Abstract

Based on theoretical analysis and numerical simulation, the mechanism of self-pulsing operation of 2-μm Tm3+-doped fiber lasers is explored. A simplified rate-equation model is proposed to analyze stable operation of Tm3+-doped fiber lasers. It is shown that the continuous-wave (CW) solution does not exist for certain pump intensities when excited-state absorption (ESA) is included. In numerical simulation, four energy-transfer processes are calculated to identify the origin of self-pulsing in Tm3+-doped fiber lasers. The phonon-assisted ESA process H53H43 is identified as the key factor for self-pulsing in Tm3+-doped fiber lasers, which confirms the absence of a CW solution in the theoretical analysis. The numerical simulation gives out a regular pulse train, whose characteristics are in excellent agreement with the experimental results. The impacts of ESA cross section and pump intensity on the self-pulsing characteristics are also investigated.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. F. Elder and M. J. P. Payne, “Lasing in diode-pumped Tm:YAP, Tm, Ho:YAP and Tm, Ho:YLF,” Opt. Commun. 145, 329-339 (1998).
    [CrossRef]
  2. T. J. Carrig, A. K. Hankla, G. J. Wagner, C. B. Rawle, and I. T. M. Kinnie, “Tunable infrared laser sources for DIAL,” in Laser Radar Technology and Applications VII, Proc. SPIE 4723, 147-155 (2002).
  3. Y. Yang, Y. Tang, J. Xu, and Y. Hang, “Tm-doped fiber laser pumped Cr2+:ZnSe poly-crystal lasers,” Chin. Phys. Lett. 25, 116-119 (2008).
    [CrossRef]
  4. S. D. Jackson and T. A. King, “Dynamics of the output of heavily Tm-doped double-clad silica fiber lasers,” J. Opt. Soc. Am. B 16, 2178-2188 (1999).
    [CrossRef]
  5. A. F. El-Sherif and T. A. King, “Dynamics and self-pulsing effects in Tm3+-doped silica fibre lasers,” Opt. Commun. 208, 381-389 (2002).
    [CrossRef]
  6. F. Z. Qamar and T. A. King, “Self-induced pulsations, Q-switching and mode-locking in Tm-silica fibre lasers,” J. Mod. Opt. 52, 1031-1043 (2005).
    [CrossRef]
  7. F. Z. Qamar and T. A. King, “Self-mode-locking effects in heavily doped single-clad Tm3+-doped silica fibre lasers,” J. Mod. Opt. 52, 1053-1063 (2005).
    [CrossRef]
  8. D. Marcuse, “Pulsing behavior of a three-level laser with saturable absorber,” IEEE J. Quantum Electron. 29, 2390-2396 (1993).
    [CrossRef]
  9. R. Rangel-Rojo and M. Mohebi, “Study of the onset of self-pulsing behaviour in an Er-doped fibre laser,” Opt. Commun. 137, 98-102 (1997).
    [CrossRef]
  10. P. Myslinski, J. Chrostowski, J. A. K. Koningstein, and J. R. Simpson, “Self-mode locking in a Q-switched erbium-doped fiber laser,” Appl. Opt. 32, 286-290 (1993).
    [CrossRef] [PubMed]
  11. R. Leners, P. L. Francois, and G. Stephan, “Simultaneous effects of gain and loss anisotropies on the thresholds of a bipolarization fiber laser,” Opt. Lett. 19, 275-277 (1994).
    [CrossRef] [PubMed]
  12. P. L. Boudec, F. Sanchez, C. Jaouen, P. L. Francois, J. F. Bayon, and G. Stephan, “Antiphase dynamics and chaos in self-pulsing erbium-doped fiber lasers,” Opt. Lett. 18, 1890-1892 (1993).
    [CrossRef] [PubMed]
  13. S. Colin, E. Contesse, P. L. Boudec, G. Stephan, and F. Sanchez, “Evidence of a saturable-absorption effect in heavily erbium-doped fibers,” Opt. Lett. 21, 1987-1989 (1996).
    [CrossRef] [PubMed]
  14. A. Hideur, T. Chartier, C. Ozkul, and F. Sanchez, “Dynamics and stabilization of a high power side-pumped Yb-doped double-clad fiber laser,” Opt. Commun. 186, 311-317 (2000).
    [CrossRef]
  15. S. D. Jackson and T. A. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett. 23, 1462-1464 (1998).
    [CrossRef]
  16. W. Koechner, Solid-State Laser Engineering, 5th Ed. (Springer-Verlag, 1999) pp. 17-27.
  17. J. Xu, M. Prabhu, J. Lu, K. Ueda, and D. Xing, “Efficient double-clad thulium-doped fiber laser with a ring cavity,” Appl. Opt. 40, 1983-1988 (2001).
    [CrossRef]
  18. G. Rustad and K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32, 1645-1656 (1996).
    [CrossRef]
  19. I. Razdobreev and A. Shestakov, “Self-pulsing of a monolithic Tm-doped YAlO3 microlaser,” Phys. Rev. A 73, 053815 (2006).
    [CrossRef]
  20. S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol. 17, 948-956 (1999).
    [CrossRef]
  21. B. M. Walsh and N. P. Barnes, “Comparison of Tm:ZBLAN and Tm: silica fiber lasers: Spectroscopy and tunable pulsed laser operation around 1.9 μm,” Appl. Phys. B: Photophys. Laser Chem. 78, 325-333 (2004).
    [CrossRef]
  22. Y. Tang and J. Xu, “Self-induced pulsing in Tm3+-doped fiber lasers with different output couplings,” Proc. SPIE 7276, 72760L-72760L-10 (2008).
    [CrossRef]

2008 (2)

Y. Yang, Y. Tang, J. Xu, and Y. Hang, “Tm-doped fiber laser pumped Cr2+:ZnSe poly-crystal lasers,” Chin. Phys. Lett. 25, 116-119 (2008).
[CrossRef]

Y. Tang and J. Xu, “Self-induced pulsing in Tm3+-doped fiber lasers with different output couplings,” Proc. SPIE 7276, 72760L-72760L-10 (2008).
[CrossRef]

2006 (1)

I. Razdobreev and A. Shestakov, “Self-pulsing of a monolithic Tm-doped YAlO3 microlaser,” Phys. Rev. A 73, 053815 (2006).
[CrossRef]

2005 (2)

F. Z. Qamar and T. A. King, “Self-induced pulsations, Q-switching and mode-locking in Tm-silica fibre lasers,” J. Mod. Opt. 52, 1031-1043 (2005).
[CrossRef]

F. Z. Qamar and T. A. King, “Self-mode-locking effects in heavily doped single-clad Tm3+-doped silica fibre lasers,” J. Mod. Opt. 52, 1053-1063 (2005).
[CrossRef]

2004 (1)

B. M. Walsh and N. P. Barnes, “Comparison of Tm:ZBLAN and Tm: silica fiber lasers: Spectroscopy and tunable pulsed laser operation around 1.9 μm,” Appl. Phys. B: Photophys. Laser Chem. 78, 325-333 (2004).
[CrossRef]

2002 (1)

A. F. El-Sherif and T. A. King, “Dynamics and self-pulsing effects in Tm3+-doped silica fibre lasers,” Opt. Commun. 208, 381-389 (2002).
[CrossRef]

2001 (1)

2000 (1)

A. Hideur, T. Chartier, C. Ozkul, and F. Sanchez, “Dynamics and stabilization of a high power side-pumped Yb-doped double-clad fiber laser,” Opt. Commun. 186, 311-317 (2000).
[CrossRef]

1999 (2)

1998 (2)

S. D. Jackson and T. A. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett. 23, 1462-1464 (1998).
[CrossRef]

I. F. Elder and M. J. P. Payne, “Lasing in diode-pumped Tm:YAP, Tm, Ho:YAP and Tm, Ho:YLF,” Opt. Commun. 145, 329-339 (1998).
[CrossRef]

1997 (1)

R. Rangel-Rojo and M. Mohebi, “Study of the onset of self-pulsing behaviour in an Er-doped fibre laser,” Opt. Commun. 137, 98-102 (1997).
[CrossRef]

1996 (2)

G. Rustad and K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32, 1645-1656 (1996).
[CrossRef]

S. Colin, E. Contesse, P. L. Boudec, G. Stephan, and F. Sanchez, “Evidence of a saturable-absorption effect in heavily erbium-doped fibers,” Opt. Lett. 21, 1987-1989 (1996).
[CrossRef] [PubMed]

1994 (1)

1993 (3)

Barnes, N. P.

B. M. Walsh and N. P. Barnes, “Comparison of Tm:ZBLAN and Tm: silica fiber lasers: Spectroscopy and tunable pulsed laser operation around 1.9 μm,” Appl. Phys. B: Photophys. Laser Chem. 78, 325-333 (2004).
[CrossRef]

Bayon, J. F.

Boudec, P. L.

Carrig, T. J.

T. J. Carrig, A. K. Hankla, G. J. Wagner, C. B. Rawle, and I. T. M. Kinnie, “Tunable infrared laser sources for DIAL,” in Laser Radar Technology and Applications VII, Proc. SPIE 4723, 147-155 (2002).

Chartier, T.

A. Hideur, T. Chartier, C. Ozkul, and F. Sanchez, “Dynamics and stabilization of a high power side-pumped Yb-doped double-clad fiber laser,” Opt. Commun. 186, 311-317 (2000).
[CrossRef]

Chrostowski, J.

Colin, S.

Contesse, E.

Elder, I. F.

I. F. Elder and M. J. P. Payne, “Lasing in diode-pumped Tm:YAP, Tm, Ho:YAP and Tm, Ho:YLF,” Opt. Commun. 145, 329-339 (1998).
[CrossRef]

El-Sherif, A. F.

A. F. El-Sherif and T. A. King, “Dynamics and self-pulsing effects in Tm3+-doped silica fibre lasers,” Opt. Commun. 208, 381-389 (2002).
[CrossRef]

Francois, P. L.

Hang, Y.

Y. Yang, Y. Tang, J. Xu, and Y. Hang, “Tm-doped fiber laser pumped Cr2+:ZnSe poly-crystal lasers,” Chin. Phys. Lett. 25, 116-119 (2008).
[CrossRef]

Hankla, A. K.

T. J. Carrig, A. K. Hankla, G. J. Wagner, C. B. Rawle, and I. T. M. Kinnie, “Tunable infrared laser sources for DIAL,” in Laser Radar Technology and Applications VII, Proc. SPIE 4723, 147-155 (2002).

Hideur, A.

A. Hideur, T. Chartier, C. Ozkul, and F. Sanchez, “Dynamics and stabilization of a high power side-pumped Yb-doped double-clad fiber laser,” Opt. Commun. 186, 311-317 (2000).
[CrossRef]

Jackson, S. D.

Jaouen, C.

King, T. A.

F. Z. Qamar and T. A. King, “Self-induced pulsations, Q-switching and mode-locking in Tm-silica fibre lasers,” J. Mod. Opt. 52, 1031-1043 (2005).
[CrossRef]

F. Z. Qamar and T. A. King, “Self-mode-locking effects in heavily doped single-clad Tm3+-doped silica fibre lasers,” J. Mod. Opt. 52, 1053-1063 (2005).
[CrossRef]

A. F. El-Sherif and T. A. King, “Dynamics and self-pulsing effects in Tm3+-doped silica fibre lasers,” Opt. Commun. 208, 381-389 (2002).
[CrossRef]

S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol. 17, 948-956 (1999).
[CrossRef]

S. D. Jackson and T. A. King, “Dynamics of the output of heavily Tm-doped double-clad silica fiber lasers,” J. Opt. Soc. Am. B 16, 2178-2188 (1999).
[CrossRef]

S. D. Jackson and T. A. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett. 23, 1462-1464 (1998).
[CrossRef]

Kinnie, I. T. M.

T. J. Carrig, A. K. Hankla, G. J. Wagner, C. B. Rawle, and I. T. M. Kinnie, “Tunable infrared laser sources for DIAL,” in Laser Radar Technology and Applications VII, Proc. SPIE 4723, 147-155 (2002).

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 5th Ed. (Springer-Verlag, 1999) pp. 17-27.

Koningstein, J. A. K.

Leners, R.

Lu, J.

Marcuse, D.

D. Marcuse, “Pulsing behavior of a three-level laser with saturable absorber,” IEEE J. Quantum Electron. 29, 2390-2396 (1993).
[CrossRef]

Mohebi, M.

R. Rangel-Rojo and M. Mohebi, “Study of the onset of self-pulsing behaviour in an Er-doped fibre laser,” Opt. Commun. 137, 98-102 (1997).
[CrossRef]

Myslinski, P.

Ozkul, C.

A. Hideur, T. Chartier, C. Ozkul, and F. Sanchez, “Dynamics and stabilization of a high power side-pumped Yb-doped double-clad fiber laser,” Opt. Commun. 186, 311-317 (2000).
[CrossRef]

Payne, M. J. P.

I. F. Elder and M. J. P. Payne, “Lasing in diode-pumped Tm:YAP, Tm, Ho:YAP and Tm, Ho:YLF,” Opt. Commun. 145, 329-339 (1998).
[CrossRef]

Prabhu, M.

Qamar, F. Z.

F. Z. Qamar and T. A. King, “Self-mode-locking effects in heavily doped single-clad Tm3+-doped silica fibre lasers,” J. Mod. Opt. 52, 1053-1063 (2005).
[CrossRef]

F. Z. Qamar and T. A. King, “Self-induced pulsations, Q-switching and mode-locking in Tm-silica fibre lasers,” J. Mod. Opt. 52, 1031-1043 (2005).
[CrossRef]

Rangel-Rojo, R.

R. Rangel-Rojo and M. Mohebi, “Study of the onset of self-pulsing behaviour in an Er-doped fibre laser,” Opt. Commun. 137, 98-102 (1997).
[CrossRef]

Rawle, C. B.

T. J. Carrig, A. K. Hankla, G. J. Wagner, C. B. Rawle, and I. T. M. Kinnie, “Tunable infrared laser sources for DIAL,” in Laser Radar Technology and Applications VII, Proc. SPIE 4723, 147-155 (2002).

Razdobreev, I.

I. Razdobreev and A. Shestakov, “Self-pulsing of a monolithic Tm-doped YAlO3 microlaser,” Phys. Rev. A 73, 053815 (2006).
[CrossRef]

Rustad, G.

G. Rustad and K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32, 1645-1656 (1996).
[CrossRef]

Sanchez, F.

Shestakov, A.

I. Razdobreev and A. Shestakov, “Self-pulsing of a monolithic Tm-doped YAlO3 microlaser,” Phys. Rev. A 73, 053815 (2006).
[CrossRef]

Simpson, J. R.

Stenersen, K.

G. Rustad and K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32, 1645-1656 (1996).
[CrossRef]

Stephan, G.

Tang, Y.

Y. Tang and J. Xu, “Self-induced pulsing in Tm3+-doped fiber lasers with different output couplings,” Proc. SPIE 7276, 72760L-72760L-10 (2008).
[CrossRef]

Y. Yang, Y. Tang, J. Xu, and Y. Hang, “Tm-doped fiber laser pumped Cr2+:ZnSe poly-crystal lasers,” Chin. Phys. Lett. 25, 116-119 (2008).
[CrossRef]

Ueda, K.

Wagner, G. J.

T. J. Carrig, A. K. Hankla, G. J. Wagner, C. B. Rawle, and I. T. M. Kinnie, “Tunable infrared laser sources for DIAL,” in Laser Radar Technology and Applications VII, Proc. SPIE 4723, 147-155 (2002).

Walsh, B. M.

B. M. Walsh and N. P. Barnes, “Comparison of Tm:ZBLAN and Tm: silica fiber lasers: Spectroscopy and tunable pulsed laser operation around 1.9 μm,” Appl. Phys. B: Photophys. Laser Chem. 78, 325-333 (2004).
[CrossRef]

Xing, D.

Xu, J.

Y. Yang, Y. Tang, J. Xu, and Y. Hang, “Tm-doped fiber laser pumped Cr2+:ZnSe poly-crystal lasers,” Chin. Phys. Lett. 25, 116-119 (2008).
[CrossRef]

Y. Tang and J. Xu, “Self-induced pulsing in Tm3+-doped fiber lasers with different output couplings,” Proc. SPIE 7276, 72760L-72760L-10 (2008).
[CrossRef]

J. Xu, M. Prabhu, J. Lu, K. Ueda, and D. Xing, “Efficient double-clad thulium-doped fiber laser with a ring cavity,” Appl. Opt. 40, 1983-1988 (2001).
[CrossRef]

Yang, Y.

Y. Yang, Y. Tang, J. Xu, and Y. Hang, “Tm-doped fiber laser pumped Cr2+:ZnSe poly-crystal lasers,” Chin. Phys. Lett. 25, 116-119 (2008).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B: Photophys. Laser Chem. (1)

B. M. Walsh and N. P. Barnes, “Comparison of Tm:ZBLAN and Tm: silica fiber lasers: Spectroscopy and tunable pulsed laser operation around 1.9 μm,” Appl. Phys. B: Photophys. Laser Chem. 78, 325-333 (2004).
[CrossRef]

Chin. Phys. Lett. (1)

Y. Yang, Y. Tang, J. Xu, and Y. Hang, “Tm-doped fiber laser pumped Cr2+:ZnSe poly-crystal lasers,” Chin. Phys. Lett. 25, 116-119 (2008).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. Marcuse, “Pulsing behavior of a three-level laser with saturable absorber,” IEEE J. Quantum Electron. 29, 2390-2396 (1993).
[CrossRef]

G. Rustad and K. Stenersen, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32, 1645-1656 (1996).
[CrossRef]

J. Lightwave Technol. (1)

J. Mod. Opt. (2)

F. Z. Qamar and T. A. King, “Self-induced pulsations, Q-switching and mode-locking in Tm-silica fibre lasers,” J. Mod. Opt. 52, 1031-1043 (2005).
[CrossRef]

F. Z. Qamar and T. A. King, “Self-mode-locking effects in heavily doped single-clad Tm3+-doped silica fibre lasers,” J. Mod. Opt. 52, 1053-1063 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (4)

R. Rangel-Rojo and M. Mohebi, “Study of the onset of self-pulsing behaviour in an Er-doped fibre laser,” Opt. Commun. 137, 98-102 (1997).
[CrossRef]

A. Hideur, T. Chartier, C. Ozkul, and F. Sanchez, “Dynamics and stabilization of a high power side-pumped Yb-doped double-clad fiber laser,” Opt. Commun. 186, 311-317 (2000).
[CrossRef]

A. F. El-Sherif and T. A. King, “Dynamics and self-pulsing effects in Tm3+-doped silica fibre lasers,” Opt. Commun. 208, 381-389 (2002).
[CrossRef]

I. F. Elder and M. J. P. Payne, “Lasing in diode-pumped Tm:YAP, Tm, Ho:YAP and Tm, Ho:YLF,” Opt. Commun. 145, 329-339 (1998).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. A (1)

I. Razdobreev and A. Shestakov, “Self-pulsing of a monolithic Tm-doped YAlO3 microlaser,” Phys. Rev. A 73, 053815 (2006).
[CrossRef]

Proc. SPIE (1)

Y. Tang and J. Xu, “Self-induced pulsing in Tm3+-doped fiber lasers with different output couplings,” Proc. SPIE 7276, 72760L-72760L-10 (2008).
[CrossRef]

Other (2)

T. J. Carrig, A. K. Hankla, G. J. Wagner, C. B. Rawle, and I. T. M. Kinnie, “Tunable infrared laser sources for DIAL,” in Laser Radar Technology and Applications VII, Proc. SPIE 4723, 147-155 (2002).

W. Koechner, Solid-State Laser Engineering, 5th Ed. (Springer-Verlag, 1999) pp. 17-27.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the four lowest energy manifolds in Tm 3 + ions.

Fig. 2
Fig. 2

Photon density as a function of pump rate R.

Fig. 3
Fig. 3

The non-CW pump range Δ R as a function of the ESA cross section.

Fig. 4
Fig. 4

The non-CW pump range Δ R as a function of the cross-relaxation strength.

Fig. 5
Fig. 5

Laser photon density dynamics characteristics with different cross-relaxation strength k 4212 .

Fig. 6
Fig. 6

Laser photon density dynamics characteristics with different energy-transfer upconversion strength k 2123 .

Fig. 7
Fig. 7

Laser photon density dynamics characteristics with different energy-transfer upconversion strength k 2124 .

Fig. 8
Fig. 8

Laser photon density dynamics characteristics with different ground-state absorption strength.

Fig. 9
Fig. 9

Laser photon density dynamics characteristics with different ESA strength σ sa ( cm 2 ) .

Fig. 10
Fig. 10

Self-pulsing frequency and pulse width with different ESA at a constant pump rate. The inset shows the experimental results.

Fig. 11
Fig. 11

Self-pulsing frequency and pulse width with different pump rates at constant ESA.

Tables (1)

Tables Icon

Table 1 The Parameters in the Rate Equations

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

d N 4 d t = R ( z , t ) ( N 1 N 4 ) k 4212 N 1 N 4 + k 2124 N 2 2 N 4 τ 4 + σ s a c ϕ ( z , t ) ( N 3 N 4 ) ,
d N 3 d t = k 2123 N 2 2 + β 43 N 4 τ 4 N 3 τ 3 σ s a c ϕ ( z , t ) ( N 3 N 4 ) ,
d N 2 d t = 2 k 4212 N 1 N 4 2 ( k 2124 + k 2123 ) N 2 2 + β 42 N 4 τ 4 + β 32 N 3 τ 3 N 2 τ 2 c ϕ ( z , t ) σ e ( N 2 g 2 g 1 N 1 ) ,
d ϕ d t = c ϕ ( z , t ) σ e ( N 2 g 2 g 1 N 1 ) + m N 2 τ 2 r c ϕ ( z , t ) ,
N 1 = N tot N 2 N 3 N 4 ,
R ( z , t ) = R ( 0 , t ) e α p z ,
d N 23 d t = 2 k 2124 N 1 N 4 ( 2 k 2124 + k 2123 ) N 23 2 + ( β 43 + β 42 ) N 4 τ 4 N 23 τ 2 c ϕ [ σ e ( N 23 g 2 g 1 N 1 ) + σ s a ( N 23 N 4 ) ] .
d ϕ d t = 0 ,
d N i d t = 0 .
R ( N 1 N 4 ) k 4212 N 1 N 4 + k 2124 N 23 2 N 4 τ 4 + ϕ c σ s a ( N 23 N 4 ) = 0 ,
c ϕ σ e ( N 23 g 2 g 1 N 1 ) + m N 23 τ 2 r c ϕ = 0 ,
2 k 4212 N 1 N 4 ( 2 k 2124 + k 2123 ) N 23 2 + ( β 42 + β 43 ) N 4 τ 4 N 23 τ 2 ϕ [ c σ e ( N 23 g 2 g 1 N 1 ) + c σ s a ( N 23 N 4 ) ] = 0 .

Metrics