Abstract

A structure based on plasmonic metal-dielectric-metal (MDM) side-coupled cavities for optical wavelength demultiplexing is proposed and numerically simulated. The structure consists of several side-coupled resonant cavities with different lengths, which plays roles in selecting different wavelength transmission bands. Both analytical and simulation results reveal that the selected demultiplexing wavelength of each port has linear and nonlinear relationships with the length of the corresponding MDM side-coupled cavity, overlap length, and gap width.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef] [PubMed]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [CrossRef] [PubMed]
  3. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
    [CrossRef]
  4. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
    [CrossRef]
  5. S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2003).
    [CrossRef]
  6. J. Krenn and J.-C. Weeber, “Surface plasmon polaritons in metal stripes and wires,” Philos. Trans. R. Soc. London, Ser. A 362, 739–756 (2004).
    [CrossRef]
  7. K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, “Long-range surface plasmon polariton nanowire waveguides for device applications,” Opt. Express 14, 314–319 (2006).
    [CrossRef] [PubMed]
  8. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
    [CrossRef]
  9. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
    [CrossRef] [PubMed]
  10. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
    [CrossRef] [PubMed]
  11. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005).
    [CrossRef] [PubMed]
  12. I. Breukelaar and P. Berini, “Long-range surface plasmon polariton mode cutoff and radiation in slab waveguide,” J. Opt. Soc. Am. A 23, 1971–1977 (2006).
    [CrossRef]
  13. G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25, 2511–2521 (2007).
    [CrossRef]
  14. F. I. Baida, A. Belkhir, D. V. Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
    [CrossRef]
  15. H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13, 10795–10800 (2005).
    [CrossRef] [PubMed]
  16. T.-W. Lee and S. K. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express 13, 9652–9659 (2005).
    [CrossRef] [PubMed]
  17. G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15, 1211–1221 (2007).
    [CrossRef] [PubMed]
  18. H. Zhao, X. Huang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E (Amsterdam) 40, 3025–3029 (2008).
    [CrossRef]
  19. R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Nanoplasmonic couplers and splitters,” Opt. Express 17, 19033–19040 (2009).
    [CrossRef]
  20. Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach–Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259, 690–695 (2006).
    [CrossRef]
  21. B. Wang and G. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992–1994 (2004).
    [CrossRef] [PubMed]
  22. B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572 (1991).
    [CrossRef]
  23. A. Hossieni and Y. Massoud, “A low-loss metal–insulator–metal plasmonic Bragg reflector,” Opt. Express 14, 11318–11323 (2006).
    [CrossRef] [PubMed]
  24. A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” J. Lightwave Technol. 24, 912–918 (2006).
    [CrossRef]
  25. Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal–insulator–metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
    [CrossRef]
  26. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal–insulator–metal waveguide Bragg grating,” Opt. Express 16, 413–425 (2008).
    [CrossRef] [PubMed]
  27. J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Y. Wang, B. S. Zou, and S. C. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express 16, 4888–4894 (2008).
    [CrossRef] [PubMed]
  28. A. Hosseini, H. Nejati, and Y. Massoud, “Modeling and design methodology for metal–insulator–metal plasmonic Bragg reflectors,” Opt. Express 16, 1475–1480 (2008).
    [CrossRef] [PubMed]
  29. X.-S. Lin and X.-G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33, 2874–2876 (2008).
    [CrossRef] [PubMed]
  30. X.-S. Lin and X.-G. Huang, “Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter,” J. Opt. Soc. Am. B 26, 1263–1268 (2009).
    [CrossRef]
  31. Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16, 16314–16325 (2008).
    [CrossRef] [PubMed]
  32. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and W. Ebbesen, “Wavelength selective nanophotonics components utilizing channel plasmon polaritons,” Nano Lett. 7, 880–884 (2007).
    [CrossRef] [PubMed]
  33. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14, 2932–2937 (2006).
    [CrossRef] [PubMed]
  34. A. Boltasseva, S. I. Bozhevolnyi, T. Sondergaard, T. Nikolajsen, and K. Leosson, “Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons,” Opt. Express 13, 4237–4243 (2005).
    [CrossRef] [PubMed]
  35. A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90, 181102 (2007).
    [CrossRef]
  36. J. Tao, X.-G. Huang, X.-S. Lin, Q. Zhang, and X.-P. Jin, “A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure,” Opt. Express 17, 13989–13994 (2009).
    [CrossRef] [PubMed]
  37. B. E. Little, S. T. Chu, H. A. Haus, J. S. Foresi, and J.-P. Laine, “Microring resonator channel dropping filter,” J. Lightwave Technol. 15, 998–1005 (1997).
    [CrossRef]
  38. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop filters in photonic crystals,” Opt. Express 3, 4–11 (1998).
    [CrossRef] [PubMed]
  39. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  40. B. Yun, G. Hu, and Y. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal–insulator–metal waveguide,” J. Phys. D: Appl. Phys. 43, 385102 (2010).
    [CrossRef]

2010 (1)

B. Yun, G. Hu, and Y. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal–insulator–metal waveguide,” J. Phys. D: Appl. Phys. 43, 385102 (2010).
[CrossRef]

2009 (3)

2008 (6)

2007 (5)

G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15, 1211–1221 (2007).
[CrossRef] [PubMed]

G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25, 2511–2521 (2007).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and W. Ebbesen, “Wavelength selective nanophotonics components utilizing channel plasmon polaritons,” Nano Lett. 7, 880–884 (2007).
[CrossRef] [PubMed]

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal–insulator–metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90, 181102 (2007).
[CrossRef]

2006 (10)

A. Hossieni and Y. Massoud, “A low-loss metal–insulator–metal plasmonic Bragg reflector,” Opt. Express 14, 11318–11323 (2006).
[CrossRef] [PubMed]

A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” J. Lightwave Technol. 24, 912–918 (2006).
[CrossRef]

S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14, 2932–2937 (2006).
[CrossRef] [PubMed]

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach–Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259, 690–695 (2006).
[CrossRef]

F. I. Baida, A. Belkhir, D. V. Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
[CrossRef]

I. Breukelaar and P. Berini, “Long-range surface plasmon polariton mode cutoff and radiation in slab waveguide,” J. Opt. Soc. Am. A 23, 1971–1977 (2006).
[CrossRef]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[CrossRef]

K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, “Long-range surface plasmon polariton nanowire waveguides for device applications,” Opt. Express 14, 314–319 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

2005 (6)

2004 (2)

B. Wang and G. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992–1994 (2004).
[CrossRef] [PubMed]

J. Krenn and J.-C. Weeber, “Surface plasmon polaritons in metal stripes and wires,” Philos. Trans. R. Soc. London, Ser. A 362, 739–756 (2004).
[CrossRef]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2003).
[CrossRef]

2000 (1)

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
[CrossRef]

1998 (1)

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. S. Foresi, and J.-P. Laine, “Microring resonator channel dropping filter,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

1991 (1)

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Abushagur, M. A. G.

Atwater, H. A.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2003).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
[CrossRef]

Baida, F. I.

F. I. Baida, A. Belkhir, D. V. Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Belkhir, A.

F. I. Baida, A. Belkhir, D. V. Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
[CrossRef]

Berini, P.

Boltasseva, A.

Bozhevolnyi, S. I.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and W. Ebbesen, “Wavelength selective nanophotonics components utilizing channel plasmon polaritons,” Nano Lett. 7, 880–884 (2007).
[CrossRef] [PubMed]

A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” J. Lightwave Technol. 24, 912–918 (2006).
[CrossRef]

K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, “Long-range surface plasmon polariton nanowire waveguides for device applications,” Opt. Express 14, 314–319 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

A. Boltasseva, S. I. Bozhevolnyi, T. Sondergaard, T. Nikolajsen, and K. Leosson, “Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons,” Opt. Express 13, 4237–4243 (2005).
[CrossRef] [PubMed]

Breukelaar, I.

Brongersma, M. L.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
[CrossRef]

Chandran, A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. S. Foresi, and J.-P. Laine, “Microring resonator channel dropping filter,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Cui, Y.

B. Yun, G. Hu, and Y. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal–insulator–metal waveguide,” J. Phys. D: Appl. Phys. 43, 385102 (2010).
[CrossRef]

Deng, Q.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Devaux, E.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and W. Ebbesen, “Wavelength selective nanophotonics components utilizing channel plasmon polaritons,” Nano Lett. 7, 880–884 (2007).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Du, C.

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Ebbesen, W.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and W. Ebbesen, “Wavelength selective nanophotonics components utilizing channel plasmon polaritons,” Nano Lett. 7, 880–884 (2007).
[CrossRef] [PubMed]

Fan, S.

Foresi, J. S.

B. E. Little, S. T. Chu, H. A. Haus, J. S. Foresi, and J.-P. Laine, “Microring resonator channel dropping filter,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Forsberg, E.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal–insulator–metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach–Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259, 690–695 (2006).
[CrossRef]

Fukui, M.

Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16, 16314–16325 (2008).
[CrossRef] [PubMed]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

Gao, H.

Gramotnev, D. K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

Gray, S. K.

Han, Z.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal–insulator–metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach–Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259, 690–695 (2006).
[CrossRef]

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005).
[CrossRef] [PubMed]

Haraguchi, M.

Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16, 16314–16325 (2008).
[CrossRef] [PubMed]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

Hartman, J. W.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
[CrossRef]

Haus, H. A.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop filters in photonic crystals,” Opt. Express 3, 4–11 (1998).
[CrossRef] [PubMed]

B. E. Little, S. T. Chu, H. A. Haus, J. S. Foresi, and J.-P. Laine, “Microring resonator channel dropping filter,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

He, M. D.

He, S.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal–insulator–metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005).
[CrossRef] [PubMed]

Hosseini, A.

A. Hosseini, H. Nejati, and Y. Massoud, “Modeling and design methodology for metal–insulator–metal plasmonic Bragg reflectors,” Opt. Express 16, 1475–1480 (2008).
[CrossRef] [PubMed]

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90, 181102 (2007).
[CrossRef]

Hossieni, A.

Hu, G.

B. Yun, G. Hu, and Y. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal–insulator–metal waveguide,” J. Phys. D: Appl. Phys. 43, 385102 (2010).
[CrossRef]

Huang, J.

H. Zhao, X. Huang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E (Amsterdam) 40, 3025–3029 (2008).
[CrossRef]

Huang, W. Q.

Huang, X.

H. Zhao, X. Huang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E (Amsterdam) 40, 3025–3029 (2008).
[CrossRef]

Huang, X. -G.

Jin, X. -P.

Joannopoulos, J. D.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2003).
[CrossRef]

Kim, H.

Krenn, J.

J. Krenn and J.-C. Weeber, “Surface plasmon polaritons in metal stripes and wires,” Philos. Trans. R. Soc. London, Ser. A 362, 739–756 (2004).
[CrossRef]

Labeke, D. V.

F. I. Baida, A. Belkhir, D. V. Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
[CrossRef]

Laine, J. -P.

B. E. Little, S. T. Chu, H. A. Haus, J. S. Foresi, and J.-P. Laine, “Microring resonator channel dropping filter,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Laluet, J. -Y.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and W. Ebbesen, “Wavelength selective nanophotonics components utilizing channel plasmon polaritons,” Nano Lett. 7, 880–884 (2007).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Lamrous, O.

F. I. Baida, A. Belkhir, D. V. Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
[CrossRef]

Lee, B.

Lee, T.-W.

Leosson, K.

Lin, X.

Lin, X. -S.

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. S. Foresi, and J.-P. Laine, “Microring resonator channel dropping filter,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Liu, J. Q.

Liu, L.

Lu, Z.

Luo, X.

Lv, Y.

Maier, S. A.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2003).
[CrossRef]

Massoud, Y.

Matsuo, S.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

Matsuzaki, Y.

Mysyrowicz, A.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

Nakagaki, M.

Nejati, H.

Nikolajsen, T.

Ogawa, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

Okamoto, T.

Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16, 16314–16325 (2008).
[CrossRef] [PubMed]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

Park, J.

Pile, D. F. P.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

Prade, B.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

Qiu, M.

Schuller, J. A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[CrossRef]

Shi, H.

Sondergaard, T.

Tao, J.

Veronis, G.

Villeneuve, P. R.

Vinet, J. Y.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

Volkov, V. S.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and W. Ebbesen, “Wavelength selective nanophotonics components utilizing channel plasmon polaritons,” Nano Lett. 7, 880–884 (2007).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Wahsheh, R. A.

Wang, B.

Wang, C.

Wang, D. Y.

Wang, G.

Wang, L. L.

Weeber, J. -C.

J. Krenn and J.-C. Weeber, “Surface plasmon polaritons in metal stripes and wires,” Philos. Trans. R. Soc. London, Ser. A 362, 739–756 (2004).
[CrossRef]

Wen, S. C.

Xiao, S.

Yao, H.

Yun, B.

B. Yun, G. Hu, and Y. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal–insulator–metal waveguide,” J. Phys. D: Appl. Phys. 43, 385102 (2010).
[CrossRef]

Zhang, Q.

Zhao, H.

H. Zhao, X. Huang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E (Amsterdam) 40, 3025–3029 (2008).
[CrossRef]

Zia, R.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[CrossRef]

Zou, B. S.

Appl. Phys. Lett. (2)

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[CrossRef]

A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90, 181102 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal–insulator–metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

B. Yun, G. Hu, and Y. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal–insulator–metal waveguide,” J. Phys. D: Appl. Phys. 43, 385102 (2010).
[CrossRef]

Mater. Today (1)

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006).
[CrossRef]

Nano Lett. (1)

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and W. Ebbesen, “Wavelength selective nanophotonics components utilizing channel plasmon polaritons,” Nano Lett. 7, 880–884 (2007).
[CrossRef] [PubMed]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Opt. Commun. (1)

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach–Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259, 690–695 (2006).
[CrossRef]

Opt. Express (15)

R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Nanoplasmonic couplers and splitters,” Opt. Express 17, 19033–19040 (2009).
[CrossRef]

J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal–insulator–metal waveguide Bragg grating,” Opt. Express 16, 413–425 (2008).
[CrossRef] [PubMed]

J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Y. Wang, B. S. Zou, and S. C. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express 16, 4888–4894 (2008).
[CrossRef] [PubMed]

A. Hosseini, H. Nejati, and Y. Massoud, “Modeling and design methodology for metal–insulator–metal plasmonic Bragg reflectors,” Opt. Express 16, 1475–1480 (2008).
[CrossRef] [PubMed]

S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14, 2932–2937 (2006).
[CrossRef] [PubMed]

A. Boltasseva, S. I. Bozhevolnyi, T. Sondergaard, T. Nikolajsen, and K. Leosson, “Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons,” Opt. Express 13, 4237–4243 (2005).
[CrossRef] [PubMed]

J. Tao, X.-G. Huang, X.-S. Lin, Q. Zhang, and X.-P. Jin, “A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure,” Opt. Express 17, 13989–13994 (2009).
[CrossRef] [PubMed]

Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16, 16314–16325 (2008).
[CrossRef] [PubMed]

A. Hossieni and Y. Massoud, “A low-loss metal–insulator–metal plasmonic Bragg reflector,” Opt. Express 14, 11318–11323 (2006).
[CrossRef] [PubMed]

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005).
[CrossRef] [PubMed]

H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13, 10795–10800 (2005).
[CrossRef] [PubMed]

T.-W. Lee and S. K. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express 13, 9652–9659 (2005).
[CrossRef] [PubMed]

G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15, 1211–1221 (2007).
[CrossRef] [PubMed]

K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, “Long-range surface plasmon polariton nanowire waveguides for device applications,” Opt. Express 14, 314–319 (2006).
[CrossRef] [PubMed]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop filters in photonic crystals,” Opt. Express 3, 4–11 (1998).
[CrossRef] [PubMed]

Opt. Lett. (2)

Philos. Trans. R. Soc. London, Ser. A (1)

J. Krenn and J.-C. Weeber, “Surface plasmon polaritons in metal stripes and wires,” Philos. Trans. R. Soc. London, Ser. A 362, 739–756 (2004).
[CrossRef]

Phys. Rev. B (5)

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
[CrossRef]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2003).
[CrossRef]

F. I. Baida, A. Belkhir, D. V. Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006).
[CrossRef]

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Physica E (Amsterdam) (1)

H. Zhao, X. Huang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E (Amsterdam) 40, 3025–3029 (2008).
[CrossRef]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Transmission spectra of the structure with a MDM side-coupled cavity, and the illustration shows the schematic diagram of the structure with L = 308   nm , L 0 = 140   nm , h = 150   nm , W 1 = 50   nm , and W gap = 20   nm . The structure is divided into three regions with two white dashed lines. (b) The relationship between the peak wavelengths of the cavity length L, with L 0 = 140   nm , h = 150   nm , W 1 = 50   nm , and W gap = 20   nm . (c) The transmittance of peak wavelength versus cavity length L, and the parameters are the same in (b). (d) The FWHM of the peak varies with cavity length L, and the parameters are the same as in (b).

Fig. 2
Fig. 2

(a) Transmittance spectra for different overlap lengths L overlap , and L 0 is set to 90, 140, and 200 nm in three simulations with unchangeable L = 308   nm . (b) The transmittance of peak wavelength and FWHM of the peak versus overlap length with various L 0 ’s and unchangeable L = 308   nm .

Fig. 3
Fig. 3

(a) Transmission spectra of the structure with a MDM side-coupled cavity at various gap widths. (b) The quality factor and the transmittance of the central wavelength vary with the gap width. The width of the cavity is fixed when the gap width W gap is varied, and all the parameters are the same as in Fig. 1a except for the various W gap ’s.

Fig. 4
Fig. 4

(a) Schematic diagram of a 1 × 2 wavelength demultiplexing structure based on MDM side-coupled cavities. (b) The transmission spectra of a 1 × 2 wavelength demultiplexing structure with W 0 = 64   nm , W 1 = 50   nm , h 1 = 50   nm , h 2 = 250   nm , H 1 = 210   nm , H = ( H 1 W 0 ) / 2 , L = 300   nm , L 0 = 100   nm , L 1 = 330   nm , L 2 = 425   nm , W gap = 20   nm , L a = 750   nm , and L b = 380   nm .

Fig. 5
Fig. 5

(a) Schematic diagram of a 1 × 3 wavelength demultiplexing structure based on MDM side-coupled cavities. (b) The transmission spectra of a 1 × 3 wavelength demultiplexing structure with W 0 = 64   nm , W 1 = 50   nm , h 1 = 50   nm , h 2 = 250   nm , H 1 = 242   nm , H 2 = 242   nm , L = 320   nm , L 0 = 100   nm , L 1 = 308   nm , L 2 = 512   nm , L 3 = 422   nm , W gap = 20   nm , L a = 770   nm , and L b = 704   nm .

Fig. 6
Fig. 6

Magnetic-field maps of the 1 × 3 wavelength demultiplexing structure for monochromatic incident signals at different wavelengths, (a) λ = 980   nm , (b) λ = 1550   nm , and all parameters are the same as in Fig. 5b.

Fig. 7
Fig. 7

(a) Schematic diagram of a 1 × 4 wavelength demultiplexing structure based on MDM side-coupled cavities. (b) The transmission spectra of a 1 × 4 wavelength demultiplexing structure with W 0 = 64   nm , W 1 = 50   nm , h 1 = 50   nm , h 2 = 250   nm , H 1 = 210   nm , H 2 = 210   nm , H 1 = 210   nm , H = ( H 2 W 0 ) / 2 , L = 315   nm , L 0 = 100   nm , L 1 = 308   nm , L 2 = 498   nm , L 3 = 425   nm , L 4 = 370   nm , W gap = 20   nm , L a = 765   nm , and L b = 900   nm .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε m ( ω ) = ε ω D 2 ω 2 + i γ D ω m = 1 2 g L m ω L m 2 Δ ε ω 2 ω L m 2 + i 2 γ L m ω ,
λ m = 2 n eff L m ϕ r / π ,

Metrics