Lett. 84, 2415-2417 (2004).
[CrossRef]

M. C. Netti, A. Harris, J. J. Baumberg, D. M. Whittaker, M. B. D. Charlton, M. E. Zoorob, and G. J. Parker, “Optical trirefringence in photonic crystal waveguides,” Phys. Rev. Lett. 86, 1526-1529 (2001).
[CrossRef] [PubMed]

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404, 740-743 (2000).
[CrossRef] [PubMed]

Appl. Phys. Lett. (14)

H. Y. Ryu, M. Notomi, and Y. H. Lee, “High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities,” Appl. Phys. Lett. 83, 4294-4296 (2003).
[CrossRef]

T. Tanabe, A. Shinya, E. Kuramochi, S. Kondo, H. Taniyama, and M. Notomi, “Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode,” Appl. Phys. Lett. 91, 021110 (2007).
[CrossRef]

Y. Ruan, M. K. Kim, Y. H. Lee, B. Luther-Davies, and A. Rode, “Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography,” Appl. Phys. Lett. 90, 071102 (2007).
[CrossRef]

T. Kuroda, N. Ikeda, T. Mano, Y. Sugimoto, T. Ochiai, K. Kuroda, S. Ohkouchi, N. Koguchi, K. Sakoda, and K. Asakawa, “Acceleration and suppression of photoemission of GaAs quantum dots embedded in photonic crystal microcavities,” Appl. Phys. Lett. 93, 111103 (2008).
[CrossRef]

M. M. Makarova, J. Vuckovic, H. Sanda, and Y. Nishi, “Silicon-based photonic crystal nanocavity light emitters,” Appl. Phys. Lett. 89, 221101 (2006).
[CrossRef]

M. Barth, N. Nüsse, J. Stingl, B. Löchel, and O. Benson, “Emission properties of high-Q silicon nitride photonic crystal heterostructure cavities,” Appl. Phys. Lett. 93, 021112 (2008).
[CrossRef]

K. S. Cho, N. M. Park, T. Y. Kim, K. H. Kim, G. Y. Sung, and J. H. Shin, “High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer,” Appl. Phys. Lett. 86, 071909 (2005).
[CrossRef]

Z. H. Cen, T P. Chen, L. Ding, Y. Liu, J. I. Wong, M. Yang, Z. Liu, W. P. Goh, F R. Zhu, and S. Fung, “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions,” Appl. Phys. Lett. 94, 041102 (2009).
[CrossRef]

M. C. Netti, M. D. B. Charlton, G. J. Parker, and J. J. Baumberg, “Visible photonic band gap engineering in silicon nitride waveguides,” Appl. Phys. Lett. 76, 991-993 (2000).
[CrossRef]

M. Kitamura, S. Iwamoto, and Y. Arakawa, “Enhanced light emission from an organic photonic crystal with a nanocavity,” Appl. Phys. Lett. 87, 151119 (2007).
[CrossRef]

R. T. Neal, M. E. Zoorob, M. D. Charlton, G. J. Parker, C. E. Finlayson, and J. J. Baumberg, “Photonic bandgaps in patterned waveguides of silicon-rich silicon dioxide,” Appl. Phys. Lett. 84, 2415-2417 (2004).
[CrossRef]

G. Heliotis, P. N. Stavrinou, D. D. C. Bradley, E. Gu, C. Griffin, C. W. Jeon, and M. D. Dawson, “Spectral conversion of InGaN ultraviolet microarray light-emitting diodes using fluorene-based red-, green-, blue-, and white-light-emitting polymer overlayer films,” Appl. Phys. Lett. 87, 103505 (2005).
[CrossRef]

A. R. A. Chalcraft, S. Lam, D. O'Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90, 241117 (2007).
[CrossRef]

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82, 1661-1663 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. Kawashima, Y. Tanaka, N. Ikeda, Y. Sugimoto, T. Hasama, and H. Ishikawa, “Optical bistable response in AlGaAs-based photonic crystal microcavities and related nonlinearities,” IEEE J. Quantum Electron. 44, 841-849 (2008).
[CrossRef]

J. Appl. Phys. (2)

G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium,” J. Appl. Phys. 96, 6959-6965 (2004).
[CrossRef]

M. Shirane, S. Kono, J. Ushida, S. Ohkouchi, N. Ikeda, Y. Sugimoto, and A. Tomita, “Mode identification of high-quality-factor single-defect nanocavities in quantum dot-embedded photonic crystals,” J. Appl. Phys. 101, 073107 (2007).
[CrossRef]

J. Chem. Phys. (1)

G. E. Khalil, A. M. Adawi, A. M. Fox, A. Iraqi, and D. G. Lidzey, “Single molecule spectroscopy of red- and green-emitting fluorene-based copolymers,” J. Chem. Phys. 130, 044903 (2009).
[CrossRef] [PubMed]

Nano Lett. (1)

F. A. Boroumand, P. W. Fry, and D. G. Lidzey, “Nanoscale conjugated-polymer light-emitting diodes,” Nano Lett. 5, 67-71 (2005).
[CrossRef] [PubMed]

Nat. Photon. (1)

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photon. 1, 449-458 (2007).
[CrossRef]

Nature (4)

K. J. Vahala, “Optical microcavities,” Nature 424, 839-846 (2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404, 740-743 (2000).
[CrossRef] [PubMed]

Nature Mater. (1)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Mater. 4, 207-210 (2005).
[CrossRef]

Nature Photon. (1)

H. G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, and C. M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nature Photon. 2, 622-626 (2008).
[CrossRef]

New J. Phys. (1)

A. M. Adawi and D. G. Lidzey, “A design for an optical-nanocavity optimized for use with surface-bound light-emitting materials,” New J. Phys. 10, 065011 (2008).
[CrossRef]

Opt. Express (5)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
[CrossRef]

Phys. Rev. B (4)

A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. J. Krenner, R. Meyer, G. Böhm, and J. J. Finley, “Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals,” Phys. Rev. B 71, 241304 (2005).
[CrossRef]

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006).
[CrossRef]

D. M. Whittaker, I. S. Culshaw, V. N. Astratov, and M. S. Skolnick, “Photonic band structure of patterned waveguides with dielectric and metallic cladding,” Phys. Rev. B 65, 073102 (2002).
[CrossRef]

L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B 73, 235114 (2006).
[CrossRef]

Phys. Rev. Lett. (4)

N. M. Park, C. J. Choi, T. Y. Seong, and S. J. Park, “Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride,” Phys. Rev. Lett. 86, 1355-1357 (2001).
[CrossRef] [PubMed]

M. C. Netti, A. Harris, J. J. Baumberg, D. M. Whittaker, M. B. D. Charlton, M. E. Zoorob, and G. J. Parker, “Optical trirefringence in photonic crystal waveguides,” Phys. Rev. Lett. 86, 1526-1529 (2001).
[CrossRef] [PubMed]

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127104 (2006).
[CrossRef]

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Chemical structure of the polymer PFR.

Fig. 2
Fig. 2

(a) Schematic diagram of the hybrid organic–inorganic L 3 nanocavities investigated in this work. (b) SEM image of the SiN-based L 3 photonic crystal used in this work. (c) SEM image recorded from the cavity region.

Fig. 3
Fig. 3

(a) AFM image of the SiN nanocavity region. (b) AFM image of the nanocavity region after depositing a 10 - nm -thick layer of the conjugated polymer PFR on the cavity surface.

Fig. 4
Fig. 4

(a) Intrinsic PL emission of SiN. (b) Unpolarized PL emission of a SiN L 3 nanocavity (black curve) together with the PL emission of bare SiN (open squares). Parts (c) and (d) show PL emission of a SiN L3 nanocavity emitted with a polarization perpendicular or parallel to the cavity long axis, respectively. We also recorded the emission enhancement (EE) of each mode above the spontaneous emission background.

Fig. 5
Fig. 5

(a) Unpolarized PL emission of a PFR/SiN L 3 nanocavity (black curve) together with the PL emission of PFR recorded from an area away from the photonic crystal (open circles). Parts (b) and (c) show PL emission of a PFR/SiN L 3 photonic crystal nanocavity for a polarization perpendicular and parallel to the cavity long axis, respectively. In parts (b) and (c) we also record the emission enhancement of each mode relative to the spontaneous emission background.

Fig. 6
Fig. 6

A real space fluorescence image measured from a PFR/SiN L 3 nanocavity at λ M 1 = 662 ± 5 nm for light polarized (a) perpendicular to the cavity long axis and (b) parallel to the cavity long axis. A real space fluorescence image measured from a PFR/SiN L 3 nanocavity at λ M 2 = 648 ± 5 nm for light polarized (c) perpendicular to the cavity long axis and (d) parallel to the cavity long axis.

Metrics