Abstract

Recent studies show that magnetic polaritons (MPs) are responsible for the extraordinary optical transmission in subwavelength periodic structures. However, the role of MP in double-layer nanoslit arrays has not been fully understood. This paper elucidates how MPs influence the radiative properties of nanoslit arrays at both normal and oblique incidences using the rigorous coupled-wave analysis. The existence of MPs is further confirmed by an equivalent LC circuit model. The effects of geometric parameters and lateral displacement on the resonance conditions are also investigated, and possible ways of tailoring the radiative properties of nanostructures for energy-harvesting applications are suggested.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).
  2. Z. M. Zhang, B. K. Tsai, and G. Machin, Radiometric Temperature Measurements: II. Applications (Elsevier, 2010).
  3. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
    [CrossRef]
  4. F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209, 17–22 (2002).
    [CrossRef]
  5. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
    [CrossRef] [PubMed]
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  7. P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324, 549–551 (1986).
    [CrossRef]
  8. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
    [CrossRef] [PubMed]
  9. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4, 1085–1088 (2004).
    [CrossRef]
  10. P. Yeh, “New optical-model for wire grid polarizers,” Opt. Commun. 26, 289–292 (1978).
    [CrossRef]
  11. Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957–961 (2005).
    [CrossRef] [PubMed]
  12. B. J. Lee, Y. B. Chen, and Z. M. Zhang, “Confinement of infrared radiation to nanometer scales through metallic slit arrays,” J. Quant. Spectrosc. Radiat. Transf. 109, 608–619 (2008).
    [CrossRef]
  13. B. J. Lee, Y. B. Chen, and Z. M. Zhang, “Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared,” J. Comput. Theor. Nanosci. 5, 201–213 (2008).
    [CrossRef]
  14. R. Ortuno, C. Garcia-Meca, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009).
    [CrossRef]
  15. A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, “Holey metal films: From extraordinary transmission to negative-index behavior,” Phys. Rev. B 80, 165431 (2009).
    [CrossRef]
  16. T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155–11163 (2006).
    [CrossRef] [PubMed]
  17. T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90, 251112 (2007).
    [CrossRef]
  18. T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, “Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials,” J. Appl. Phys. 103, 023104 (2008).
    [CrossRef]
  19. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
    [CrossRef]
  20. L. P. Wang and Z. M. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95, 111904 (2009).
    [CrossRef]
  21. B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16, 11328–11336 (2008).
    [CrossRef] [PubMed]
  22. H. B. Chan, Z. Marcet, K. Woo, D. B. Tanner, D. W. Carr, J. E. Bower, R. A. Cirelli, E. Ferry, F. Klemens, J. Miner, C. S. Pai, and J. A. Taylor, “Optical transmission through double-layer metallic subwavelength slit arrays,” Opt. Lett. 31, 516–518 (2006).
    [CrossRef] [PubMed]
  23. C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. P. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406 (2008).
    [CrossRef]
  24. G. Shvets and Y. A. Urzhumov, “Negative index meta-materials based on two-dimensional metallic structures,” J. Opt. A, Pure Appl. Opt. 8, S122–S130 (2006).
    [CrossRef]
  25. E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998).
  26. J. F. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31, 3620–3622 (2006).
    [CrossRef] [PubMed]
  27. L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford University Press, 2009).
  28. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
    [CrossRef] [PubMed]

2010

Z. M. Zhang, B. K. Tsai, and G. Machin, Radiometric Temperature Measurements: II. Applications (Elsevier, 2010).

2009

R. Ortuno, C. Garcia-Meca, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009).
[CrossRef]

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, “Holey metal films: From extraordinary transmission to negative-index behavior,” Phys. Rev. B 80, 165431 (2009).
[CrossRef]

L. P. Wang and Z. M. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95, 111904 (2009).
[CrossRef]

L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford University Press, 2009).

2008

C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. P. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406 (2008).
[CrossRef]

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16, 11328–11336 (2008).
[CrossRef] [PubMed]

T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, “Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials,” J. Appl. Phys. 103, 023104 (2008).
[CrossRef]

B. J. Lee, Y. B. Chen, and Z. M. Zhang, “Confinement of infrared radiation to nanometer scales through metallic slit arrays,” J. Quant. Spectrosc. Radiat. Transf. 109, 608–619 (2008).
[CrossRef]

B. J. Lee, Y. B. Chen, and Z. M. Zhang, “Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared,” J. Comput. Theor. Nanosci. 5, 201–213 (2008).
[CrossRef]

2007

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90, 251112 (2007).
[CrossRef]

Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[CrossRef]

2006

2005

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957–961 (2005).
[CrossRef] [PubMed]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

2004

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4, 1085–1088 (2004).
[CrossRef]

2002

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef] [PubMed]

F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209, 17–22 (2002).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

1999

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998).

1986

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324, 549–551 (1986).
[CrossRef]

1978

P. Yeh, “New optical-model for wire grid polarizers,” Opt. Commun. 26, 289–292 (1978).
[CrossRef]

Baida, F. I.

F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209, 17–22 (2002).
[CrossRef]

Bower, J. E.

Carminati, R.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef] [PubMed]

Carr, D. W.

Chan, H. B.

Chen, J.

C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. P. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406 (2008).
[CrossRef]

Chen, Y.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef] [PubMed]

Chen, Y. B.

B. J. Lee, Y. B. Chen, and Z. M. Zhang, “Confinement of infrared radiation to nanometer scales through metallic slit arrays,” J. Quant. Spectrosc. Radiat. Transf. 109, 608–619 (2008).
[CrossRef]

B. J. Lee, Y. B. Chen, and Z. M. Zhang, “Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared,” J. Comput. Theor. Nanosci. 5, 201–213 (2008).
[CrossRef]

Cheng, C.

C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. P. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406 (2008).
[CrossRef]

Cirelli, R. A.

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Ding, J. P.

C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. P. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406 (2008).
[CrossRef]

Dong, Z. G.

Ebbesen, T. W.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Economon, E. N.

Economou, E. N.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Fan, Y. X.

C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. P. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406 (2008).
[CrossRef]

Fang, N.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4, 1085–1088 (2004).
[CrossRef]

Ferry, E.

Garcia-Meca, C.

R. Ortuno, C. Garcia-Meca, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009).
[CrossRef]

Garcia-Vidal, F. J.

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, “Holey metal films: From extraordinary transmission to negative-index behavior,” Phys. Rev. B 80, 165431 (2009).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Gebhart, B.

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324, 549–551 (1986).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Ghosh, G.

E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998).

Greffet, J. -J.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef] [PubMed]

Hesketh, P. J.

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324, 549–551 (1986).
[CrossRef]

Joulain, K.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef] [PubMed]

Kafesaki, M.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Klemens, F.

Koschny, T.

J. F. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31, 3620–3622 (2006).
[CrossRef] [PubMed]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Lee, B. J.

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16, 11328–11336 (2008).
[CrossRef] [PubMed]

B. J. Lee, Y. B. Chen, and Z. M. Zhang, “Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared,” J. Comput. Theor. Nanosci. 5, 201–213 (2008).
[CrossRef]

B. J. Lee, Y. B. Chen, and Z. M. Zhang, “Confinement of infrared radiation to nanometer scales through metallic slit arrays,” J. Quant. Spectrosc. Radiat. Transf. 109, 608–619 (2008).
[CrossRef]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Li, J. Q.

T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, “Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials,” J. Appl. Phys. 103, 023104 (2008).
[CrossRef]

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90, 251112 (2007).
[CrossRef]

Li, T.

T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, “Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials,” J. Appl. Phys. 103, 023104 (2008).
[CrossRef]

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90, 251112 (2007).
[CrossRef]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155–11163 (2006).
[CrossRef] [PubMed]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Liu, H.

T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, “Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials,” J. Appl. Phys. 103, 023104 (2008).
[CrossRef]

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90, 251112 (2007).
[CrossRef]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155–11163 (2006).
[CrossRef] [PubMed]

Liu, Z. W.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957–961 (2005).
[CrossRef] [PubMed]

Luo, Q.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4, 1085–1088 (2004).
[CrossRef]

Machin, G.

Z. M. Zhang, B. K. Tsai, and G. Machin, Radiometric Temperature Measurements: II. Applications (Elsevier, 2010).

Mainguy, S.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef] [PubMed]

Marcet, Z.

Marti, J.

R. Ortuno, C. Garcia-Meca, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009).
[CrossRef]

Martinez, A.

R. Ortuno, C. Garcia-Meca, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009).
[CrossRef]

Martin-Moreno, L.

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, “Holey metal films: From extraordinary transmission to negative-index behavior,” Phys. Rev. B 80, 165431 (2009).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Mary, A.

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, “Holey metal films: From extraordinary transmission to negative-index behavior,” Phys. Rev. B 80, 165431 (2009).
[CrossRef]

Miner, J.

Mulet, J. -P.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef] [PubMed]

Ortuno, R.

R. Ortuno, C. Garcia-Meca, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009).
[CrossRef]

Pai, C. S.

Palik, E. D.

E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998).

Pendry, J. B.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Ren, F. F.

C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. P. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406 (2008).
[CrossRef]

Rodrigo, S. G.

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, “Holey metal films: From extraordinary transmission to negative-index behavior,” Phys. Rev. B 80, 165431 (2009).
[CrossRef]

Rodriguez-Fortuno, F. J.

R. Ortuno, C. Garcia-Meca, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009).
[CrossRef]

Shalaev, V. M.

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[CrossRef]

Shamonina, E.

L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford University Press, 2009).

Shi, D. J.

C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. P. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406 (2008).
[CrossRef]

Shvets, G.

G. Shvets and Y. A. Urzhumov, “Negative index meta-materials based on two-dimensional metallic structures,” J. Opt. A, Pure Appl. Opt. 8, S122–S130 (2006).
[CrossRef]

Solymar, L.

L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford University Press, 2009).

Soukoulis, C. M.

J. F. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31, 3620–3622 (2006).
[CrossRef] [PubMed]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Srituravanich, W.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4, 1085–1088 (2004).
[CrossRef]

Sun, C.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4, 1085–1088 (2004).
[CrossRef]

Tanner, D. B.

Taylor, J. A.

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Tsai, B. K.

Z. M. Zhang, B. K. Tsai, and G. Machin, Radiometric Temperature Measurements: II. Applications (Elsevier, 2010).

Urzhumov, Y. A.

G. Shvets and Y. A. Urzhumov, “Negative index meta-materials based on two-dimensional metallic structures,” J. Opt. A, Pure Appl. Opt. 8, S122–S130 (2006).
[CrossRef]

Van Labeke, D.

F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209, 17–22 (2002).
[CrossRef]

Wang, F. M.

T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, “Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials,” J. Appl. Phys. 103, 023104 (2008).
[CrossRef]

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90, 251112 (2007).
[CrossRef]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155–11163 (2006).
[CrossRef] [PubMed]

Wang, H. T.

C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. P. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406 (2008).
[CrossRef]

Wang, L. P.

L. P. Wang and Z. M. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95, 111904 (2009).
[CrossRef]

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16, 11328–11336 (2008).
[CrossRef] [PubMed]

Wang, Q. J.

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90, 251112 (2007).
[CrossRef]

Wang, S. M.

T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, “Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials,” J. Appl. Phys. 103, 023104 (2008).
[CrossRef]

Wei, Q. H.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957–961 (2005).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Woo, K.

Wu, Q. Y.

C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. P. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406 (2008).
[CrossRef]

Xu, J.

C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. P. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406 (2008).
[CrossRef]

Yeh, P.

P. Yeh, “New optical-model for wire grid polarizers,” Opt. Commun. 26, 289–292 (1978).
[CrossRef]

Zemel, J. N.

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324, 549–551 (1986).
[CrossRef]

Zhang, X.

T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, “Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials,” J. Appl. Phys. 103, 023104 (2008).
[CrossRef]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155–11163 (2006).
[CrossRef] [PubMed]

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957–961 (2005).
[CrossRef] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4, 1085–1088 (2004).
[CrossRef]

Zhang, Z. M.

Z. M. Zhang, B. K. Tsai, and G. Machin, Radiometric Temperature Measurements: II. Applications (Elsevier, 2010).

L. P. Wang and Z. M. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95, 111904 (2009).
[CrossRef]

B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16, 11328–11336 (2008).
[CrossRef] [PubMed]

B. J. Lee, Y. B. Chen, and Z. M. Zhang, “Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared,” J. Comput. Theor. Nanosci. 5, 201–213 (2008).
[CrossRef]

B. J. Lee, Y. B. Chen, and Z. M. Zhang, “Confinement of infrared radiation to nanometer scales through metallic slit arrays,” J. Quant. Spectrosc. Radiat. Transf. 109, 608–619 (2008).
[CrossRef]

Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).

Zhou, J.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Zhou, J. F.

Zhu, S. N.

T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, “Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials,” J. Appl. Phys. 103, 023104 (2008).
[CrossRef]

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90, 251112 (2007).
[CrossRef]

T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155–11163 (2006).
[CrossRef] [PubMed]

Zhu, Y. Y.

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90, 251112 (2007).
[CrossRef]

Appl. Phys. Lett.

T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90, 251112 (2007).
[CrossRef]

L. P. Wang and Z. M. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95, 111904 (2009).
[CrossRef]

J. Appl. Phys.

T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, “Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials,” J. Appl. Phys. 103, 023104 (2008).
[CrossRef]

J. Comput. Theor. Nanosci.

B. J. Lee, Y. B. Chen, and Z. M. Zhang, “Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared,” J. Comput. Theor. Nanosci. 5, 201–213 (2008).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

G. Shvets and Y. A. Urzhumov, “Negative index meta-materials based on two-dimensional metallic structures,” J. Opt. A, Pure Appl. Opt. 8, S122–S130 (2006).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf.

B. J. Lee, Y. B. Chen, and Z. M. Zhang, “Confinement of infrared radiation to nanometer scales through metallic slit arrays,” J. Quant. Spectrosc. Radiat. Transf. 109, 608–619 (2008).
[CrossRef]

Nano Lett.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957–961 (2005).
[CrossRef] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4, 1085–1088 (2004).
[CrossRef]

Nat. Photonics

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007).
[CrossRef]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324, 549–551 (1986).
[CrossRef]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef] [PubMed]

Opt. Commun.

P. Yeh, “New optical-model for wire grid polarizers,” Opt. Commun. 26, 289–292 (1978).
[CrossRef]

F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209, 17–22 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. P. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406 (2008).
[CrossRef]

R. Ortuno, C. Garcia-Meca, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009).
[CrossRef]

A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, “Holey metal films: From extraordinary transmission to negative-index behavior,” Phys. Rev. B 80, 165431 (2009).
[CrossRef]

Phys. Rev. Lett.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Science

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Other

Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).

Z. M. Zhang, B. K. Tsai, and G. Machin, Radiometric Temperature Measurements: II. Applications (Elsevier, 2010).

L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford University Press, 2009).

E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematic of an aligned double-layer nanoslit array made of Ag with SiO 2 dielectric spacer; (b) cross-sectional view of a misaligned double-layer nanoslit array with a lateral displacement Δ.

Fig. 2
Fig. 2

Radiative properties at normal incidence. (a) A double-layer nanoslit array with the following parameters: Λ = 500   nm , w = 350   nm , h = 70   nm , and d = 30   nm ; (b) a single-layer nanoslit array with the same grating period, width, and height.

Fig. 3
Fig. 3

Electromagnetic field distributions at different resonance frequencies in the nanoslit array at normal incidence: (a) MP1 at 5286 cm 1 ; (b) MP3 at 14 , 670 cm 1 ; (c) CMP at 17 , 156 cm 1 ; (d) SPP at 20 , 000 cm 1 . The contour represents the logarithm of the square of magnetic field, arrows indicate electric field vectors, and loops illustrate induced electric currents.

Fig. 4
Fig. 4

Energy density in the nanoslit array outside the Ag strips: (a) MP1 at 5286 cm 1 and (b) MP3 at 14 , 670 cm 1 . The contour represents energy density, and arrows stand for Poynting vectors.

Fig. 5
Fig. 5

Contour plots of the spectral-directional (a) absorptance and (b) transmittance as functions of frequency and the x-component wavevector ( ω k x dispersion relation) for a nanoslit array with the same parameters as those for Fig. 2a.

Fig. 6
Fig. 6

Equivalent L C circuit model the double-layer nanoslit array for the prediction of the magnetic resonance condition of the fundamental mode: (a) original circuit corresponding to the periodic structure, (b) simplified circuit for a unit cell. Arrows indicate the current flow direction.

Fig. 7
Fig. 7

Geometric effects on the magnetic resonances in the aligned double-layer nanoslit array indicated by the contour plots of spectral-directional absorptance at normal incidence as a function of frequency ω and one varying geometric parameter: (a) strip width w, (b) slit width b, (c) spacer thickness d, (d) grating height h. Green triangles indicate the MP resonance frequency calculated from the L C circuit model for the fundamental mode.

Fig. 8
Fig. 8

Lateral displacement effect on the magnetic resonance for misaligned double-layer nanoslit arrays: (a) absorptance and (b) transmission at normal incidence as contour plots in terms of the frequency ω and lateral displacement Δ. The green triangles are calculated from Eq. (7) with an effective strip width w .

Fig. 9
Fig. 9

Calculated radiative properties at normal incidence when the double-layer nanoslit array are misaligned by (a) one-quarter period and (b) half-period.

Fig. 10
Fig. 10

Different MP modes illustrated by the electromagnetic fields in misaligned double-layer nanoslit arrays at normal incidence: (a) Δ / Λ = 0.25 at 6990 cm 1 , (b) Δ / Λ = 0.25 at 13 , 454 cm 1 , (c) Δ / Λ = 0.5 at 10 , 690 cm 1 , (d) Δ / Λ = 0.5 at 14 , 572 cm 1 .

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

k spp = ω c ε 1 ε 2 ε 1 + ε 2 .
L m = 0.5 μ 0 w d l ,
L e = w ε 0 ω p 2 A ,
C m = c 1 ε d ε 0 w l d ,
C g = ε 0 h l b .
Z tot = 2 i ω ( L m + L e ) 1 ω 2 C g ( L m + L e ) 2 i ω C m .
ω R = 1 ( L m + L e ) ( C m + C g ) .

Metrics