Abstract

Reflective metal-lined capillary waveguides are useful for laser-power delivery or for collecting scattered light in sensing applications. We theoretically examine the multimode propagation of polarized light in large-diameter, metallized, capillary waveguides using a new perturbation technique valid for all waveguide modes. This modeling permits prediction of the collection efficiency of Raman or fluorescent light produced in the waveguide at all angles. These theoretical results are supported by measuring the intensity and angular distribution of collected scattered gas–Raman Stokes power.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Abe, Y. Matsuura, Y. Shi, Y. Wang, H. Uyama, and M. Miyagi, “Polymer-coated hollow fiber for CO2 laser delivery,” Opt. Lett. 23, 89–90 (1998).
    [CrossRef]
  2. Y. Abe, Y. Shi, Y. Matsuura, and M. Mitsunoba, “Flexible small-bore hollow fibers with an inner polymer coating,” Opt. Lett. 25, 150–152 (2000).
    [CrossRef]
  3. Y. Komachi and H. Sato, “Raman probe using a single hollow waveguide,” Opt. Lett. 30, 2942–2944 (2005).
    [CrossRef] [PubMed]
  4. Y. Matsuura, K. Hanamoto, S. Sato, and M. Miyagi, “Hollow-fiber delivery of high-power pulsed Nd:YAG laser light,” Opt. Lett. 23, 1858–1860 (1998).
    [CrossRef]
  5. Y. Matsuura, M. Saito, M. Miyagi, and A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
    [CrossRef]
  6. Y. Matsuura, G. Takada, T. Yamamoto, Y. Shi, and M. Mitsunobu, “Hollow fibers for delivery of harmonic pulses of Q-switched Nd:YAG lasers,” Appl. Opt. 41, 442–445 (2002).
    [CrossRef] [PubMed]
  7. Y. Matsuura, Y. Shi, Y. Abe, M. Yaegashi, G. Takada, S. Mohri, and M. Miyagi, “Infrared-laser delivery system based on polymer-coated hollow fibers,” J. Opt. Laser Tech. 33, 279–283 (2001).
    [CrossRef]
  8. Y. Matsuura and M. Miyagi, “Hollow optical fibers for ultraviolet and vacuum ultraviolet light,” IEEE J. Sel. Top. Quantum Electron. 10, 1430–1434 (2004).
    [CrossRef]
  9. M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Metal-lined capillaries for efficient Raman gas sensing,” Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CFA5.
  10. M. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Improved sensitivity gas detection by spontaneous Raman scattering,” Appl. Opt. 48, 4424–4429 (2009).
    [CrossRef] [PubMed]
  11. M. Buric, K. Chen, J. Falk, and S. Woodruff, “Enhanced spontaneous Raman scattering and gas composition analysis using a photonic crystal fiber,” Appl. Opt. 47, 4255–4261 (2008).
    [CrossRef] [PubMed]
  12. M. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Improved sensitivity spontaneous Raman scattering multi-gas sensor,” Conference on Lasers and Electro Optics (Optical Society of America, 2009). Available from IEEE Xplore Lasers and Electro-Optics, 2009. CLEO 2009.
  13. Doko Engineering, capillary waveguide specifications. Downloaded from http://do-ko.jp/specs.html (June 9, 2010).
  14. S. D. Schwab and R. L. McCreery, “Remote, long-pathlength cell for high-sensitivity Raman spectroscopy,” Appl. Spectrosc. 41, 126–130 (1987).
    [CrossRef]
  15. M. Buric, K. Chen, J. Falk, R. Velez, and S. Woodruff, “Raman sensing of fuel gases using a reflective coating capillary optical fiber,” SPIE Symposium on Defense Security and Sensing (SPIE, 2009).
  16. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1942). p. 524.
  17. E. Marcatili and R. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
  18. J. P. Crenn, “Optical study of the EH11 mode in a hollow circular oversized waveguide and Gaussian approximation of the far-field pattern,” Appl. Opt. 23, 3428–3433 (1984).
    [CrossRef] [PubMed]
  19. J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19, 211–217 (2000).
    [CrossRef]
  20. M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
    [CrossRef]
  21. P. Bhardwaj, O. J. Gregory, C. Morrow, and K. Burbank, “Performance of dielectric-coated monolithic hollow metallic waveguide,” Mater. Lett. 16, 150–156 (1993).
    [CrossRef]
  22. Y. Matsuura andM. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–6601 (1993).
    [CrossRef]
  23. Y. Shi, Y. Wang, Y. Abe, Y. Matsuura, M. Miyagi, S. Sato, M. Taniwaki, and H. Uyama, “Cyclic olefin polymer coated silver hollow glass waveguides for the infrared,” Appl. Opt. 37, 7758–7762 (1998).
    [CrossRef]
  24. J. A. Harrington, Infrared Fibers and Their Applications (SPIE Press, 2004).
    [CrossRef]
  25. E. Snitzer, “Dielectric waveguide modes,” J. Opt. Soc. Am. 51, 491–498 (1961).
    [CrossRef]
  26. R. K. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37, 2454–2458 (1998).
    [CrossRef]
  27. M.Abramowitz and I.A.Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1972), pp. 370–374.
  28. Y. W. Shi, K. Ito, Y. Matsuura, and M. Miyagi, “Multiwavelength laser light transmission of hollow optical fiber from the visible to the mid-infrared,” Opt. Lett. 30, 2867–2869 (2005).
    [CrossRef] [PubMed]
  29. G. Turrell and J. Corset, Raman Microscopy, Developments and Applications (Elsevier, 1996).
  30. Semrock beamsplitter data sheet. Downloaded from http://www.semrock.com/Catalog/RamanEdgeDichroic.htm (July 23, 2008).

2010

M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Metal-lined capillaries for efficient Raman gas sensing,” Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CFA5.

Doko Engineering, capillary waveguide specifications. Downloaded from http://do-ko.jp/specs.html (June 9, 2010).

2009

M. Buric, K. Chen, J. Falk, R. Velez, and S. Woodruff, “Raman sensing of fuel gases using a reflective coating capillary optical fiber,” SPIE Symposium on Defense Security and Sensing (SPIE, 2009).

M. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Improved sensitivity spontaneous Raman scattering multi-gas sensor,” Conference on Lasers and Electro Optics (Optical Society of America, 2009). Available from IEEE Xplore Lasers and Electro-Optics, 2009. CLEO 2009.

M. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Improved sensitivity gas detection by spontaneous Raman scattering,” Appl. Opt. 48, 4424–4429 (2009).
[CrossRef] [PubMed]

2008

2005

2004

Y. Matsuura and M. Miyagi, “Hollow optical fibers for ultraviolet and vacuum ultraviolet light,” IEEE J. Sel. Top. Quantum Electron. 10, 1430–1434 (2004).
[CrossRef]

J. A. Harrington, Infrared Fibers and Their Applications (SPIE Press, 2004).
[CrossRef]

2002

2001

Y. Matsuura, Y. Shi, Y. Abe, M. Yaegashi, G. Takada, S. Mohri, and M. Miyagi, “Infrared-laser delivery system based on polymer-coated hollow fibers,” J. Opt. Laser Tech. 33, 279–283 (2001).
[CrossRef]

2000

J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19, 211–217 (2000).
[CrossRef]

Y. Abe, Y. Shi, Y. Matsuura, and M. Mitsunoba, “Flexible small-bore hollow fibers with an inner polymer coating,” Opt. Lett. 25, 150–152 (2000).
[CrossRef]

1998

1996

G. Turrell and J. Corset, Raman Microscopy, Developments and Applications (Elsevier, 1996).

1993

P. Bhardwaj, O. J. Gregory, C. Morrow, and K. Burbank, “Performance of dielectric-coated monolithic hollow metallic waveguide,” Mater. Lett. 16, 150–156 (1993).
[CrossRef]

Y. Matsuura andM. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–6601 (1993).
[CrossRef]

1989

1987

1984

J. P. Crenn, “Optical study of the EH11 mode in a hollow circular oversized waveguide and Gaussian approximation of the far-field pattern,” Appl. Opt. 23, 3428–3433 (1984).
[CrossRef] [PubMed]

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

1972

M.Abramowitz and I.A.Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1972), pp. 370–374.

1964

E. Marcatili and R. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

1961

1942

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1942). p. 524.

Abe, Y.

Bhardwaj, P.

P. Bhardwaj, O. J. Gregory, C. Morrow, and K. Burbank, “Performance of dielectric-coated monolithic hollow metallic waveguide,” Mater. Lett. 16, 150–156 (1993).
[CrossRef]

Burbank, K.

P. Bhardwaj, O. J. Gregory, C. Morrow, and K. Burbank, “Performance of dielectric-coated monolithic hollow metallic waveguide,” Mater. Lett. 16, 150–156 (1993).
[CrossRef]

Buric, M.

M. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Improved sensitivity gas detection by spontaneous Raman scattering,” Appl. Opt. 48, 4424–4429 (2009).
[CrossRef] [PubMed]

M. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Improved sensitivity spontaneous Raman scattering multi-gas sensor,” Conference on Lasers and Electro Optics (Optical Society of America, 2009). Available from IEEE Xplore Lasers and Electro-Optics, 2009. CLEO 2009.

M. Buric, K. Chen, J. Falk, R. Velez, and S. Woodruff, “Raman sensing of fuel gases using a reflective coating capillary optical fiber,” SPIE Symposium on Defense Security and Sensing (SPIE, 2009).

M. Buric, K. Chen, J. Falk, and S. Woodruff, “Enhanced spontaneous Raman scattering and gas composition analysis using a photonic crystal fiber,” Appl. Opt. 47, 4255–4261 (2008).
[CrossRef] [PubMed]

Buric, M. P.

M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Metal-lined capillaries for efficient Raman gas sensing,” Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CFA5.

Chen, K.

M. Buric, K. Chen, J. Falk, R. Velez, and S. Woodruff, “Raman sensing of fuel gases using a reflective coating capillary optical fiber,” SPIE Symposium on Defense Security and Sensing (SPIE, 2009).

M. Buric, K. Chen, J. Falk, and S. Woodruff, “Enhanced spontaneous Raman scattering and gas composition analysis using a photonic crystal fiber,” Appl. Opt. 47, 4255–4261 (2008).
[CrossRef] [PubMed]

Chen, K. P.

M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Metal-lined capillaries for efficient Raman gas sensing,” Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CFA5.

M. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Improved sensitivity spontaneous Raman scattering multi-gas sensor,” Conference on Lasers and Electro Optics (Optical Society of America, 2009). Available from IEEE Xplore Lasers and Electro-Optics, 2009. CLEO 2009.

M. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Improved sensitivity gas detection by spontaneous Raman scattering,” Appl. Opt. 48, 4424–4429 (2009).
[CrossRef] [PubMed]

Corset, J.

G. Turrell and J. Corset, Raman Microscopy, Developments and Applications (Elsevier, 1996).

Crenn, J. P.

Falk, J.

M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Metal-lined capillaries for efficient Raman gas sensing,” Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CFA5.

M. Buric, K. Chen, J. Falk, R. Velez, and S. Woodruff, “Raman sensing of fuel gases using a reflective coating capillary optical fiber,” SPIE Symposium on Defense Security and Sensing (SPIE, 2009).

M. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Improved sensitivity gas detection by spontaneous Raman scattering,” Appl. Opt. 48, 4424–4429 (2009).
[CrossRef] [PubMed]

M. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Improved sensitivity spontaneous Raman scattering multi-gas sensor,” Conference on Lasers and Electro Optics (Optical Society of America, 2009). Available from IEEE Xplore Lasers and Electro-Optics, 2009. CLEO 2009.

M. Buric, K. Chen, J. Falk, and S. Woodruff, “Enhanced spontaneous Raman scattering and gas composition analysis using a photonic crystal fiber,” Appl. Opt. 47, 4255–4261 (2008).
[CrossRef] [PubMed]

Gregory, O. J.

P. Bhardwaj, O. J. Gregory, C. Morrow, and K. Burbank, “Performance of dielectric-coated monolithic hollow metallic waveguide,” Mater. Lett. 16, 150–156 (1993).
[CrossRef]

Hanamoto, K.

Harrington, J. A.

J. A. Harrington, Infrared Fibers and Their Applications (SPIE Press, 2004).
[CrossRef]

J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19, 211–217 (2000).
[CrossRef]

R. K. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37, 2454–2458 (1998).
[CrossRef]

Hongo, A.

Ito, K.

Kawakami, S.

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

Komachi, Y.

Marcatili, E.

E. Marcatili and R. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Matsuura, Y.

Y. W. Shi, K. Ito, Y. Matsuura, and M. Miyagi, “Multiwavelength laser light transmission of hollow optical fiber from the visible to the mid-infrared,” Opt. Lett. 30, 2867–2869 (2005).
[CrossRef] [PubMed]

Y. Matsuura and M. Miyagi, “Hollow optical fibers for ultraviolet and vacuum ultraviolet light,” IEEE J. Sel. Top. Quantum Electron. 10, 1430–1434 (2004).
[CrossRef]

Y. Matsuura, G. Takada, T. Yamamoto, Y. Shi, and M. Mitsunobu, “Hollow fibers for delivery of harmonic pulses of Q-switched Nd:YAG lasers,” Appl. Opt. 41, 442–445 (2002).
[CrossRef] [PubMed]

Y. Matsuura, Y. Shi, Y. Abe, M. Yaegashi, G. Takada, S. Mohri, and M. Miyagi, “Infrared-laser delivery system based on polymer-coated hollow fibers,” J. Opt. Laser Tech. 33, 279–283 (2001).
[CrossRef]

Y. Abe, Y. Shi, Y. Matsuura, and M. Mitsunoba, “Flexible small-bore hollow fibers with an inner polymer coating,” Opt. Lett. 25, 150–152 (2000).
[CrossRef]

Y. Abe, Y. Matsuura, Y. Shi, Y. Wang, H. Uyama, and M. Miyagi, “Polymer-coated hollow fiber for CO2 laser delivery,” Opt. Lett. 23, 89–90 (1998).
[CrossRef]

Y. Shi, Y. Wang, Y. Abe, Y. Matsuura, M. Miyagi, S. Sato, M. Taniwaki, and H. Uyama, “Cyclic olefin polymer coated silver hollow glass waveguides for the infrared,” Appl. Opt. 37, 7758–7762 (1998).
[CrossRef]

Y. Matsuura, K. Hanamoto, S. Sato, and M. Miyagi, “Hollow-fiber delivery of high-power pulsed Nd:YAG laser light,” Opt. Lett. 23, 1858–1860 (1998).
[CrossRef]

Y. Matsuura, M. Saito, M. Miyagi, and A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[CrossRef]

Matsuura and, Y.

McCreery, R. L.

Mitsunoba, M.

Mitsunobu, M.

Miyagi, M.

Y. W. Shi, K. Ito, Y. Matsuura, and M. Miyagi, “Multiwavelength laser light transmission of hollow optical fiber from the visible to the mid-infrared,” Opt. Lett. 30, 2867–2869 (2005).
[CrossRef] [PubMed]

Y. Matsuura and M. Miyagi, “Hollow optical fibers for ultraviolet and vacuum ultraviolet light,” IEEE J. Sel. Top. Quantum Electron. 10, 1430–1434 (2004).
[CrossRef]

Y. Matsuura, Y. Shi, Y. Abe, M. Yaegashi, G. Takada, S. Mohri, and M. Miyagi, “Infrared-laser delivery system based on polymer-coated hollow fibers,” J. Opt. Laser Tech. 33, 279–283 (2001).
[CrossRef]

Y. Matsuura, K. Hanamoto, S. Sato, and M. Miyagi, “Hollow-fiber delivery of high-power pulsed Nd:YAG laser light,” Opt. Lett. 23, 1858–1860 (1998).
[CrossRef]

Y. Abe, Y. Matsuura, Y. Shi, Y. Wang, H. Uyama, and M. Miyagi, “Polymer-coated hollow fiber for CO2 laser delivery,” Opt. Lett. 23, 89–90 (1998).
[CrossRef]

Y. Shi, Y. Wang, Y. Abe, Y. Matsuura, M. Miyagi, S. Sato, M. Taniwaki, and H. Uyama, “Cyclic olefin polymer coated silver hollow glass waveguides for the infrared,” Appl. Opt. 37, 7758–7762 (1998).
[CrossRef]

Y. Matsuura andM. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–6601 (1993).
[CrossRef]

Y. Matsuura, M. Saito, M. Miyagi, and A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[CrossRef]

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

Mohri, S.

Y. Matsuura, Y. Shi, Y. Abe, M. Yaegashi, G. Takada, S. Mohri, and M. Miyagi, “Infrared-laser delivery system based on polymer-coated hollow fibers,” J. Opt. Laser Tech. 33, 279–283 (2001).
[CrossRef]

Morrow, C.

P. Bhardwaj, O. J. Gregory, C. Morrow, and K. Burbank, “Performance of dielectric-coated monolithic hollow metallic waveguide,” Mater. Lett. 16, 150–156 (1993).
[CrossRef]

Nubling, R. K.

R. K. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37, 2454–2458 (1998).
[CrossRef]

Saito, M.

Sato, H.

Sato, S.

Schmeltzer, R.

E. Marcatili and R. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Schwab, S. D.

Shi, Y.

Shi, Y. W.

Snitzer, E.

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1942). p. 524.

Takada, G.

Y. Matsuura, G. Takada, T. Yamamoto, Y. Shi, and M. Mitsunobu, “Hollow fibers for delivery of harmonic pulses of Q-switched Nd:YAG lasers,” Appl. Opt. 41, 442–445 (2002).
[CrossRef] [PubMed]

Y. Matsuura, Y. Shi, Y. Abe, M. Yaegashi, G. Takada, S. Mohri, and M. Miyagi, “Infrared-laser delivery system based on polymer-coated hollow fibers,” J. Opt. Laser Tech. 33, 279–283 (2001).
[CrossRef]

Taniwaki, M.

Turrell, G.

G. Turrell and J. Corset, Raman Microscopy, Developments and Applications (Elsevier, 1996).

Uyama, H.

Velez, R.

M. Buric, K. Chen, J. Falk, R. Velez, and S. Woodruff, “Raman sensing of fuel gases using a reflective coating capillary optical fiber,” SPIE Symposium on Defense Security and Sensing (SPIE, 2009).

Wang, Y.

Woodruff, S.

M. Buric, K. Chen, J. Falk, R. Velez, and S. Woodruff, “Raman sensing of fuel gases using a reflective coating capillary optical fiber,” SPIE Symposium on Defense Security and Sensing (SPIE, 2009).

M. Buric, K. Chen, J. Falk, and S. Woodruff, “Enhanced spontaneous Raman scattering and gas composition analysis using a photonic crystal fiber,” Appl. Opt. 47, 4255–4261 (2008).
[CrossRef] [PubMed]

Woodruff, S. D.

M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Metal-lined capillaries for efficient Raman gas sensing,” Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CFA5.

M. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Improved sensitivity spontaneous Raman scattering multi-gas sensor,” Conference on Lasers and Electro Optics (Optical Society of America, 2009). Available from IEEE Xplore Lasers and Electro-Optics, 2009. CLEO 2009.

M. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Improved sensitivity gas detection by spontaneous Raman scattering,” Appl. Opt. 48, 4424–4429 (2009).
[CrossRef] [PubMed]

Yaegashi, M.

Y. Matsuura, Y. Shi, Y. Abe, M. Yaegashi, G. Takada, S. Mohri, and M. Miyagi, “Infrared-laser delivery system based on polymer-coated hollow fibers,” J. Opt. Laser Tech. 33, 279–283 (2001).
[CrossRef]

Yamamoto, T.

Appl. Opt.

Appl. Spectrosc.

Bell Syst. Tech. J.

E. Marcatili and R. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Fiber Integr. Opt.

J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19, 211–217 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

Y. Matsuura and M. Miyagi, “Hollow optical fibers for ultraviolet and vacuum ultraviolet light,” IEEE J. Sel. Top. Quantum Electron. 10, 1430–1434 (2004).
[CrossRef]

J. Lightwave Technol.

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

J. Opt. Laser Tech.

Y. Matsuura, Y. Shi, Y. Abe, M. Yaegashi, G. Takada, S. Mohri, and M. Miyagi, “Infrared-laser delivery system based on polymer-coated hollow fibers,” J. Opt. Laser Tech. 33, 279–283 (2001).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Mater. Lett.

P. Bhardwaj, O. J. Gregory, C. Morrow, and K. Burbank, “Performance of dielectric-coated monolithic hollow metallic waveguide,” Mater. Lett. 16, 150–156 (1993).
[CrossRef]

Opt. Eng.

R. K. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37, 2454–2458 (1998).
[CrossRef]

Opt. Lett.

Other

M.Abramowitz and I.A.Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1972), pp. 370–374.

G. Turrell and J. Corset, Raman Microscopy, Developments and Applications (Elsevier, 1996).

Semrock beamsplitter data sheet. Downloaded from http://www.semrock.com/Catalog/RamanEdgeDichroic.htm (July 23, 2008).

J. A. Harrington, Infrared Fibers and Their Applications (SPIE Press, 2004).
[CrossRef]

M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Metal-lined capillaries for efficient Raman gas sensing,” Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CFA5.

M. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Improved sensitivity spontaneous Raman scattering multi-gas sensor,” Conference on Lasers and Electro Optics (Optical Society of America, 2009). Available from IEEE Xplore Lasers and Electro-Optics, 2009. CLEO 2009.

Doko Engineering, capillary waveguide specifications. Downloaded from http://do-ko.jp/specs.html (June 9, 2010).

M. Buric, K. Chen, J. Falk, R. Velez, and S. Woodruff, “Raman sensing of fuel gases using a reflective coating capillary optical fiber,” SPIE Symposium on Defense Security and Sensing (SPIE, 2009).

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1942). p. 524.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Cylindrical, metal-lined waveguide. The radius of the waveguide is a; the distance from the center of the guide is denoted by r, and the direction of propagation is z.

Fig. 2
Fig. 2

Mode vector diagram at air/metal interface.

Fig. 3
Fig. 3

Iterative algorithm for finding propagating mode losses.

Fig. 4
Fig. 4

Loss coefficient α m as a function of propagation angle θ m ; silver-coated capillary λ = 584.5 nm ; (a) 2 a = 320 μ m . (b) 2 a = 800 μ m .

Fig. 5
Fig. 5

Waveguide power output as a function of collection angle ( θ c ) .

Fig. 6
Fig. 6

Gas-Raman enhanced collection system.

Fig. 7
Fig. 7

Simulated and measured Stokes Raman power collected in a metallized waveguide.

Fig. 8
Fig. 8

(a) Predicted, normalized Stokes power output as a function of waveguide diameter; silver coated capillary, 1 m long, λ = 584.5 nm . (b) Predicted, normalized power as a function of 2 θ c a (see text).

Fig. 9
Fig. 9

Effects on Stokes power with varying waveguide length (backscattering); silver-lined capillary, 2 a = 320 μ m , λ pump = 514.5 nm , nitrogen Raman, λ Stokes = 584.5 nm .

Fig. 10
Fig. 10

Waveguide material comparison ; l = 1 m , 2 a = 320 μ m , λ pump = 514.5 nm , nitrogen Raman, λ Stokes = 584.5 nm .

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

E z i = n a n i J n ( k i r ) e i ( γ z + n θ ) a n d H z i = n b n i J n ( k i r ) e i ( γ z + n θ ) ,
E z e = n a n e H n ( 1 ) ( k e r ) e i ( γ z + n θ ) and H z e = n b n e H n ( 1 ) ( k e r ) e i ( γ z + n θ ) ,
k e = ν 2 k 2 γ 2 ,
k i = k 2 γ 2.
[ 1 k i m a J n ( k i m a ) J n ( k i m a ) 1 k e m a H n ( 1 ) ( k e m a ) H n ( 1 ) ( k e m a ) ] [ k 2 k i m a J n ( k i m a ) J n ( k i m a ) k 2 ν 2 k e m a H n ( 1 ) ( k e m a ) H n ( 1 ) ( k e m a ) ] = n 2 γ m 2 [ 1 ( k e m a ) 2 1 ( k i m a ) 2 ] 2 .
H 1 ( 1 ) ( k e m a ) H 1 ( 1 ) ( k e m a ) i .
| k i m k e m | 1 ,
J 0 ( k im a ) = [ 1 2 ( ν 2 + 1 ) ν 2 γ m 2 k 2 i k im k + 1 k im a [ 1 γ m k ] ] J 1 ( k im a ) .
u 1 m ( m 1 4 ) π
k im a = u 1 m + Δ ,
Δ = J 1 ( k im a ) [ ( ν 2 + 1 ) i 2 ν 2 1 + ( k im k ) 2 k im k + 1 k im a [ 1 1 ( k im k ) 2 ] ] J 0 ( k im a ) J 1 ( k im a ) ( J 0 ( k im a ) J 1 ( k im a ) k im a ) [ ( ν 2 + 1 ) i 2 ν 2 1 + ( k im k ) 2 k im k + 1 k im a [ 1 1 ( k im k ) 2 ] ] .
θ m = cos 1 ( Re ( γ m k ) ) ,
α m = 2 Im ( γ m ) .
θ s = f 1 f 2 θ c .
d P s = σ ρ P p e α ( θ ) z d Ω d z = 2 π σ ρ P p e α ( θ ) z d z sin θ d θ .
P s = 0 θ c 0 l 2 π σ ρ P p e α ( θ ) z d z sin θ d θ .

Metrics