Abstract

Energy-transfer parameters in a thulium-ytterbium doped single mode silica fiber have been determined quantitatively for the first time, to our knowledge. The principal energy-transfer parameters, estimated from spectroscopic measurements and on the basis of a migration-assisted energy-transfer model, lead to design and optimization of the thulium-ytterbium doped fiber lasers and amplifiers. Linear dependence of the energy-transfer probability on the product of co-dopant concentrations proves the accuracy of the implementation of the migration-assisted energy-transfer model. It has been found that the step-wise energy-transfer process as well as emission at wavelength ranges of 475, 800, and 2000 nm with pumping at 980 nm is strongly guided by the level of ytterbium concentration with respect to thulium. Thus the proportion has been optimized on the basis of emission at the mentioned wavelength ranges, and an amplified spontaneous emission experiment performed at 2000 nm shows good agreement with the optimization result.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Simpson, Spectroscopy of Thulium Doped Silica Glass (Victoria University, 2008).
  2. S. D. Jackson, “Power scaling method for 2 μm diode-cladding-pumped Tm-doped silica fiber lasers that uses Yb codoping,” Opt. Lett. 28, 2192–2194 (2003).
    [Crossref] [PubMed]
  3. J. Chang, Q.-P. Wang, and G.-D. Peng, “Optical amplification in Yb-codoped thulium doped silica fiber,” Opt. Mater. 28, 1088–1094 (2006).
    [Crossref]
  4. P. R. Watekar, S. Ju, and W.-T. Han, “800-nm upconversion emission in Yb-sensitized Tm-doped optical fiber,” IEEE Photon. Technol. Lett. 18, 1609–1611 (2006).
    [Crossref]
  5. P. Peterka, W. Blanc, B. Dussardier, G. Monnom, D. Simpson, and G. Baxter, “Estimation of energy transfer parameters in thulium-and ytterbium-doped silica fiber,” Proc. SPIE 7138, 71381K (2008).
    [Crossref]
  6. A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, and A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and LiY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280–5292 (2000).
    [Crossref]
  7. B. Faure, W. Blanc, B. Dussardier, and G. Monnom, “Improvement of the Tm3+:H34 level lifetime in silica optical fibers by lowering the local phonon energy,” J. Non-Cryst. Solids 353, 2767–2773 (2007).
    [Crossref]
  8. M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, Optical Engineering, 2nd ed. (Marcel Dekker, 2001).
    [Crossref]
  9. M. Louis, S. Hubert, E. Simoni, and J. Y. Gesland, “Energy transfer between lanthanide and actinide ions in LiYF4,” Opt. Mater. 6, 121–127 (1996).
    [Crossref]
  10. A. Pal, A. Dhar, S. Das, S. Y. Chen, T. Sun, R. Sen, and K. T. V. Grattan, “Ytterbium sensitized Thulium doped fibre laser at near IR with 980 nm pump,” Opt. Express 18, 5068–5074 (2010).
    [Crossref] [PubMed]

2010 (1)

2008 (2)

D. A. Simpson, Spectroscopy of Thulium Doped Silica Glass (Victoria University, 2008).

P. Peterka, W. Blanc, B. Dussardier, G. Monnom, D. Simpson, and G. Baxter, “Estimation of energy transfer parameters in thulium-and ytterbium-doped silica fiber,” Proc. SPIE 7138, 71381K (2008).
[Crossref]

2007 (1)

B. Faure, W. Blanc, B. Dussardier, and G. Monnom, “Improvement of the Tm3+:H34 level lifetime in silica optical fibers by lowering the local phonon energy,” J. Non-Cryst. Solids 353, 2767–2773 (2007).
[Crossref]

2006 (2)

J. Chang, Q.-P. Wang, and G.-D. Peng, “Optical amplification in Yb-codoped thulium doped silica fiber,” Opt. Mater. 28, 1088–1094 (2006).
[Crossref]

P. R. Watekar, S. Ju, and W.-T. Han, “800-nm upconversion emission in Yb-sensitized Tm-doped optical fiber,” IEEE Photon. Technol. Lett. 18, 1609–1611 (2006).
[Crossref]

2003 (1)

2001 (1)

M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, Optical Engineering, 2nd ed. (Marcel Dekker, 2001).
[Crossref]

2000 (1)

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, and A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and LiY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280–5292 (2000).
[Crossref]

1996 (1)

M. Louis, S. Hubert, E. Simoni, and J. Y. Gesland, “Energy transfer between lanthanide and actinide ions in LiYF4,” Opt. Mater. 6, 121–127 (1996).
[Crossref]

Baxter, G.

P. Peterka, W. Blanc, B. Dussardier, G. Monnom, D. Simpson, and G. Baxter, “Estimation of energy transfer parameters in thulium-and ytterbium-doped silica fiber,” Proc. SPIE 7138, 71381K (2008).
[Crossref]

Blanc, W.

P. Peterka, W. Blanc, B. Dussardier, G. Monnom, D. Simpson, and G. Baxter, “Estimation of energy transfer parameters in thulium-and ytterbium-doped silica fiber,” Proc. SPIE 7138, 71381K (2008).
[Crossref]

B. Faure, W. Blanc, B. Dussardier, and G. Monnom, “Improvement of the Tm3+:H34 level lifetime in silica optical fibers by lowering the local phonon energy,” J. Non-Cryst. Solids 353, 2767–2773 (2007).
[Crossref]

Braud, A.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, and A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and LiY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280–5292 (2000).
[Crossref]

Chang, J.

J. Chang, Q.-P. Wang, and G.-D. Peng, “Optical amplification in Yb-codoped thulium doped silica fiber,” Opt. Mater. 28, 1088–1094 (2006).
[Crossref]

Chen, S. Y.

Das, S.

Dhar, A.

Digonnet, M. J. F.

M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, Optical Engineering, 2nd ed. (Marcel Dekker, 2001).
[Crossref]

Doualan, J. L.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, and A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and LiY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280–5292 (2000).
[Crossref]

Dussardier, B.

P. Peterka, W. Blanc, B. Dussardier, G. Monnom, D. Simpson, and G. Baxter, “Estimation of energy transfer parameters in thulium-and ytterbium-doped silica fiber,” Proc. SPIE 7138, 71381K (2008).
[Crossref]

B. Faure, W. Blanc, B. Dussardier, and G. Monnom, “Improvement of the Tm3+:H34 level lifetime in silica optical fibers by lowering the local phonon energy,” J. Non-Cryst. Solids 353, 2767–2773 (2007).
[Crossref]

Faure, B.

B. Faure, W. Blanc, B. Dussardier, and G. Monnom, “Improvement of the Tm3+:H34 level lifetime in silica optical fibers by lowering the local phonon energy,” J. Non-Cryst. Solids 353, 2767–2773 (2007).
[Crossref]

Gesland, J. Y.

M. Louis, S. Hubert, E. Simoni, and J. Y. Gesland, “Energy transfer between lanthanide and actinide ions in LiYF4,” Opt. Mater. 6, 121–127 (1996).
[Crossref]

Girard, S.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, and A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and LiY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280–5292 (2000).
[Crossref]

Grattan, K. T. V.

Han, W. -T.

P. R. Watekar, S. Ju, and W.-T. Han, “800-nm upconversion emission in Yb-sensitized Tm-doped optical fiber,” IEEE Photon. Technol. Lett. 18, 1609–1611 (2006).
[Crossref]

Hubert, S.

M. Louis, S. Hubert, E. Simoni, and J. Y. Gesland, “Energy transfer between lanthanide and actinide ions in LiYF4,” Opt. Mater. 6, 121–127 (1996).
[Crossref]

Jackson, S. D.

Ju, S.

P. R. Watekar, S. Ju, and W.-T. Han, “800-nm upconversion emission in Yb-sensitized Tm-doped optical fiber,” IEEE Photon. Technol. Lett. 18, 1609–1611 (2006).
[Crossref]

Louis, M.

M. Louis, S. Hubert, E. Simoni, and J. Y. Gesland, “Energy transfer between lanthanide and actinide ions in LiYF4,” Opt. Mater. 6, 121–127 (1996).
[Crossref]

Moncorge, R.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, and A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and LiY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280–5292 (2000).
[Crossref]

Monnom, G.

P. Peterka, W. Blanc, B. Dussardier, G. Monnom, D. Simpson, and G. Baxter, “Estimation of energy transfer parameters in thulium-and ytterbium-doped silica fiber,” Proc. SPIE 7138, 71381K (2008).
[Crossref]

B. Faure, W. Blanc, B. Dussardier, and G. Monnom, “Improvement of the Tm3+:H34 level lifetime in silica optical fibers by lowering the local phonon energy,” J. Non-Cryst. Solids 353, 2767–2773 (2007).
[Crossref]

Pal, A.

Peng, G. -D.

J. Chang, Q.-P. Wang, and G.-D. Peng, “Optical amplification in Yb-codoped thulium doped silica fiber,” Opt. Mater. 28, 1088–1094 (2006).
[Crossref]

Peterka, P.

P. Peterka, W. Blanc, B. Dussardier, G. Monnom, D. Simpson, and G. Baxter, “Estimation of energy transfer parameters in thulium-and ytterbium-doped silica fiber,” Proc. SPIE 7138, 71381K (2008).
[Crossref]

Sen, R.

Simoni, E.

M. Louis, S. Hubert, E. Simoni, and J. Y. Gesland, “Energy transfer between lanthanide and actinide ions in LiYF4,” Opt. Mater. 6, 121–127 (1996).
[Crossref]

Simpson, D.

P. Peterka, W. Blanc, B. Dussardier, G. Monnom, D. Simpson, and G. Baxter, “Estimation of energy transfer parameters in thulium-and ytterbium-doped silica fiber,” Proc. SPIE 7138, 71381K (2008).
[Crossref]

Simpson, D. A.

D. A. Simpson, Spectroscopy of Thulium Doped Silica Glass (Victoria University, 2008).

Sun, T.

Thuau, M.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, and A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and LiY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280–5292 (2000).
[Crossref]

Tkachuk, A. M.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, and A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and LiY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280–5292 (2000).
[Crossref]

Wang, Q. -P.

J. Chang, Q.-P. Wang, and G.-D. Peng, “Optical amplification in Yb-codoped thulium doped silica fiber,” Opt. Mater. 28, 1088–1094 (2006).
[Crossref]

Watekar, P. R.

P. R. Watekar, S. Ju, and W.-T. Han, “800-nm upconversion emission in Yb-sensitized Tm-doped optical fiber,” IEEE Photon. Technol. Lett. 18, 1609–1611 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (1)

P. R. Watekar, S. Ju, and W.-T. Han, “800-nm upconversion emission in Yb-sensitized Tm-doped optical fiber,” IEEE Photon. Technol. Lett. 18, 1609–1611 (2006).
[Crossref]

J. Non-Cryst. Solids (1)

B. Faure, W. Blanc, B. Dussardier, and G. Monnom, “Improvement of the Tm3+:H34 level lifetime in silica optical fibers by lowering the local phonon energy,” J. Non-Cryst. Solids 353, 2767–2773 (2007).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (2)

J. Chang, Q.-P. Wang, and G.-D. Peng, “Optical amplification in Yb-codoped thulium doped silica fiber,” Opt. Mater. 28, 1088–1094 (2006).
[Crossref]

M. Louis, S. Hubert, E. Simoni, and J. Y. Gesland, “Energy transfer between lanthanide and actinide ions in LiYF4,” Opt. Mater. 6, 121–127 (1996).
[Crossref]

Phys. Rev. B (1)

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, and A. M. Tkachuk, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and LiY2F8 single crystals for laser operation at 1.5 and 2.3 μm,” Phys. Rev. B 61, 5280–5292 (2000).
[Crossref]

Proc. SPIE (1)

P. Peterka, W. Blanc, B. Dussardier, G. Monnom, D. Simpson, and G. Baxter, “Estimation of energy transfer parameters in thulium-and ytterbium-doped silica fiber,” Proc. SPIE 7138, 71381K (2008).
[Crossref]

Other (2)

D. A. Simpson, Spectroscopy of Thulium Doped Silica Glass (Victoria University, 2008).

M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, Optical Engineering, 2nd ed. (Marcel Dekker, 2001).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Energy level diagram and energy-transfer processes in Tm 3 + / Yb 3 + co-doped system. All transition wavelengths are in nanometers.

Fig. 2
Fig. 2

F 2 7 / 2 F 2 5 / 2 absorption and emission spectra of Yb 3 + and H 3 6 H 3 5 absorption spectrum of Tm 3 + used to calculate the first step energy-transfer microparameters.

Fig. 3
Fig. 3

Variation of the energy-transfer probability K 1 for the first step energy transfer as a function of the product N Tm N Yb .

Fig. 4
Fig. 4

Variation of the second step energy-transfer parameter, W 2 , as a function of the Yb 3 + concentration.

Fig. 5
Fig. 5

Fluorescence intensity variations with Yb:Tm proportion for fixed pump power at 976 nm.

Fig. 6
Fig. 6

Saturated ASE spectra of Yb-sensitized-Tm doped fiber, pumping at 980 nm.

Tables (3)

Tables Icon

Table 1 Properties and Spectroscopic Parameters (Calculated and Measured) of Fabricated Fibers

Tables Icon

Table 2 Parameters for First Step Yb 3 + to Tm 3 + Energy Transfer (ET1)

Tables Icon

Table 3 Parameters for Second Step Yb 3 + to Tm 3 + Energy Transfer (ET2)

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Yb 3 + ( F 2 5 / 2 ) + Tm 3 + ( H 3 6 ) Yb 3 + ( F 2 7 / 2 ) + Tm 3 + ( H 3 5 ) Yb 3 + ( F 2 7 / 2 ) + Tm 3 + ( F 3 4 ) .
I Yb ( t ) = I 0   exp ( t τ Yb γ t 1 / 2 K t ) ,
C Yb- X = 3 c 8 π 4 n 2 σ Yb em ( λ ) σ X abs ( λ ) d λ ,
γ = 4 π 3 / 2 3 N Tm C Yb-Tm 1 / 2 ,
K H = π ( 2 π 3 ) 5 / 2 C Yb-Tm 1 / 2 C Yb-Yb 1 / 2 N Tm N Yb ,
K 1 = τ f 1 τ Yb 1 ,
τ f 1 = 1 I 0 0 + I Yb ( t ) d t ,
W 1 = K 1 N Tm .
Yb 3 + ( F 2 5 / 2 ) + Tm 3 + ( F 3 4 ) Yb 3 + ( F 2 7 / 2 ) + Tm 3 + ( F 3 2 , 3 ) Yb 3 + ( F 2 7 / 2 ) + Tm 3 + ( H 3 4 ) .
K 2 = τ E 1 τ f 1 ,
W 2 = K 2 N ( F 3 4 ) Tm ,
Yb 3 + ( F 2 5 / 2 ) + Tm 3 + ( H 3 4 ) Yb 3 + ( F 2 7 / 2 ) + Tm 3 + ( G 1 4 ) .

Metrics