Abstract

Based on theoretical analysis and numerical simulation, the mechanism of self-pulsing operation of 2-μm Tm3+-doped fiber lasers is explored. A simplified rate-equation model is proposed to analyze stable operation of Tm3+-doped fiber lasers. It is shown that the continuous-wave (CW) solution does not exist for certain pump intensities when excited-state absorption (ESA) is included. In numerical simulation, four energy-transfer processes are calculated to identify the origin of self-pulsing in Tm3+-doped fiber lasers. The phonon-assisted ESA process H53H43 is identified as the key factor for self-pulsing in Tm3+-doped fiber lasers, which confirms the absence of a CW solution in the theoretical analysis. The numerical simulation gives out a regular pulse train, whose characteristics are in excellent agreement with the experimental results. The impacts of ESA cross section and pump intensity on the self-pulsing characteristics are also investigated.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. F. Elder and M. J. P. Payne, “Lasing in diode-pumped Tm:YAP, Tm, Ho:YAP and Tm, Ho:YLF,” Opt. Commun. 145, 329-339 (1998).
    [CrossRef]
  2. T. J. Carrig, A. K. Hankla, G. J. Wagner, C. B. Rawle, and I. T. M. Kinnie, “Tunable infrared laser sources for DIAL,” in Laser Radar Technology and Applications VII, Proc. SPIE 4723, 147-155 (2002).
  3. Y. Yang, Y. Tang, J. Xu, and Y. Hang, “Tm-doped fiber laser pumped Cr2+:ZnSe poly-crystal lasers,” Chin. Phys. Lett. 25, 116-119 (2008).
    [CrossRef]
  4. S. D. Jackson and T. A. King, “Dynamics of the output of heavily Tm-doped double-clad silica fiber lasers,” J. Opt. Soc. Am. B 16, 2178-2188 (1999).
    [CrossRef]
  5. A. F. El-Sherif and T. A. King, “Dynamics and self-pulsing effects in Tm3+-doped silica fibre lasers,” Opt. Commun. 208, 381-389 (2002).
    [CrossRef]
  6. F. Z. Qamar and T. A. King, “Self-induced pulsations, Q-switching and mode-locking in Tm-silica fibre lasers,” J. Mod. Opt. 52, 1031-1043 (2005).
    [CrossRef]
  7. F. Z. Qamar and T. A. King, “Self-mode-locking effects in heavily doped single-clad Tm3+-doped silica fibre lasers,” J. Mod. Opt. 52, 1053-1063 (2005).
    [CrossRef]
  8. D. Marcuse, “Pulsing behavior of a three-level laser with saturable absorber,” IEEE J. Quantum Electron. 29, 2390-2396 (1993).
    [CrossRef]
  9. R. Rangel-Rojo and M. Mohebi, “Study of the onset of self-pulsing behaviour in an Er-doped fibre laser,” Opt. Commun. 137, 98-102 (1997).
    [CrossRef]
  10. P. Myslinski, J. Chrostowski, J. A. K. Koningstein, and J. R. Simpson, “Self-mode locking in a Q-switched erbium-doped fiber laser,” Appl. Opt. 32, 286-290 (1993).
    [CrossRef] [PubMed]
  11. R. Leners, P. L. Francois, and G. Stephan, “Simultaneous effects of gain and loss anisotropies on the thresholds of a bipolarization fiber laser,” Opt. Lett. 19, 275-277 (1994).
    [CrossRef] [PubMed]
  12. P. L. Boudec, F. Sanchez, C. Jaouen, P. L. Francois, J. F. Bayon, and G. Stephan, “Antiphase dynamics and chaos in self-pulsing erbium-doped fiber lasers,” Opt. Lett. 18, 1890-1892 (1993).
    [CrossRef] [PubMed]
  13. S. Colin, E. Contesse, P. L. Boudec, G. Stephan, and F. Sanchez, “Evidence of a saturable-absorption effect in heavily erbium-doped fibers,” Opt. Lett. 21, 1987-1989 (1996).
    [CrossRef] [PubMed]
  14. A. Hideur, T. Chartier, C. Ozkul, and F. Sanchez, “Dynamics and stabilization of a high power side-pumped Yb-doped double-clad fiber laser,” Opt. Commun. 186, 311-317 (2000).
    [CrossRef]
  15. S. D. Jackson and T. A. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett. 23, 1462-1464 (1998).
    [CrossRef]
  16. W. Koechner, Solid-State Laser Engineering, 5th Ed. (Springer-Verlag, 1999) pp. 17-27.
  17. J. Xu, M. Prabhu, J. Lu, K. Ueda, and D. Xing, “Efficient double-clad thulium-doped fiber laser with a ring cavity,” Appl. Opt. 40, 1983-1988 (2001).
    [CrossRef]
  18. G. Rustad and K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32, 1645-1656 (1996).
    [CrossRef]
  19. I. Razdobreev and A. Shestakov, “Self-pulsing of a monolithic Tm-doped YAlO3 microlaser,” Phys. Rev. A 73, 053815 (2006).
    [CrossRef]
  20. S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol. 17, 948-956 (1999).
    [CrossRef]
  21. B. M. Walsh and N. P. Barnes, “Comparison of Tm:ZBLAN and Tm: silica fiber lasers: Spectroscopy and tunable pulsed laser operation around 1.9 μm,” Appl. Phys. B: Photophys. Laser Chem. 78, 325-333 (2004).
    [CrossRef]
  22. Y. Tang and J. Xu, “Self-induced pulsing in Tm3+-doped fiber lasers with different output couplings,” Proc. SPIE 7276, 72760L-72760L-10 (2008).
    [CrossRef]

2008 (2)

Y. Yang, Y. Tang, J. Xu, and Y. Hang, “Tm-doped fiber laser pumped Cr2+:ZnSe poly-crystal lasers,” Chin. Phys. Lett. 25, 116-119 (2008).
[CrossRef]

Y. Tang and J. Xu, “Self-induced pulsing in Tm3+-doped fiber lasers with different output couplings,” Proc. SPIE 7276, 72760L-72760L-10 (2008).
[CrossRef]

2006 (1)

I. Razdobreev and A. Shestakov, “Self-pulsing of a monolithic Tm-doped YAlO3 microlaser,” Phys. Rev. A 73, 053815 (2006).
[CrossRef]

2005 (2)

F. Z. Qamar and T. A. King, “Self-induced pulsations, Q-switching and mode-locking in Tm-silica fibre lasers,” J. Mod. Opt. 52, 1031-1043 (2005).
[CrossRef]

F. Z. Qamar and T. A. King, “Self-mode-locking effects in heavily doped single-clad Tm3+-doped silica fibre lasers,” J. Mod. Opt. 52, 1053-1063 (2005).
[CrossRef]

2004 (1)

B. M. Walsh and N. P. Barnes, “Comparison of Tm:ZBLAN and Tm: silica fiber lasers: Spectroscopy and tunable pulsed laser operation around 1.9 μm,” Appl. Phys. B: Photophys. Laser Chem. 78, 325-333 (2004).
[CrossRef]

2002 (1)

A. F. El-Sherif and T. A. King, “Dynamics and self-pulsing effects in Tm3+-doped silica fibre lasers,” Opt. Commun. 208, 381-389 (2002).
[CrossRef]

2001 (1)

2000 (1)

A. Hideur, T. Chartier, C. Ozkul, and F. Sanchez, “Dynamics and stabilization of a high power side-pumped Yb-doped double-clad fiber laser,” Opt. Commun. 186, 311-317 (2000).
[CrossRef]

1999 (2)

1998 (2)

I. F. Elder and M. J. P. Payne, “Lasing in diode-pumped Tm:YAP, Tm, Ho:YAP and Tm, Ho:YLF,” Opt. Commun. 145, 329-339 (1998).
[CrossRef]

S. D. Jackson and T. A. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett. 23, 1462-1464 (1998).
[CrossRef]

1997 (1)

R. Rangel-Rojo and M. Mohebi, “Study of the onset of self-pulsing behaviour in an Er-doped fibre laser,” Opt. Commun. 137, 98-102 (1997).
[CrossRef]

1996 (2)

G. Rustad and K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32, 1645-1656 (1996).
[CrossRef]

S. Colin, E. Contesse, P. L. Boudec, G. Stephan, and F. Sanchez, “Evidence of a saturable-absorption effect in heavily erbium-doped fibers,” Opt. Lett. 21, 1987-1989 (1996).
[CrossRef] [PubMed]

1994 (1)

1993 (3)

Barnes, N. P.

B. M. Walsh and N. P. Barnes, “Comparison of Tm:ZBLAN and Tm: silica fiber lasers: Spectroscopy and tunable pulsed laser operation around 1.9 μm,” Appl. Phys. B: Photophys. Laser Chem. 78, 325-333 (2004).
[CrossRef]

Bayon, J. F.

Boudec, P. L.

Carrig, T. J.

T. J. Carrig, A. K. Hankla, G. J. Wagner, C. B. Rawle, and I. T. M. Kinnie, “Tunable infrared laser sources for DIAL,” in Laser Radar Technology and Applications VII, Proc. SPIE 4723, 147-155 (2002).

Chartier, T.

A. Hideur, T. Chartier, C. Ozkul, and F. Sanchez, “Dynamics and stabilization of a high power side-pumped Yb-doped double-clad fiber laser,” Opt. Commun. 186, 311-317 (2000).
[CrossRef]

Chrostowski, J.

Colin, S.

Contesse, E.

Elder, I. F.

I. F. Elder and M. J. P. Payne, “Lasing in diode-pumped Tm:YAP, Tm, Ho:YAP and Tm, Ho:YLF,” Opt. Commun. 145, 329-339 (1998).
[CrossRef]

El-Sherif, A. F.

A. F. El-Sherif and T. A. King, “Dynamics and self-pulsing effects in Tm3+-doped silica fibre lasers,” Opt. Commun. 208, 381-389 (2002).
[CrossRef]

Francois, P. L.

Hang, Y.

Y. Yang, Y. Tang, J. Xu, and Y. Hang, “Tm-doped fiber laser pumped Cr2+:ZnSe poly-crystal lasers,” Chin. Phys. Lett. 25, 116-119 (2008).
[CrossRef]

Hankla, A. K.

T. J. Carrig, A. K. Hankla, G. J. Wagner, C. B. Rawle, and I. T. M. Kinnie, “Tunable infrared laser sources for DIAL,” in Laser Radar Technology and Applications VII, Proc. SPIE 4723, 147-155 (2002).

Hideur, A.

A. Hideur, T. Chartier, C. Ozkul, and F. Sanchez, “Dynamics and stabilization of a high power side-pumped Yb-doped double-clad fiber laser,” Opt. Commun. 186, 311-317 (2000).
[CrossRef]

Jackson, S. D.

Jaouen, C.

King, T. A.

F. Z. Qamar and T. A. King, “Self-induced pulsations, Q-switching and mode-locking in Tm-silica fibre lasers,” J. Mod. Opt. 52, 1031-1043 (2005).
[CrossRef]

F. Z. Qamar and T. A. King, “Self-mode-locking effects in heavily doped single-clad Tm3+-doped silica fibre lasers,” J. Mod. Opt. 52, 1053-1063 (2005).
[CrossRef]

A. F. El-Sherif and T. A. King, “Dynamics and self-pulsing effects in Tm3+-doped silica fibre lasers,” Opt. Commun. 208, 381-389 (2002).
[CrossRef]

S. D. Jackson and T. A. King, “Dynamics of the output of heavily Tm-doped double-clad silica fiber lasers,” J. Opt. Soc. Am. B 16, 2178-2188 (1999).
[CrossRef]

S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol. 17, 948-956 (1999).
[CrossRef]

S. D. Jackson and T. A. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett. 23, 1462-1464 (1998).
[CrossRef]

Kinnie, I. T. M.

T. J. Carrig, A. K. Hankla, G. J. Wagner, C. B. Rawle, and I. T. M. Kinnie, “Tunable infrared laser sources for DIAL,” in Laser Radar Technology and Applications VII, Proc. SPIE 4723, 147-155 (2002).

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 5th Ed. (Springer-Verlag, 1999) pp. 17-27.

Koningstein, J. A. K.

Leners, R.

Lu, J.

Marcuse, D.

D. Marcuse, “Pulsing behavior of a three-level laser with saturable absorber,” IEEE J. Quantum Electron. 29, 2390-2396 (1993).
[CrossRef]

Mohebi, M.

R. Rangel-Rojo and M. Mohebi, “Study of the onset of self-pulsing behaviour in an Er-doped fibre laser,” Opt. Commun. 137, 98-102 (1997).
[CrossRef]

Myslinski, P.

Ozkul, C.

A. Hideur, T. Chartier, C. Ozkul, and F. Sanchez, “Dynamics and stabilization of a high power side-pumped Yb-doped double-clad fiber laser,” Opt. Commun. 186, 311-317 (2000).
[CrossRef]

Payne, M. J. P.

I. F. Elder and M. J. P. Payne, “Lasing in diode-pumped Tm:YAP, Tm, Ho:YAP and Tm, Ho:YLF,” Opt. Commun. 145, 329-339 (1998).
[CrossRef]

Prabhu, M.

Qamar, F. Z.

F. Z. Qamar and T. A. King, “Self-mode-locking effects in heavily doped single-clad Tm3+-doped silica fibre lasers,” J. Mod. Opt. 52, 1053-1063 (2005).
[CrossRef]

F. Z. Qamar and T. A. King, “Self-induced pulsations, Q-switching and mode-locking in Tm-silica fibre lasers,” J. Mod. Opt. 52, 1031-1043 (2005).
[CrossRef]

Rangel-Rojo, R.

R. Rangel-Rojo and M. Mohebi, “Study of the onset of self-pulsing behaviour in an Er-doped fibre laser,” Opt. Commun. 137, 98-102 (1997).
[CrossRef]

Rawle, C. B.

T. J. Carrig, A. K. Hankla, G. J. Wagner, C. B. Rawle, and I. T. M. Kinnie, “Tunable infrared laser sources for DIAL,” in Laser Radar Technology and Applications VII, Proc. SPIE 4723, 147-155 (2002).

Razdobreev, I.

I. Razdobreev and A. Shestakov, “Self-pulsing of a monolithic Tm-doped YAlO3 microlaser,” Phys. Rev. A 73, 053815 (2006).
[CrossRef]

Rustad, G.

G. Rustad and K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32, 1645-1656 (1996).
[CrossRef]

Sanchez, F.

Shestakov, A.

I. Razdobreev and A. Shestakov, “Self-pulsing of a monolithic Tm-doped YAlO3 microlaser,” Phys. Rev. A 73, 053815 (2006).
[CrossRef]

Simpson, J. R.

Stenersen, K.

G. Rustad and K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32, 1645-1656 (1996).
[CrossRef]

Stephan, G.

Tang, Y.

Y. Yang, Y. Tang, J. Xu, and Y. Hang, “Tm-doped fiber laser pumped Cr2+:ZnSe poly-crystal lasers,” Chin. Phys. Lett. 25, 116-119 (2008).
[CrossRef]

Y. Tang and J. Xu, “Self-induced pulsing in Tm3+-doped fiber lasers with different output couplings,” Proc. SPIE 7276, 72760L-72760L-10 (2008).
[CrossRef]

Ueda, K.

Wagner, G. J.

T. J. Carrig, A. K. Hankla, G. J. Wagner, C. B. Rawle, and I. T. M. Kinnie, “Tunable infrared laser sources for DIAL,” in Laser Radar Technology and Applications VII, Proc. SPIE 4723, 147-155 (2002).

Walsh, B. M.

B. M. Walsh and N. P. Barnes, “Comparison of Tm:ZBLAN and Tm: silica fiber lasers: Spectroscopy and tunable pulsed laser operation around 1.9 μm,” Appl. Phys. B: Photophys. Laser Chem. 78, 325-333 (2004).
[CrossRef]

Xing, D.

Xu, J.

Y. Tang and J. Xu, “Self-induced pulsing in Tm3+-doped fiber lasers with different output couplings,” Proc. SPIE 7276, 72760L-72760L-10 (2008).
[CrossRef]

Y. Yang, Y. Tang, J. Xu, and Y. Hang, “Tm-doped fiber laser pumped Cr2+:ZnSe poly-crystal lasers,” Chin. Phys. Lett. 25, 116-119 (2008).
[CrossRef]

J. Xu, M. Prabhu, J. Lu, K. Ueda, and D. Xing, “Efficient double-clad thulium-doped fiber laser with a ring cavity,” Appl. Opt. 40, 1983-1988 (2001).
[CrossRef]

Yang, Y.

Y. Yang, Y. Tang, J. Xu, and Y. Hang, “Tm-doped fiber laser pumped Cr2+:ZnSe poly-crystal lasers,” Chin. Phys. Lett. 25, 116-119 (2008).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B: Photophys. Laser Chem. (1)

B. M. Walsh and N. P. Barnes, “Comparison of Tm:ZBLAN and Tm: silica fiber lasers: Spectroscopy and tunable pulsed laser operation around 1.9 μm,” Appl. Phys. B: Photophys. Laser Chem. 78, 325-333 (2004).
[CrossRef]

Chin. Phys. Lett. (1)

Y. Yang, Y. Tang, J. Xu, and Y. Hang, “Tm-doped fiber laser pumped Cr2+:ZnSe poly-crystal lasers,” Chin. Phys. Lett. 25, 116-119 (2008).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. Marcuse, “Pulsing behavior of a three-level laser with saturable absorber,” IEEE J. Quantum Electron. 29, 2390-2396 (1993).
[CrossRef]

G. Rustad and K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32, 1645-1656 (1996).
[CrossRef]

J. Lightwave Technol. (1)

J. Mod. Opt. (2)

F. Z. Qamar and T. A. King, “Self-induced pulsations, Q-switching and mode-locking in Tm-silica fibre lasers,” J. Mod. Opt. 52, 1031-1043 (2005).
[CrossRef]

F. Z. Qamar and T. A. King, “Self-mode-locking effects in heavily doped single-clad Tm3+-doped silica fibre lasers,” J. Mod. Opt. 52, 1053-1063 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (4)

A. F. El-Sherif and T. A. King, “Dynamics and self-pulsing effects in Tm3+-doped silica fibre lasers,” Opt. Commun. 208, 381-389 (2002).
[CrossRef]

I. F. Elder and M. J. P. Payne, “Lasing in diode-pumped Tm:YAP, Tm, Ho:YAP and Tm, Ho:YLF,” Opt. Commun. 145, 329-339 (1998).
[CrossRef]

R. Rangel-Rojo and M. Mohebi, “Study of the onset of self-pulsing behaviour in an Er-doped fibre laser,” Opt. Commun. 137, 98-102 (1997).
[CrossRef]

A. Hideur, T. Chartier, C. Ozkul, and F. Sanchez, “Dynamics and stabilization of a high power side-pumped Yb-doped double-clad fiber laser,” Opt. Commun. 186, 311-317 (2000).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. A (1)

I. Razdobreev and A. Shestakov, “Self-pulsing of a monolithic Tm-doped YAlO3 microlaser,” Phys. Rev. A 73, 053815 (2006).
[CrossRef]

Proc. SPIE (1)

Y. Tang and J. Xu, “Self-induced pulsing in Tm3+-doped fiber lasers with different output couplings,” Proc. SPIE 7276, 72760L-72760L-10 (2008).
[CrossRef]

Other (2)

W. Koechner, Solid-State Laser Engineering, 5th Ed. (Springer-Verlag, 1999) pp. 17-27.

T. J. Carrig, A. K. Hankla, G. J. Wagner, C. B. Rawle, and I. T. M. Kinnie, “Tunable infrared laser sources for DIAL,” in Laser Radar Technology and Applications VII, Proc. SPIE 4723, 147-155 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the four lowest energy manifolds in Tm 3 + ions.

Fig. 2
Fig. 2

Photon density as a function of pump rate R.

Fig. 3
Fig. 3

The non-CW pump range Δ R as a function of the ESA cross section.

Fig. 4
Fig. 4

The non-CW pump range Δ R as a function of the cross-relaxation strength.

Fig. 5
Fig. 5

Laser photon density dynamics characteristics with different cross-relaxation strength k 4212 .

Fig. 6
Fig. 6

Laser photon density dynamics characteristics with different energy-transfer upconversion strength k 2123 .

Fig. 7
Fig. 7

Laser photon density dynamics characteristics with different energy-transfer upconversion strength k 2124 .

Fig. 8
Fig. 8

Laser photon density dynamics characteristics with different ground-state absorption strength.

Fig. 9
Fig. 9

Laser photon density dynamics characteristics with different ESA strength σ sa ( cm 2 ) .

Fig. 10
Fig. 10

Self-pulsing frequency and pulse width with different ESA at a constant pump rate. The inset shows the experimental results.

Fig. 11
Fig. 11

Self-pulsing frequency and pulse width with different pump rates at constant ESA.

Tables (1)

Tables Icon

Table 1 The Parameters in the Rate Equations

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

d N 4 d t = R ( z , t ) ( N 1 N 4 ) k 4212 N 1 N 4 + k 2124 N 2 2 N 4 τ 4 + σ s a c ϕ ( z , t ) ( N 3 N 4 ) ,
d N 3 d t = k 2123 N 2 2 + β 43 N 4 τ 4 N 3 τ 3 σ s a c ϕ ( z , t ) ( N 3 N 4 ) ,
d N 2 d t = 2 k 4212 N 1 N 4 2 ( k 2124 + k 2123 ) N 2 2 + β 42 N 4 τ 4 + β 32 N 3 τ 3 N 2 τ 2 c ϕ ( z , t ) σ e ( N 2 g 2 g 1 N 1 ) ,
d ϕ d t = c ϕ ( z , t ) σ e ( N 2 g 2 g 1 N 1 ) + m N 2 τ 2 r c ϕ ( z , t ) ,
N 1 = N tot N 2 N 3 N 4 ,
R ( z , t ) = R ( 0 , t ) e α p z ,
d N 23 d t = 2 k 2124 N 1 N 4 ( 2 k 2124 + k 2123 ) N 23 2 + ( β 43 + β 42 ) N 4 τ 4 N 23 τ 2 c ϕ [ σ e ( N 23 g 2 g 1 N 1 ) + σ s a ( N 23 N 4 ) ] .
d ϕ d t = 0 ,
d N i d t = 0 .
R ( N 1 N 4 ) k 4212 N 1 N 4 + k 2124 N 23 2 N 4 τ 4 + ϕ c σ s a ( N 23 N 4 ) = 0 ,
c ϕ σ e ( N 23 g 2 g 1 N 1 ) + m N 23 τ 2 r c ϕ = 0 ,
2 k 4212 N 1 N 4 ( 2 k 2124 + k 2123 ) N 23 2 + ( β 42 + β 43 ) N 4 τ 4 N 23 τ 2 ϕ [ c σ e ( N 23 g 2 g 1 N 1 ) + c σ s a ( N 23 N 4 ) ] = 0 .

Metrics