Abstract

An efficient Nd3+Yb3+ energy transfer in a new series of alkali-free barium-alumino-metaphosphate glasses with a transfer efficiency reaching up to 95% has been reported here. It is due to the effective phonon assistance arising with the excellent matching of the present host phonon energy with the energy mismatch between Nd3+ (F43/2) and Yb3+ (F25/2) excited levels. The energy transfer microparameters for Nd3+Yb3+ forward and back energy transfers are estimated from the spectral data analysis. A parameter, ΦET (=CDANd-Yb/CDANd-Nd), is proposed as a quantitative measure of sensitization ability per unit loss of the donor. The parameter is found to be highest for the presently reported barium-alumino-metaphosphate glasses.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Weber, “Optical properties of Yb3+ and Nd3+-Yb3+ energy transfer in YAlO3,” Phys. Rev. B 4, 3153–3159 (1971).
    [CrossRef]
  2. R. Reisfeld and Y. Kalisky, “Nd3+ and Yb3+ germanate and tellurite glasses for fluorescence solar energy collectors,” Chem. Phys. Lett. 80, 178–183 (1981).
    [CrossRef]
  3. D. Jaque, M. O. Ramirez, L. E. Bausà, J. García Solé, E. Cavalli, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in YAl3(BO3)4 nonlinear laser crystal,” Phys. Rev. B 68, 035118 (2003).
    [CrossRef]
  4. F. Liégard, J. L. Doualan, R. Moncorgé, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in a codoped metaphosphate glass as a model for Yb3+ laser operation around 980 nm,” Appl. Phys. B 80, 985–991 (2005).
    [CrossRef]
  5. D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A.Nunes, “Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses,” J. Appl. Phys. 90, 3308–3313 (2001).
    [CrossRef]
  6. R. Balda, J. Fernàndez, I. Iparraguirre, and M. Al-Saleh, “Spectroscopic study of Nd3+/Yb3+ in disordered potassium bismuth laser crystals,” Opt. Mater. 28, 1247–1252 (2006).
    [CrossRef]
  7. Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+, Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
    [CrossRef]
  8. X. Zou and T. Izumitani, “Excitation energy transfer of Nd3+-Yb3+-Er3+ in several glasses,” J. Ceram. Soc. Jpn. 101, 84–88 (1993).
    [CrossRef]
  9. C. Lurin, C. Parent, G. Le Flem, and P. Hagenmuller, “Energy transfer in a Nd3+-Yb3+ borate glass,” J. Phys. Chem. Solids 46, 1083–1092 (1985).
    [CrossRef]
  10. U. Caldiño, D. Jaque, E. Martín-Rodríguez, M. O. Ramírez, J. García Solé, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ resonant energy transfer in the ferroelectric Sr0.6Ba0.4Nb2O6 laser crystal,” Phys. Rev. B 77, 075121 (2008).
    [CrossRef]
  11. A. Lupei, V. Lupei, A. Ikesue, and C. Gheorghe, “Spectroscopic and energy transfer investigation of Nd/Yb in Y2O3 transparent ceramics,” J. Opt. Soc. Am. B 27, 1002–1010 (2010).
    [CrossRef]
  12. G. L. Bourdet, O. Casagrande, N. Deguil-Robin, and B. Le Garrec, “Performances of cryogenic cooled laser based on ytterbium doped sesquioxide ceramics,” J. Phys.: Conf. Ser. 112, 032054 (2008).
    [CrossRef]
  13. V. V. Ovchinnikov, A. K. Murtazaev, E. A. Khazanov, and A. M. Sergeev, “Equilibrium and highly nonequilibrium states of condensed matter,” Phys. Usp. 51, 955–974 (2008).
    [CrossRef]
  14. D. Jaque, M. O. Ramirez, L. E. Bausà, A. Speghini, M. Bettinelli, and E. Cavalli, “Influence of Nd3+ and Yb3+ concentration on the Nd3+→Yb3+ energy-transfer efficiency in the YAl3(BO3)4 nonlinear crystal: determination of optimum concentration for laser applications,” J. Opt. Soc. Am. B 21, 1203–1209 (2004).
    [CrossRef]
  15. M. O. Ramirez, D. Jaque, L. E. Bausà, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal,” J. Appl. Phys. 97, 093510 (2005).
    [CrossRef]
  16. A. Matic, L. Börgesson, A. Wannberg, and R. L. McGreevy, “Structural studies of rare-earth doped phosphate glasses,” Mat. Res. Soc. Symp. Proc. 455, 435–440 (1997).
    [CrossRef]
  17. A. D. Sontakke, K. Biswas, A. K. Mandal, and K. Annapurna, “Concentration quenched luminescence and energy transfer analysis of Nd3+ doped Ba-Al-metaphosphate laser glasses,” Appl. Phys. B 101, 235–244 (2010).
    [CrossRef]
  18. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
    [CrossRef]
  19. M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43, 1978–1989 (1965).
    [CrossRef]
  20. J. A. Caird, A. J. Ramponi, and P. R. Staver, “Quantum efficiency and excited-state relaxation dynamics in neodymium-doped phosphate laser glasses,” J. Opt. Soc. Am. B 8, 1391–1403 (1991).
    [CrossRef]
  21. F. Auzel, “Multiphonon assisted and anti-Stokes and Stokes fluorescence of triply ionized rare-earth ions,” Phys. Rev. B 13, 2809–2817 (1976).
    [CrossRef]
  22. M. C. Nostrand, R. H. Page, S. A. Payne, L. I. Isaenko, and A. P. Yelisseyev, “Optical properties of Dy3+- and Nd3+-doped KPb2Cl5,” J. Opt. Soc. Am. B 18, 264–276 (2001).
    [CrossRef]
  23. E. Yahel, O. Hess, and A. A. Hardy, “Modeling and optimization of high-power Nd3+-Yb3+ codoped fiber lasers,” J. Lightwave Technol. 24, 1601–1609 (2006).
    [CrossRef]
  24. P. Y. Shih, J. Y. Ding, and S. Y. Lee, “P31 MAS-NMR and FTIR analyses on the structure of CuO-containing sodium poly-and metaphosphate glasses,” Mater. Chem. Phys. 80, 391–396 (2003).
    [CrossRef]
  25. A. D. Sontakke, K. Biswas, A. K. Mandal, and K. Annapurna, “Time resolved fluorescence and energy transfer analysis of Nd3+-Yb3+-Er3+ triply doped Ba-Al-metaphosphate glasses of an eye safe emission (1.54 μm),” J. Fluoresc. 20, 425–434 (2010).
    [CrossRef]
  26. C. Parent, C. Lurin, G. Le Flem, and P. Hagenmuller, “Nd3+→Yb3+ energy transfer in glasses with composition close to LiLnP4O12 metaphosphate (Ln=La, Nd, Yb),” J. Lumin. 36, 49–55 (1986).
    [CrossRef]
  27. D. Jaque, J. A. Muñoz, F. Cussó, and J. Garcia Solé, “Quantum efficiency of the YAl3(BO3)4:Nd self-frequency-doubling laser material,” J. Phys. Condens. Matter 10, 7901–7905 (1998).
    [CrossRef]
  28. V. Lupei, A. Lupei, C. Gheorghe, S. Hau, and A. Ikesue, “Efficient sensitization of Yb3+ emission by Nd3+ in Y2O3 transparent ceramics and the prospect for high-energy lasers,” Opt. Lett. 34, 2141–2143 (2009).
    [CrossRef] [PubMed]
  29. W. Ryba-Romanowski, S. Goläb, L. Cichosz, and B. Jeżowska-Trzebiatowska, “Influence of temperature and acceptor concentration on energy transfer from Nd3+ to Yb3+ and from Yb3+ to Er3+ in tellurite glass,” J. Non-Cryst. Solids 105, 295–302 (1988).
    [CrossRef]
  30. B. I. Denker, V. V. Osiko, P. P. Pashinin, and A. M. Prokhorov, “Concentrated neodymium laser glasses (review),” Sov. J. Quantum Electron. 11, 289–296 (1981).
    [CrossRef]

2010 (3)

A. D. Sontakke, K. Biswas, A. K. Mandal, and K. Annapurna, “Concentration quenched luminescence and energy transfer analysis of Nd3+ doped Ba-Al-metaphosphate laser glasses,” Appl. Phys. B 101, 235–244 (2010).
[CrossRef]

A. D. Sontakke, K. Biswas, A. K. Mandal, and K. Annapurna, “Time resolved fluorescence and energy transfer analysis of Nd3+-Yb3+-Er3+ triply doped Ba-Al-metaphosphate glasses of an eye safe emission (1.54 μm),” J. Fluoresc. 20, 425–434 (2010).
[CrossRef]

A. Lupei, V. Lupei, A. Ikesue, and C. Gheorghe, “Spectroscopic and energy transfer investigation of Nd/Yb in Y2O3 transparent ceramics,” J. Opt. Soc. Am. B 27, 1002–1010 (2010).
[CrossRef]

2009 (2)

V. Lupei, A. Lupei, C. Gheorghe, S. Hau, and A. Ikesue, “Efficient sensitization of Yb3+ emission by Nd3+ in Y2O3 transparent ceramics and the prospect for high-energy lasers,” Opt. Lett. 34, 2141–2143 (2009).
[CrossRef] [PubMed]

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+, Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[CrossRef]

2008 (3)

U. Caldiño, D. Jaque, E. Martín-Rodríguez, M. O. Ramírez, J. García Solé, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ resonant energy transfer in the ferroelectric Sr0.6Ba0.4Nb2O6 laser crystal,” Phys. Rev. B 77, 075121 (2008).
[CrossRef]

G. L. Bourdet, O. Casagrande, N. Deguil-Robin, and B. Le Garrec, “Performances of cryogenic cooled laser based on ytterbium doped sesquioxide ceramics,” J. Phys.: Conf. Ser. 112, 032054 (2008).
[CrossRef]

V. V. Ovchinnikov, A. K. Murtazaev, E. A. Khazanov, and A. M. Sergeev, “Equilibrium and highly nonequilibrium states of condensed matter,” Phys. Usp. 51, 955–974 (2008).
[CrossRef]

2006 (2)

R. Balda, J. Fernàndez, I. Iparraguirre, and M. Al-Saleh, “Spectroscopic study of Nd3+/Yb3+ in disordered potassium bismuth laser crystals,” Opt. Mater. 28, 1247–1252 (2006).
[CrossRef]

E. Yahel, O. Hess, and A. A. Hardy, “Modeling and optimization of high-power Nd3+-Yb3+ codoped fiber lasers,” J. Lightwave Technol. 24, 1601–1609 (2006).
[CrossRef]

2005 (2)

F. Liégard, J. L. Doualan, R. Moncorgé, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in a codoped metaphosphate glass as a model for Yb3+ laser operation around 980 nm,” Appl. Phys. B 80, 985–991 (2005).
[CrossRef]

M. O. Ramirez, D. Jaque, L. E. Bausà, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal,” J. Appl. Phys. 97, 093510 (2005).
[CrossRef]

2004 (1)

2003 (2)

P. Y. Shih, J. Y. Ding, and S. Y. Lee, “P31 MAS-NMR and FTIR analyses on the structure of CuO-containing sodium poly-and metaphosphate glasses,” Mater. Chem. Phys. 80, 391–396 (2003).
[CrossRef]

D. Jaque, M. O. Ramirez, L. E. Bausà, J. García Solé, E. Cavalli, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in YAl3(BO3)4 nonlinear laser crystal,” Phys. Rev. B 68, 035118 (2003).
[CrossRef]

2001 (2)

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A.Nunes, “Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses,” J. Appl. Phys. 90, 3308–3313 (2001).
[CrossRef]

M. C. Nostrand, R. H. Page, S. A. Payne, L. I. Isaenko, and A. P. Yelisseyev, “Optical properties of Dy3+- and Nd3+-doped KPb2Cl5,” J. Opt. Soc. Am. B 18, 264–276 (2001).
[CrossRef]

1998 (1)

D. Jaque, J. A. Muñoz, F. Cussó, and J. Garcia Solé, “Quantum efficiency of the YAl3(BO3)4:Nd self-frequency-doubling laser material,” J. Phys. Condens. Matter 10, 7901–7905 (1998).
[CrossRef]

1997 (1)

A. Matic, L. Börgesson, A. Wannberg, and R. L. McGreevy, “Structural studies of rare-earth doped phosphate glasses,” Mat. Res. Soc. Symp. Proc. 455, 435–440 (1997).
[CrossRef]

1993 (1)

X. Zou and T. Izumitani, “Excitation energy transfer of Nd3+-Yb3+-Er3+ in several glasses,” J. Ceram. Soc. Jpn. 101, 84–88 (1993).
[CrossRef]

1991 (1)

1988 (1)

W. Ryba-Romanowski, S. Goläb, L. Cichosz, and B. Jeżowska-Trzebiatowska, “Influence of temperature and acceptor concentration on energy transfer from Nd3+ to Yb3+ and from Yb3+ to Er3+ in tellurite glass,” J. Non-Cryst. Solids 105, 295–302 (1988).
[CrossRef]

1986 (1)

C. Parent, C. Lurin, G. Le Flem, and P. Hagenmuller, “Nd3+→Yb3+ energy transfer in glasses with composition close to LiLnP4O12 metaphosphate (Ln=La, Nd, Yb),” J. Lumin. 36, 49–55 (1986).
[CrossRef]

1985 (1)

C. Lurin, C. Parent, G. Le Flem, and P. Hagenmuller, “Energy transfer in a Nd3+-Yb3+ borate glass,” J. Phys. Chem. Solids 46, 1083–1092 (1985).
[CrossRef]

1981 (2)

R. Reisfeld and Y. Kalisky, “Nd3+ and Yb3+ germanate and tellurite glasses for fluorescence solar energy collectors,” Chem. Phys. Lett. 80, 178–183 (1981).
[CrossRef]

B. I. Denker, V. V. Osiko, P. P. Pashinin, and A. M. Prokhorov, “Concentrated neodymium laser glasses (review),” Sov. J. Quantum Electron. 11, 289–296 (1981).
[CrossRef]

1976 (1)

F. Auzel, “Multiphonon assisted and anti-Stokes and Stokes fluorescence of triply ionized rare-earth ions,” Phys. Rev. B 13, 2809–2817 (1976).
[CrossRef]

1971 (1)

M. J. Weber, “Optical properties of Yb3+ and Nd3+-Yb3+ energy transfer in YAlO3,” Phys. Rev. B 4, 3153–3159 (1971).
[CrossRef]

1965 (1)

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43, 1978–1989 (1965).
[CrossRef]

1953 (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

Al-Saleh, M.

R. Balda, J. Fernàndez, I. Iparraguirre, and M. Al-Saleh, “Spectroscopic study of Nd3+/Yb3+ in disordered potassium bismuth laser crystals,” Opt. Mater. 28, 1247–1252 (2006).
[CrossRef]

Annapurna, K.

A. D. Sontakke, K. Biswas, A. K. Mandal, and K. Annapurna, “Time resolved fluorescence and energy transfer analysis of Nd3+-Yb3+-Er3+ triply doped Ba-Al-metaphosphate glasses of an eye safe emission (1.54 μm),” J. Fluoresc. 20, 425–434 (2010).
[CrossRef]

A. D. Sontakke, K. Biswas, A. K. Mandal, and K. Annapurna, “Concentration quenched luminescence and energy transfer analysis of Nd3+ doped Ba-Al-metaphosphate laser glasses,” Appl. Phys. B 101, 235–244 (2010).
[CrossRef]

Arcangeli, A.

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+, Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[CrossRef]

Auzel, F.

F. Auzel, “Multiphonon assisted and anti-Stokes and Stokes fluorescence of triply ionized rare-earth ions,” Phys. Rev. B 13, 2809–2817 (1976).
[CrossRef]

Balda, R.

R. Balda, J. Fernàndez, I. Iparraguirre, and M. Al-Saleh, “Spectroscopic study of Nd3+/Yb3+ in disordered potassium bismuth laser crystals,” Opt. Mater. 28, 1247–1252 (2006).
[CrossRef]

Batalioto, F.

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A.Nunes, “Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses,” J. Appl. Phys. 90, 3308–3313 (2001).
[CrossRef]

Bausà, L. E.

M. O. Ramirez, D. Jaque, L. E. Bausà, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal,” J. Appl. Phys. 97, 093510 (2005).
[CrossRef]

D. Jaque, M. O. Ramirez, L. E. Bausà, A. Speghini, M. Bettinelli, and E. Cavalli, “Influence of Nd3+ and Yb3+ concentration on the Nd3+→Yb3+ energy-transfer efficiency in the YAl3(BO3)4 nonlinear crystal: determination of optimum concentration for laser applications,” J. Opt. Soc. Am. B 21, 1203–1209 (2004).
[CrossRef]

D. Jaque, M. O. Ramirez, L. E. Bausà, J. García Solé, E. Cavalli, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in YAl3(BO3)4 nonlinear laser crystal,” Phys. Rev. B 68, 035118 (2003).
[CrossRef]

Bell, M. J. V.

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A.Nunes, “Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses,” J. Appl. Phys. 90, 3308–3313 (2001).
[CrossRef]

Bettinelli, M.

U. Caldiño, D. Jaque, E. Martín-Rodríguez, M. O. Ramírez, J. García Solé, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ resonant energy transfer in the ferroelectric Sr0.6Ba0.4Nb2O6 laser crystal,” Phys. Rev. B 77, 075121 (2008).
[CrossRef]

M. O. Ramirez, D. Jaque, L. E. Bausà, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal,” J. Appl. Phys. 97, 093510 (2005).
[CrossRef]

F. Liégard, J. L. Doualan, R. Moncorgé, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in a codoped metaphosphate glass as a model for Yb3+ laser operation around 980 nm,” Appl. Phys. B 80, 985–991 (2005).
[CrossRef]

D. Jaque, M. O. Ramirez, L. E. Bausà, A. Speghini, M. Bettinelli, and E. Cavalli, “Influence of Nd3+ and Yb3+ concentration on the Nd3+→Yb3+ energy-transfer efficiency in the YAl3(BO3)4 nonlinear crystal: determination of optimum concentration for laser applications,” J. Opt. Soc. Am. B 21, 1203–1209 (2004).
[CrossRef]

D. Jaque, M. O. Ramirez, L. E. Bausà, J. García Solé, E. Cavalli, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in YAl3(BO3)4 nonlinear laser crystal,” Phys. Rev. B 68, 035118 (2003).
[CrossRef]

Biswas, K.

A. D. Sontakke, K. Biswas, A. K. Mandal, and K. Annapurna, “Time resolved fluorescence and energy transfer analysis of Nd3+-Yb3+-Er3+ triply doped Ba-Al-metaphosphate glasses of an eye safe emission (1.54 μm),” J. Fluoresc. 20, 425–434 (2010).
[CrossRef]

A. D. Sontakke, K. Biswas, A. K. Mandal, and K. Annapurna, “Concentration quenched luminescence and energy transfer analysis of Nd3+ doped Ba-Al-metaphosphate laser glasses,” Appl. Phys. B 101, 235–244 (2010).
[CrossRef]

Bonelli, L.

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+, Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[CrossRef]

Börgesson, L.

A. Matic, L. Börgesson, A. Wannberg, and R. L. McGreevy, “Structural studies of rare-earth doped phosphate glasses,” Mat. Res. Soc. Symp. Proc. 455, 435–440 (1997).
[CrossRef]

Bourdet, G. L.

G. L. Bourdet, O. Casagrande, N. Deguil-Robin, and B. Le Garrec, “Performances of cryogenic cooled laser based on ytterbium doped sesquioxide ceramics,” J. Phys.: Conf. Ser. 112, 032054 (2008).
[CrossRef]

Caird, J. A.

Caldiño, U.

U. Caldiño, D. Jaque, E. Martín-Rodríguez, M. O. Ramírez, J. García Solé, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ resonant energy transfer in the ferroelectric Sr0.6Ba0.4Nb2O6 laser crystal,” Phys. Rev. B 77, 075121 (2008).
[CrossRef]

Casagrande, O.

G. L. Bourdet, O. Casagrande, N. Deguil-Robin, and B. Le Garrec, “Performances of cryogenic cooled laser based on ytterbium doped sesquioxide ceramics,” J. Phys.: Conf. Ser. 112, 032054 (2008).
[CrossRef]

Cavalli, E.

M. O. Ramirez, D. Jaque, L. E. Bausà, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal,” J. Appl. Phys. 97, 093510 (2005).
[CrossRef]

D. Jaque, M. O. Ramirez, L. E. Bausà, A. Speghini, M. Bettinelli, and E. Cavalli, “Influence of Nd3+ and Yb3+ concentration on the Nd3+→Yb3+ energy-transfer efficiency in the YAl3(BO3)4 nonlinear crystal: determination of optimum concentration for laser applications,” J. Opt. Soc. Am. B 21, 1203–1209 (2004).
[CrossRef]

D. Jaque, M. O. Ramirez, L. E. Bausà, J. García Solé, E. Cavalli, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in YAl3(BO3)4 nonlinear laser crystal,” Phys. Rev. B 68, 035118 (2003).
[CrossRef]

Cichosz, L.

W. Ryba-Romanowski, S. Goläb, L. Cichosz, and B. Jeżowska-Trzebiatowska, “Influence of temperature and acceptor concentration on energy transfer from Nd3+ to Yb3+ and from Yb3+ to Er3+ in tellurite glass,” J. Non-Cryst. Solids 105, 295–302 (1988).
[CrossRef]

Cussó, F.

D. Jaque, J. A. Muñoz, F. Cussó, and J. Garcia Solé, “Quantum efficiency of the YAl3(BO3)4:Nd self-frequency-doubling laser material,” J. Phys. Condens. Matter 10, 7901–7905 (1998).
[CrossRef]

de Sousa, D. F.

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A.Nunes, “Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses,” J. Appl. Phys. 90, 3308–3313 (2001).
[CrossRef]

Deguil-Robin, N.

G. L. Bourdet, O. Casagrande, N. Deguil-Robin, and B. Le Garrec, “Performances of cryogenic cooled laser based on ytterbium doped sesquioxide ceramics,” J. Phys.: Conf. Ser. 112, 032054 (2008).
[CrossRef]

Denker, B. I.

B. I. Denker, V. V. Osiko, P. P. Pashinin, and A. M. Prokhorov, “Concentrated neodymium laser glasses (review),” Sov. J. Quantum Electron. 11, 289–296 (1981).
[CrossRef]

Dexter, D. L.

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

Ding, J. Y.

P. Y. Shih, J. Y. Ding, and S. Y. Lee, “P31 MAS-NMR and FTIR analyses on the structure of CuO-containing sodium poly-and metaphosphate glasses,” Mater. Chem. Phys. 80, 391–396 (2003).
[CrossRef]

Dong, C.

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+, Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[CrossRef]

Doualan, J. L.

F. Liégard, J. L. Doualan, R. Moncorgé, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in a codoped metaphosphate glass as a model for Yb3+ laser operation around 980 nm,” Appl. Phys. B 80, 985–991 (2005).
[CrossRef]

Fernàndez, J.

R. Balda, J. Fernàndez, I. Iparraguirre, and M. Al-Saleh, “Spectroscopic study of Nd3+/Yb3+ in disordered potassium bismuth laser crystals,” Opt. Mater. 28, 1247–1252 (2006).
[CrossRef]

Garcia Solé, J.

D. Jaque, J. A. Muñoz, F. Cussó, and J. Garcia Solé, “Quantum efficiency of the YAl3(BO3)4:Nd self-frequency-doubling laser material,” J. Phys. Condens. Matter 10, 7901–7905 (1998).
[CrossRef]

García Solé, J.

U. Caldiño, D. Jaque, E. Martín-Rodríguez, M. O. Ramírez, J. García Solé, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ resonant energy transfer in the ferroelectric Sr0.6Ba0.4Nb2O6 laser crystal,” Phys. Rev. B 77, 075121 (2008).
[CrossRef]

D. Jaque, M. O. Ramirez, L. E. Bausà, J. García Solé, E. Cavalli, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in YAl3(BO3)4 nonlinear laser crystal,” Phys. Rev. B 68, 035118 (2003).
[CrossRef]

Gheorghe, C.

Goläb, S.

W. Ryba-Romanowski, S. Goläb, L. Cichosz, and B. Jeżowska-Trzebiatowska, “Influence of temperature and acceptor concentration on energy transfer from Nd3+ to Yb3+ and from Yb3+ to Er3+ in tellurite glass,” J. Non-Cryst. Solids 105, 295–302 (1988).
[CrossRef]

Hagenmuller, P.

C. Parent, C. Lurin, G. Le Flem, and P. Hagenmuller, “Nd3+→Yb3+ energy transfer in glasses with composition close to LiLnP4O12 metaphosphate (Ln=La, Nd, Yb),” J. Lumin. 36, 49–55 (1986).
[CrossRef]

C. Lurin, C. Parent, G. Le Flem, and P. Hagenmuller, “Energy transfer in a Nd3+-Yb3+ borate glass,” J. Phys. Chem. Solids 46, 1083–1092 (1985).
[CrossRef]

Hardy, A. A.

Hau, S.

Hess, O.

Hirayama, F.

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43, 1978–1989 (1965).
[CrossRef]

Ikesue, A.

Inokuti, M.

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43, 1978–1989 (1965).
[CrossRef]

Iparraguirre, I.

R. Balda, J. Fernàndez, I. Iparraguirre, and M. Al-Saleh, “Spectroscopic study of Nd3+/Yb3+ in disordered potassium bismuth laser crystals,” Opt. Mater. 28, 1247–1252 (2006).
[CrossRef]

Isaenko, L. I.

Izumitani, T.

X. Zou and T. Izumitani, “Excitation energy transfer of Nd3+-Yb3+-Er3+ in several glasses,” J. Ceram. Soc. Jpn. 101, 84–88 (1993).
[CrossRef]

Jaque, D.

U. Caldiño, D. Jaque, E. Martín-Rodríguez, M. O. Ramírez, J. García Solé, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ resonant energy transfer in the ferroelectric Sr0.6Ba0.4Nb2O6 laser crystal,” Phys. Rev. B 77, 075121 (2008).
[CrossRef]

M. O. Ramirez, D. Jaque, L. E. Bausà, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal,” J. Appl. Phys. 97, 093510 (2005).
[CrossRef]

D. Jaque, M. O. Ramirez, L. E. Bausà, A. Speghini, M. Bettinelli, and E. Cavalli, “Influence of Nd3+ and Yb3+ concentration on the Nd3+→Yb3+ energy-transfer efficiency in the YAl3(BO3)4 nonlinear crystal: determination of optimum concentration for laser applications,” J. Opt. Soc. Am. B 21, 1203–1209 (2004).
[CrossRef]

D. Jaque, M. O. Ramirez, L. E. Bausà, J. García Solé, E. Cavalli, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in YAl3(BO3)4 nonlinear laser crystal,” Phys. Rev. B 68, 035118 (2003).
[CrossRef]

D. Jaque, J. A. Muñoz, F. Cussó, and J. Garcia Solé, “Quantum efficiency of the YAl3(BO3)4:Nd self-frequency-doubling laser material,” J. Phys. Condens. Matter 10, 7901–7905 (1998).
[CrossRef]

Jezowska-Trzebiatowska, B.

W. Ryba-Romanowski, S. Goläb, L. Cichosz, and B. Jeżowska-Trzebiatowska, “Influence of temperature and acceptor concentration on energy transfer from Nd3+ to Yb3+ and from Yb3+ to Er3+ in tellurite glass,” J. Non-Cryst. Solids 105, 295–302 (1988).
[CrossRef]

Jia, Z.

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+, Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[CrossRef]

Jiang, M.

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+, Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[CrossRef]

Kalisky, Y.

R. Reisfeld and Y. Kalisky, “Nd3+ and Yb3+ germanate and tellurite glasses for fluorescence solar energy collectors,” Chem. Phys. Lett. 80, 178–183 (1981).
[CrossRef]

Khazanov, E. A.

V. V. Ovchinnikov, A. K. Murtazaev, E. A. Khazanov, and A. M. Sergeev, “Equilibrium and highly nonequilibrium states of condensed matter,” Phys. Usp. 51, 955–974 (2008).
[CrossRef]

Lahoz, F.

M. O. Ramirez, D. Jaque, L. E. Bausà, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal,” J. Appl. Phys. 97, 093510 (2005).
[CrossRef]

Le Flem, G.

C. Parent, C. Lurin, G. Le Flem, and P. Hagenmuller, “Nd3+→Yb3+ energy transfer in glasses with composition close to LiLnP4O12 metaphosphate (Ln=La, Nd, Yb),” J. Lumin. 36, 49–55 (1986).
[CrossRef]

C. Lurin, C. Parent, G. Le Flem, and P. Hagenmuller, “Energy transfer in a Nd3+-Yb3+ borate glass,” J. Phys. Chem. Solids 46, 1083–1092 (1985).
[CrossRef]

Le Garrec, B.

G. L. Bourdet, O. Casagrande, N. Deguil-Robin, and B. Le Garrec, “Performances of cryogenic cooled laser based on ytterbium doped sesquioxide ceramics,” J. Phys.: Conf. Ser. 112, 032054 (2008).
[CrossRef]

Lee, S. Y.

P. Y. Shih, J. Y. Ding, and S. Y. Lee, “P31 MAS-NMR and FTIR analyses on the structure of CuO-containing sodium poly-and metaphosphate glasses,” Mater. Chem. Phys. 80, 391–396 (2003).
[CrossRef]

Liégard, F.

F. Liégard, J. L. Doualan, R. Moncorgé, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in a codoped metaphosphate glass as a model for Yb3+ laser operation around 980 nm,” Appl. Phys. B 80, 985–991 (2005).
[CrossRef]

Lupei, A.

Lupei, V.

Lurin, C.

C. Parent, C. Lurin, G. Le Flem, and P. Hagenmuller, “Nd3+→Yb3+ energy transfer in glasses with composition close to LiLnP4O12 metaphosphate (Ln=La, Nd, Yb),” J. Lumin. 36, 49–55 (1986).
[CrossRef]

C. Lurin, C. Parent, G. Le Flem, and P. Hagenmuller, “Energy transfer in a Nd3+-Yb3+ borate glass,” J. Phys. Chem. Solids 46, 1083–1092 (1985).
[CrossRef]

Mandal, A. K.

A. D. Sontakke, K. Biswas, A. K. Mandal, and K. Annapurna, “Time resolved fluorescence and energy transfer analysis of Nd3+-Yb3+-Er3+ triply doped Ba-Al-metaphosphate glasses of an eye safe emission (1.54 μm),” J. Fluoresc. 20, 425–434 (2010).
[CrossRef]

A. D. Sontakke, K. Biswas, A. K. Mandal, and K. Annapurna, “Concentration quenched luminescence and energy transfer analysis of Nd3+ doped Ba-Al-metaphosphate laser glasses,” Appl. Phys. B 101, 235–244 (2010).
[CrossRef]

Martin, I. R.

M. O. Ramirez, D. Jaque, L. E. Bausà, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal,” J. Appl. Phys. 97, 093510 (2005).
[CrossRef]

Martín-Rodríguez, E.

U. Caldiño, D. Jaque, E. Martín-Rodríguez, M. O. Ramírez, J. García Solé, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ resonant energy transfer in the ferroelectric Sr0.6Ba0.4Nb2O6 laser crystal,” Phys. Rev. B 77, 075121 (2008).
[CrossRef]

Matic, A.

A. Matic, L. Börgesson, A. Wannberg, and R. L. McGreevy, “Structural studies of rare-earth doped phosphate glasses,” Mat. Res. Soc. Symp. Proc. 455, 435–440 (1997).
[CrossRef]

McGreevy, R. L.

A. Matic, L. Börgesson, A. Wannberg, and R. L. McGreevy, “Structural studies of rare-earth doped phosphate glasses,” Mat. Res. Soc. Symp. Proc. 455, 435–440 (1997).
[CrossRef]

Moncorgé, R.

F. Liégard, J. L. Doualan, R. Moncorgé, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in a codoped metaphosphate glass as a model for Yb3+ laser operation around 980 nm,” Appl. Phys. B 80, 985–991 (2005).
[CrossRef]

Muñoz, J. A.

D. Jaque, J. A. Muñoz, F. Cussó, and J. Garcia Solé, “Quantum efficiency of the YAl3(BO3)4:Nd self-frequency-doubling laser material,” J. Phys. Condens. Matter 10, 7901–7905 (1998).
[CrossRef]

Murtazaev, A. K.

V. V. Ovchinnikov, A. K. Murtazaev, E. A. Khazanov, and A. M. Sergeev, “Equilibrium and highly nonequilibrium states of condensed matter,” Phys. Usp. 51, 955–974 (2008).
[CrossRef]

Nostrand, M. C.

Nunes, L. A.

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A.Nunes, “Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses,” J. Appl. Phys. 90, 3308–3313 (2001).
[CrossRef]

Oliveira, S. L.

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A.Nunes, “Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses,” J. Appl. Phys. 90, 3308–3313 (2001).
[CrossRef]

Osiko, V. V.

B. I. Denker, V. V. Osiko, P. P. Pashinin, and A. M. Prokhorov, “Concentrated neodymium laser glasses (review),” Sov. J. Quantum Electron. 11, 289–296 (1981).
[CrossRef]

Ovchinnikov, V. V.

V. V. Ovchinnikov, A. K. Murtazaev, E. A. Khazanov, and A. M. Sergeev, “Equilibrium and highly nonequilibrium states of condensed matter,” Phys. Usp. 51, 955–974 (2008).
[CrossRef]

Page, R. H.

Parent, C.

C. Parent, C. Lurin, G. Le Flem, and P. Hagenmuller, “Nd3+→Yb3+ energy transfer in glasses with composition close to LiLnP4O12 metaphosphate (Ln=La, Nd, Yb),” J. Lumin. 36, 49–55 (1986).
[CrossRef]

C. Lurin, C. Parent, G. Le Flem, and P. Hagenmuller, “Energy transfer in a Nd3+-Yb3+ borate glass,” J. Phys. Chem. Solids 46, 1083–1092 (1985).
[CrossRef]

Pashinin, P. P.

B. I. Denker, V. V. Osiko, P. P. Pashinin, and A. M. Prokhorov, “Concentrated neodymium laser glasses (review),” Sov. J. Quantum Electron. 11, 289–296 (1981).
[CrossRef]

Payne, S. A.

Prokhorov, A. M.

B. I. Denker, V. V. Osiko, P. P. Pashinin, and A. M. Prokhorov, “Concentrated neodymium laser glasses (review),” Sov. J. Quantum Electron. 11, 289–296 (1981).
[CrossRef]

Ramirez, M. O.

M. O. Ramirez, D. Jaque, L. E. Bausà, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal,” J. Appl. Phys. 97, 093510 (2005).
[CrossRef]

D. Jaque, M. O. Ramirez, L. E. Bausà, A. Speghini, M. Bettinelli, and E. Cavalli, “Influence of Nd3+ and Yb3+ concentration on the Nd3+→Yb3+ energy-transfer efficiency in the YAl3(BO3)4 nonlinear crystal: determination of optimum concentration for laser applications,” J. Opt. Soc. Am. B 21, 1203–1209 (2004).
[CrossRef]

D. Jaque, M. O. Ramirez, L. E. Bausà, J. García Solé, E. Cavalli, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in YAl3(BO3)4 nonlinear laser crystal,” Phys. Rev. B 68, 035118 (2003).
[CrossRef]

Ramírez, M. O.

U. Caldiño, D. Jaque, E. Martín-Rodríguez, M. O. Ramírez, J. García Solé, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ resonant energy transfer in the ferroelectric Sr0.6Ba0.4Nb2O6 laser crystal,” Phys. Rev. B 77, 075121 (2008).
[CrossRef]

Ramponi, A. J.

Reisfeld, R.

R. Reisfeld and Y. Kalisky, “Nd3+ and Yb3+ germanate and tellurite glasses for fluorescence solar energy collectors,” Chem. Phys. Lett. 80, 178–183 (1981).
[CrossRef]

Ryba-Romanowski, W.

W. Ryba-Romanowski, S. Goläb, L. Cichosz, and B. Jeżowska-Trzebiatowska, “Influence of temperature and acceptor concentration on energy transfer from Nd3+ to Yb3+ and from Yb3+ to Er3+ in tellurite glass,” J. Non-Cryst. Solids 105, 295–302 (1988).
[CrossRef]

Sergeev, A. M.

V. V. Ovchinnikov, A. K. Murtazaev, E. A. Khazanov, and A. M. Sergeev, “Equilibrium and highly nonequilibrium states of condensed matter,” Phys. Usp. 51, 955–974 (2008).
[CrossRef]

Shih, P. Y.

P. Y. Shih, J. Y. Ding, and S. Y. Lee, “P31 MAS-NMR and FTIR analyses on the structure of CuO-containing sodium poly-and metaphosphate glasses,” Mater. Chem. Phys. 80, 391–396 (2003).
[CrossRef]

Sontakke, A. D.

A. D. Sontakke, K. Biswas, A. K. Mandal, and K. Annapurna, “Time resolved fluorescence and energy transfer analysis of Nd3+-Yb3+-Er3+ triply doped Ba-Al-metaphosphate glasses of an eye safe emission (1.54 μm),” J. Fluoresc. 20, 425–434 (2010).
[CrossRef]

A. D. Sontakke, K. Biswas, A. K. Mandal, and K. Annapurna, “Concentration quenched luminescence and energy transfer analysis of Nd3+ doped Ba-Al-metaphosphate laser glasses,” Appl. Phys. B 101, 235–244 (2010).
[CrossRef]

Speghini, A.

U. Caldiño, D. Jaque, E. Martín-Rodríguez, M. O. Ramírez, J. García Solé, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ resonant energy transfer in the ferroelectric Sr0.6Ba0.4Nb2O6 laser crystal,” Phys. Rev. B 77, 075121 (2008).
[CrossRef]

M. O. Ramirez, D. Jaque, L. E. Bausà, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal,” J. Appl. Phys. 97, 093510 (2005).
[CrossRef]

D. Jaque, M. O. Ramirez, L. E. Bausà, A. Speghini, M. Bettinelli, and E. Cavalli, “Influence of Nd3+ and Yb3+ concentration on the Nd3+→Yb3+ energy-transfer efficiency in the YAl3(BO3)4 nonlinear crystal: determination of optimum concentration for laser applications,” J. Opt. Soc. Am. B 21, 1203–1209 (2004).
[CrossRef]

D. Jaque, M. O. Ramirez, L. E. Bausà, J. García Solé, E. Cavalli, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in YAl3(BO3)4 nonlinear laser crystal,” Phys. Rev. B 68, 035118 (2003).
[CrossRef]

Staver, P. R.

Tao, X.

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+, Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[CrossRef]

Tonelli, M.

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+, Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[CrossRef]

Wannberg, A.

A. Matic, L. Börgesson, A. Wannberg, and R. L. McGreevy, “Structural studies of rare-earth doped phosphate glasses,” Mat. Res. Soc. Symp. Proc. 455, 435–440 (1997).
[CrossRef]

Weber, M. J.

M. J. Weber, “Optical properties of Yb3+ and Nd3+-Yb3+ energy transfer in YAlO3,” Phys. Rev. B 4, 3153–3159 (1971).
[CrossRef]

Yahel, E.

Yelisseyev, A. P.

Zhang, J.

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+, Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[CrossRef]

Zou, X.

X. Zou and T. Izumitani, “Excitation energy transfer of Nd3+-Yb3+-Er3+ in several glasses,” J. Ceram. Soc. Jpn. 101, 84–88 (1993).
[CrossRef]

Appl. Phys. B (2)

F. Liégard, J. L. Doualan, R. Moncorgé, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in a codoped metaphosphate glass as a model for Yb3+ laser operation around 980 nm,” Appl. Phys. B 80, 985–991 (2005).
[CrossRef]

A. D. Sontakke, K. Biswas, A. K. Mandal, and K. Annapurna, “Concentration quenched luminescence and energy transfer analysis of Nd3+ doped Ba-Al-metaphosphate laser glasses,” Appl. Phys. B 101, 235–244 (2010).
[CrossRef]

Chem. Phys. Lett. (1)

R. Reisfeld and Y. Kalisky, “Nd3+ and Yb3+ germanate and tellurite glasses for fluorescence solar energy collectors,” Chem. Phys. Lett. 80, 178–183 (1981).
[CrossRef]

J. Appl. Phys. (3)

D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A.Nunes, “Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses,” J. Appl. Phys. 90, 3308–3313 (2001).
[CrossRef]

Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+, Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009).
[CrossRef]

M. O. Ramirez, D. Jaque, L. E. Bausà, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal,” J. Appl. Phys. 97, 093510 (2005).
[CrossRef]

J. Ceram. Soc. Jpn. (1)

X. Zou and T. Izumitani, “Excitation energy transfer of Nd3+-Yb3+-Er3+ in several glasses,” J. Ceram. Soc. Jpn. 101, 84–88 (1993).
[CrossRef]

J. Chem. Phys. (2)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953).
[CrossRef]

M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43, 1978–1989 (1965).
[CrossRef]

J. Fluoresc. (1)

A. D. Sontakke, K. Biswas, A. K. Mandal, and K. Annapurna, “Time resolved fluorescence and energy transfer analysis of Nd3+-Yb3+-Er3+ triply doped Ba-Al-metaphosphate glasses of an eye safe emission (1.54 μm),” J. Fluoresc. 20, 425–434 (2010).
[CrossRef]

J. Lightwave Technol. (1)

J. Lumin. (1)

C. Parent, C. Lurin, G. Le Flem, and P. Hagenmuller, “Nd3+→Yb3+ energy transfer in glasses with composition close to LiLnP4O12 metaphosphate (Ln=La, Nd, Yb),” J. Lumin. 36, 49–55 (1986).
[CrossRef]

J. Non-Cryst. Solids (1)

W. Ryba-Romanowski, S. Goläb, L. Cichosz, and B. Jeżowska-Trzebiatowska, “Influence of temperature and acceptor concentration on energy transfer from Nd3+ to Yb3+ and from Yb3+ to Er3+ in tellurite glass,” J. Non-Cryst. Solids 105, 295–302 (1988).
[CrossRef]

J. Opt. Soc. Am. B (4)

J. Phys. Chem. Solids (1)

C. Lurin, C. Parent, G. Le Flem, and P. Hagenmuller, “Energy transfer in a Nd3+-Yb3+ borate glass,” J. Phys. Chem. Solids 46, 1083–1092 (1985).
[CrossRef]

J. Phys. Condens. Matter (1)

D. Jaque, J. A. Muñoz, F. Cussó, and J. Garcia Solé, “Quantum efficiency of the YAl3(BO3)4:Nd self-frequency-doubling laser material,” J. Phys. Condens. Matter 10, 7901–7905 (1998).
[CrossRef]

J. Phys.: Conf. Ser. (1)

G. L. Bourdet, O. Casagrande, N. Deguil-Robin, and B. Le Garrec, “Performances of cryogenic cooled laser based on ytterbium doped sesquioxide ceramics,” J. Phys.: Conf. Ser. 112, 032054 (2008).
[CrossRef]

Mat. Res. Soc. Symp. Proc. (1)

A. Matic, L. Börgesson, A. Wannberg, and R. L. McGreevy, “Structural studies of rare-earth doped phosphate glasses,” Mat. Res. Soc. Symp. Proc. 455, 435–440 (1997).
[CrossRef]

Mater. Chem. Phys. (1)

P. Y. Shih, J. Y. Ding, and S. Y. Lee, “P31 MAS-NMR and FTIR analyses on the structure of CuO-containing sodium poly-and metaphosphate glasses,” Mater. Chem. Phys. 80, 391–396 (2003).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (1)

R. Balda, J. Fernàndez, I. Iparraguirre, and M. Al-Saleh, “Spectroscopic study of Nd3+/Yb3+ in disordered potassium bismuth laser crystals,” Opt. Mater. 28, 1247–1252 (2006).
[CrossRef]

Phys. Rev. B (4)

D. Jaque, M. O. Ramirez, L. E. Bausà, J. García Solé, E. Cavalli, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in YAl3(BO3)4 nonlinear laser crystal,” Phys. Rev. B 68, 035118 (2003).
[CrossRef]

U. Caldiño, D. Jaque, E. Martín-Rodríguez, M. O. Ramírez, J. García Solé, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ resonant energy transfer in the ferroelectric Sr0.6Ba0.4Nb2O6 laser crystal,” Phys. Rev. B 77, 075121 (2008).
[CrossRef]

M. J. Weber, “Optical properties of Yb3+ and Nd3+-Yb3+ energy transfer in YAlO3,” Phys. Rev. B 4, 3153–3159 (1971).
[CrossRef]

F. Auzel, “Multiphonon assisted and anti-Stokes and Stokes fluorescence of triply ionized rare-earth ions,” Phys. Rev. B 13, 2809–2817 (1976).
[CrossRef]

Phys. Usp. (1)

V. V. Ovchinnikov, A. K. Murtazaev, E. A. Khazanov, and A. M. Sergeev, “Equilibrium and highly nonequilibrium states of condensed matter,” Phys. Usp. 51, 955–974 (2008).
[CrossRef]

Sov. J. Quantum Electron. (1)

B. I. Denker, V. V. Osiko, P. P. Pashinin, and A. M. Prokhorov, “Concentrated neodymium laser glasses (review),” Sov. J. Quantum Electron. 11, 289–296 (1981).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Optical absorption spectra of Nd 3 + -Yb 3 + codoped Ba-Al-metaphosphate glasses.

Fig. 2
Fig. 2

Photoluminescence spectra of Nd 3 + -Yb 3 + codoped Ba-Al-metaphosphate glasses with 806 nm excitation. (Inset: Plot of emission intensity of Nd 3 + and Yb 3 + as a function of Yb 2 O 3 concentration.)

Fig. 3
Fig. 3

Spectral overlap of Nd 3 + emission ( F 4 3 / 2 I 4 9 / 2 ) with Yb 3 + absorption ( F 2 7 / 2 F 2 5 / 2 ) cross sections. Inset: Partial energy level diagram of Nd 3 + and Yb 3 + ions in Ba-Al-metaphosphate glasses.

Fig. 4
Fig. 4

(a) Plot of energy transfer probability ( P ET ) as a function of phonon energy ( E p h ) . (b) FTIR reflectance spectrum of Ba-Al-metaphosphate glass.

Fig. 5
Fig. 5

Variation of Nd 3 + Yb 3 + energy transfer efficiency with Yb 2 O 3 concentration in Ba-Al-metaphosphate glasses.

Fig. 6
Fig. 6

Normalized fluorescence decay profiles of Nd 3 + ions.

Fig. 7
Fig. 7

Spectral overlap of Nd 3 + emission cross section and Yb 3 + absorption cross section with respective phonon sidebands.

Fig. 8
Fig. 8

Normalized fluorescence decay spectrum of Nd 3 + emission in BAP-NdYb05 glass with theoretical fit generated using Burshtein’s hopping model.

Fig. 9
Fig. 9

Photoluminescence spectra of Nd 3 + -Yb 3 + codoped Ba-Al-metaphosphate glasses on Yb 3 + excitation at 951 nm. (Inset: Enlarged view of F 4 3 / 2 I 4 13 / 2 emission transition of Nd 3 + .)

Fig. 10
Fig. 10

Normalized fluorescence decay profiles of Yb 3 + ions.

Fig. 11
Fig. 11

(a) Normalized fluorescence decay profiles of Yb 3 + emission in BAP-NdYb005 glass with theoretical fit generated using Inokuti–Hirayama model [19]. (b) Spectral overlap of Yb 3 + emission ( F 2 5 / 2 F 2 7 / 2 ) and Nd 3 + absorption ( I 4 9 / 2 F 4 3 / 2 ) cross sections.

Tables (2)

Tables Icon

Table 1 Fluorescence Decay Time ( τ ) , Energy Transfer Rate ( W ET ) , and Energy Transfer Efficiency ( η ET ) of Different Nd 3 + -Yb 3 + Codoped Ba-Al-Metaphosphate Glasses

Tables Icon

Table 2 Energy Transfer Microparameter ( C D A Nd-Yb ) for Nd 3 + Yb 3 + Energy Transfer, Nd 3 + -Nd 3 + Self-Quenching Microparameter ( C D A Nd-Nd ) , and Performance Factor ( Φ ET ) for Different Hosts

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P ET I ( E p h ) = e E p h / k B T e E p h / k B T 1 f D ( E E p h ) f A ( E ) E 2 d E ,
η ET = η Yb 1 850   nm 1100   nm I E m Yb ( λ ) d λ η Nd 1 ( 1 + β I 4 13 / 2 + β I 4 15 / 2 β I 4 9 / 2 + β I 4 11 / 2 ) 850   nm 1100   nm I E m Nd ( λ ) d λ + η Yb 1 850   nm 1100   nm I E m Yb ( λ ) d λ ,
η ET = 1 τ Nd-Yb τ Nd ,
I ( t ) = I 0   exp [ t τ 0 4 π 3 N A Γ ( 1 3 s ) ( C D A t ) 3 / s ] ,
C D X = 3 c 8 π 4 n 2 σ em D ( λ ) σ abs X ( λ ) d λ ,
σ Stokes = σ elect   exp ( α S Δ E ) ,
α S = ( h ν max ) 1 ( ln { ( N ¯ / S 0 ) [ 1 exp ( h ν max / k T ) ] } 1 ) ,
I ( t ) = I 0   exp [ t τ 0 4 π 3 N A Γ ( 1 3 s ) ( C D A t ) 3 / s W m t ] ,
Φ ET = C D A Nd-Yb C D A Nd-Nd .

Metrics