Abstract

We theoretically designed dual-beam triple exposure interference lithography to fabricate three-term diamond-like structures in SU-8 photoresist with scalable size and investigated the robustness of the optical setup against potential experimental errors. Minimal distortion could be achieved by careful selection of the angle between the bisector of the two beams and the normal of the sample surface to precompensate the anisotropic shrinkage. A small deviation of incident beam angles, however, would lead to a significant change in structural size when the angle between the two incident beams was small for a large sized structure, whereas the translational symmetry of the SU-8 structure remained reasonably close to face-centered cubic. We then experimentally demonstrate size scalable diamond-like photonic structures with the lattice symmetry and size close to the theoretical design.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
    [CrossRef] [PubMed]
  2. C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. J. Han, and S. Yang, “Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures,” Appl. Phys. Lett. 84, 5434–5436 (2004).
    [CrossRef]
  3. D. C. Meisel, M. Diem, M. Deubel, F. Perez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater. 18, 2964–2968 (2006).
    [CrossRef]
  4. X. L. Zhu, Y. A. Xu, and S. Yang, “Distortion of 3D SU8 photonic structures fabricated by four-beam holographic lithography with umbrella configuration,” Opt. Express 15, 16546–16560 (2007).
    [CrossRef] [PubMed]
  5. J. H. Moon and S. Yang, “Chemical aspects of three-dimensional photonic crystals,” Chem. Rev. (Washington, D.C.) 110, 547–574 (2010).
    [CrossRef]
  6. C. K. Ullal, M. Maldovan, M. Wohlgemuth, and E. L. Thomas, “Triply periodic bicontinuous structures through interference lithography: a level-set approach,” J. Opt. Soc. Am. A 20, 948–954 (2003).
    [CrossRef]
  7. T. Y. M. Chan, O. Toader, and S. John, “Photonic band gap templating using optical interference lithography,” Phys. Rev. E 71, 046605 (2005).
    [CrossRef]
  8. A. Hayek, Y. A. Xu, T. Okada, S. Barlow, X. L. Zhu, J. H. Moon, S. R. Marder, and S. Yang, “Poly(glycidyl methacrylate)s with controlled molecular weights as low-shrinkage resins for 3D multibeam interference lithography,” J. Mater. Chem. 18, 3316–3318 (2008).
    [CrossRef]
  9. J. H. Moon, S. Yang, W. T. Dong, J. W. Perry, A. Adibi, and S. M. Yang, “Core-shell diamond-like silicon photonic crystals from 3D polymer templates created by holographic lithography,” Opt. Express 14, 6297–6302 (2006).
    [CrossRef] [PubMed]
  10. L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27, 900–902 (2002).
    [CrossRef]
  11. R. C. Gauthier and K. W. Mnaymneh, “Design of photonic band gap structures through a dual-beam multiple exposure technique,” Opt. Laser Technol. 36, 625–633 (2004).
    [CrossRef]
  12. Y. Liu, S. Liu, and X. S. Zhang, “Fabrication of three-dimensional photonic crystals with two-beam holographic lithography,” Appl. Opt. 45, 480–483 (2006).
    [CrossRef] [PubMed]
  13. N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, and C. H. Lin, “Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique,” Opt. Express 13, 9605–9611 (2005).
    [CrossRef] [PubMed]
  14. A. Dwivedi, J. Xavier, J. Joseph, and K. Singh, “Formation of all fourteen Bravais lattices of three-dimensional photonic crystal structures by a dual beam multiple-exposure holographic technique,” Appl. Opt. 47, 1973–1980 (2008).
    [CrossRef] [PubMed]
  15. A. Chelnokov, S. Rowson, J. M. Lourtioz, V. Berger, and J. Y. Courtois, “An optical drill for the fabrication of photonic crystals,” J. Opt. A, Pure Appl. Opt. 1, L3–L6 (1999).
    [CrossRef]
  16. S. Shoji and S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76, 2668–2670 (2000).
    [CrossRef]
  17. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
    [CrossRef]
  18. H. B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85, 3708–3710 (2004).
    [CrossRef]
  19. M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
    [CrossRef]
  20. D. C. Meisel, M. Wegener, and K. Busch, “Three-dimensional photonic crystals by holographic lithography using the umbrella configuration: Symmetries and complete photonic band gaps,” Phys. Rev. B 70, 165104 (2004).
    [CrossRef]
  21. G. Q. Liang, X. L. Zhu, Y. A. Xu, J. Li, and S. Yang, “Holographic design and fabrication of diamond symmetry photonic crystals via dual-beam quadruple exposure,” Adv. Mater. 22, 4524–4529 (2010).
    [CrossRef] [PubMed]
  22. Y. A. Xu, X. L. Zhu, and S. Yang, “Crack-free 3D hybrid microstructures from photosensitive organosilicates as versatile photonic templates,” ACS Nano 3, 3251–3259 (2009).
    [CrossRef] [PubMed]
  23. Data from Thorlabs, retrieved from http://www.thorlabs.com/Thorcat/16500/16580-D02.pdf.
  24. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge U. Press, 1999).
    [PubMed]

2010 (2)

J. H. Moon and S. Yang, “Chemical aspects of three-dimensional photonic crystals,” Chem. Rev. (Washington, D.C.) 110, 547–574 (2010).
[CrossRef]

G. Q. Liang, X. L. Zhu, Y. A. Xu, J. Li, and S. Yang, “Holographic design and fabrication of diamond symmetry photonic crystals via dual-beam quadruple exposure,” Adv. Mater. 22, 4524–4529 (2010).
[CrossRef] [PubMed]

2009 (1)

Y. A. Xu, X. L. Zhu, and S. Yang, “Crack-free 3D hybrid microstructures from photosensitive organosilicates as versatile photonic templates,” ACS Nano 3, 3251–3259 (2009).
[CrossRef] [PubMed]

2008 (2)

A. Hayek, Y. A. Xu, T. Okada, S. Barlow, X. L. Zhu, J. H. Moon, S. R. Marder, and S. Yang, “Poly(glycidyl methacrylate)s with controlled molecular weights as low-shrinkage resins for 3D multibeam interference lithography,” J. Mater. Chem. 18, 3316–3318 (2008).
[CrossRef]

A. Dwivedi, J. Xavier, J. Joseph, and K. Singh, “Formation of all fourteen Bravais lattices of three-dimensional photonic crystal structures by a dual beam multiple-exposure holographic technique,” Appl. Opt. 47, 1973–1980 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (3)

2005 (2)

2004 (5)

R. C. Gauthier and K. W. Mnaymneh, “Design of photonic band gap structures through a dual-beam multiple exposure technique,” Opt. Laser Technol. 36, 625–633 (2004).
[CrossRef]

C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. J. Han, and S. Yang, “Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures,” Appl. Phys. Lett. 84, 5434–5436 (2004).
[CrossRef]

H. B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85, 3708–3710 (2004).
[CrossRef]

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
[CrossRef]

D. C. Meisel, M. Wegener, and K. Busch, “Three-dimensional photonic crystals by holographic lithography using the umbrella configuration: Symmetries and complete photonic band gaps,” Phys. Rev. B 70, 165104 (2004).
[CrossRef]

2003 (1)

2002 (1)

2000 (2)

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

S. Shoji and S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76, 2668–2670 (2000).
[CrossRef]

1999 (3)

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

A. Chelnokov, S. Rowson, J. M. Lourtioz, V. Berger, and J. Y. Courtois, “An optical drill for the fabrication of photonic crystals,” J. Opt. A, Pure Appl. Opt. 1, L3–L6 (1999).
[CrossRef]

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge U. Press, 1999).
[PubMed]

Adibi, A.

Ananthavel, S. P.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Barlow, S.

A. Hayek, Y. A. Xu, T. Okada, S. Barlow, X. L. Zhu, J. H. Moon, S. R. Marder, and S. Yang, “Poly(glycidyl methacrylate)s with controlled molecular weights as low-shrinkage resins for 3D multibeam interference lithography,” J. Mater. Chem. 18, 3316–3318 (2008).
[CrossRef]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Berger, V.

A. Chelnokov, S. Rowson, J. M. Lourtioz, V. Berger, and J. Y. Courtois, “An optical drill for the fabrication of photonic crystals,” J. Opt. A, Pure Appl. Opt. 1, L3–L6 (1999).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge U. Press, 1999).
[PubMed]

Busch, K.

D. C. Meisel, M. Diem, M. Deubel, F. Perez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater. 18, 2964–2968 (2006).
[CrossRef]

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
[CrossRef]

D. C. Meisel, M. Wegener, and K. Busch, “Three-dimensional photonic crystals by holographic lithography using the umbrella configuration: Symmetries and complete photonic band gaps,” Phys. Rev. B 70, 165104 (2004).
[CrossRef]

Cai, L. Z.

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

Chan, T. Y. M.

T. Y. M. Chan, O. Toader, and S. John, “Photonic band gap templating using optical interference lithography,” Phys. Rev. E 71, 046605 (2005).
[CrossRef]

Chelnokov, A.

A. Chelnokov, S. Rowson, J. M. Lourtioz, V. Berger, and J. Y. Courtois, “An optical drill for the fabrication of photonic crystals,” J. Opt. A, Pure Appl. Opt. 1, L3–L6 (1999).
[CrossRef]

Chen, G.

C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. J. Han, and S. Yang, “Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures,” Appl. Phys. Lett. 84, 5434–5436 (2004).
[CrossRef]

Courtois, J. Y.

A. Chelnokov, S. Rowson, J. M. Lourtioz, V. Berger, and J. Y. Courtois, “An optical drill for the fabrication of photonic crystals,” J. Opt. A, Pure Appl. Opt. 1, L3–L6 (1999).
[CrossRef]

Cumpston, B. H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Denning, R. G.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

Deubel, M.

D. C. Meisel, M. Diem, M. Deubel, F. Perez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater. 18, 2964–2968 (2006).
[CrossRef]

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
[CrossRef]

Diem, M.

D. C. Meisel, M. Diem, M. Deubel, F. Perez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater. 18, 2964–2968 (2006).
[CrossRef]

Dong, W. T.

Dwivedi, A.

Dyer, D. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Ehrlich, J. E.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Erskine, L. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Gauthier, R. C.

R. C. Gauthier and K. W. Mnaymneh, “Design of photonic band gap structures through a dual-beam multiple exposure technique,” Opt. Laser Technol. 36, 625–633 (2004).
[CrossRef]

Gerthsen, D.

D. C. Meisel, M. Diem, M. Deubel, F. Perez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater. 18, 2964–2968 (2006).
[CrossRef]

Han, Y. J.

C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. J. Han, and S. Yang, “Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures,” Appl. Phys. Lett. 84, 5434–5436 (2004).
[CrossRef]

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

Hayek, A.

A. Hayek, Y. A. Xu, T. Okada, S. Barlow, X. L. Zhu, J. H. Moon, S. R. Marder, and S. Yang, “Poly(glycidyl methacrylate)s with controlled molecular weights as low-shrinkage resins for 3D multibeam interference lithography,” J. Mater. Chem. 18, 3316–3318 (2008).
[CrossRef]

Heikal, A. A.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Hsu, C. C.

John, S.

T. Y. M. Chan, O. Toader, and S. John, “Photonic band gap templating using optical interference lithography,” Phys. Rev. E 71, 046605 (2005).
[CrossRef]

Joseph, J.

Kawata, S.

H. B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85, 3708–3710 (2004).
[CrossRef]

S. Shoji and S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76, 2668–2670 (2000).
[CrossRef]

Kim, M. S.

H. B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85, 3708–3710 (2004).
[CrossRef]

Kuebler, S. M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Lai, N. D.

Lee, I. Y. S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Lee, K. S.

H. B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85, 3708–3710 (2004).
[CrossRef]

Li, J.

G. Q. Liang, X. L. Zhu, Y. A. Xu, J. Li, and S. Yang, “Holographic design and fabrication of diamond symmetry photonic crystals via dual-beam quadruple exposure,” Adv. Mater. 22, 4524–4529 (2010).
[CrossRef] [PubMed]

Liang, G. Q.

G. Q. Liang, X. L. Zhu, Y. A. Xu, J. Li, and S. Yang, “Holographic design and fabrication of diamond symmetry photonic crystals via dual-beam quadruple exposure,” Adv. Mater. 22, 4524–4529 (2010).
[CrossRef] [PubMed]

Liang, W. P.

Lin, C. H.

Lin, J. H.

Linden, S.

D. C. Meisel, M. Diem, M. Deubel, F. Perez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater. 18, 2964–2968 (2006).
[CrossRef]

Liu, S.

Liu, Y.

Lourtioz, J. M.

A. Chelnokov, S. Rowson, J. M. Lourtioz, V. Berger, and J. Y. Courtois, “An optical drill for the fabrication of photonic crystals,” J. Opt. A, Pure Appl. Opt. 1, L3–L6 (1999).
[CrossRef]

Maldovan, M.

C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. J. Han, and S. Yang, “Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures,” Appl. Phys. Lett. 84, 5434–5436 (2004).
[CrossRef]

C. K. Ullal, M. Maldovan, M. Wohlgemuth, and E. L. Thomas, “Triply periodic bicontinuous structures through interference lithography: a level-set approach,” J. Opt. Soc. Am. A 20, 948–954 (2003).
[CrossRef]

Marder, S. R.

A. Hayek, Y. A. Xu, T. Okada, S. Barlow, X. L. Zhu, J. H. Moon, S. R. Marder, and S. Yang, “Poly(glycidyl methacrylate)s with controlled molecular weights as low-shrinkage resins for 3D multibeam interference lithography,” J. Mater. Chem. 18, 3316–3318 (2008).
[CrossRef]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

McCord-Maughon, D.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Meisel, D. C.

D. C. Meisel, M. Diem, M. Deubel, F. Perez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater. 18, 2964–2968 (2006).
[CrossRef]

D. C. Meisel, M. Wegener, and K. Busch, “Three-dimensional photonic crystals by holographic lithography using the umbrella configuration: Symmetries and complete photonic band gaps,” Phys. Rev. B 70, 165104 (2004).
[CrossRef]

Mnaymneh, K. W.

R. C. Gauthier and K. W. Mnaymneh, “Design of photonic band gap structures through a dual-beam multiple exposure technique,” Opt. Laser Technol. 36, 625–633 (2004).
[CrossRef]

Moon, J. H.

J. H. Moon and S. Yang, “Chemical aspects of three-dimensional photonic crystals,” Chem. Rev. (Washington, D.C.) 110, 547–574 (2010).
[CrossRef]

A. Hayek, Y. A. Xu, T. Okada, S. Barlow, X. L. Zhu, J. H. Moon, S. R. Marder, and S. Yang, “Poly(glycidyl methacrylate)s with controlled molecular weights as low-shrinkage resins for 3D multibeam interference lithography,” J. Mater. Chem. 18, 3316–3318 (2008).
[CrossRef]

J. H. Moon, S. Yang, W. T. Dong, J. W. Perry, A. Adibi, and S. M. Yang, “Core-shell diamond-like silicon photonic crystals from 3D polymer templates created by holographic lithography,” Opt. Express 14, 6297–6302 (2006).
[CrossRef] [PubMed]

Okada, T.

A. Hayek, Y. A. Xu, T. Okada, S. Barlow, X. L. Zhu, J. H. Moon, S. R. Marder, and S. Yang, “Poly(glycidyl methacrylate)s with controlled molecular weights as low-shrinkage resins for 3D multibeam interference lithography,” J. Mater. Chem. 18, 3316–3318 (2008).
[CrossRef]

Pereira, S.

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
[CrossRef]

Perez-Willard, F.

D. C. Meisel, M. Diem, M. Deubel, F. Perez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater. 18, 2964–2968 (2006).
[CrossRef]

Perry, J. W.

J. H. Moon, S. Yang, W. T. Dong, J. W. Perry, A. Adibi, and S. M. Yang, “Core-shell diamond-like silicon photonic crystals from 3D polymer templates created by holographic lithography,” Opt. Express 14, 6297–6302 (2006).
[CrossRef] [PubMed]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Qin, J. Q.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Rockel, H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Rowson, S.

A. Chelnokov, S. Rowson, J. M. Lourtioz, V. Berger, and J. Y. Courtois, “An optical drill for the fabrication of photonic crystals,” J. Opt. A, Pure Appl. Opt. 1, L3–L6 (1999).
[CrossRef]

Rumi, M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Sharp, D. N.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

Shoji, S.

S. Shoji and S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76, 2668–2670 (2000).
[CrossRef]

Singh, K.

Soukoulis, C. M.

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
[CrossRef]

Sun, H. B.

H. B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85, 3708–3710 (2004).
[CrossRef]

Suwa, T.

H. B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85, 3708–3710 (2004).
[CrossRef]

Takada, K.

H. B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85, 3708–3710 (2004).
[CrossRef]

Thomas, E. L.

C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. J. Han, and S. Yang, “Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures,” Appl. Phys. Lett. 84, 5434–5436 (2004).
[CrossRef]

C. K. Ullal, M. Maldovan, M. Wohlgemuth, and E. L. Thomas, “Triply periodic bicontinuous structures through interference lithography: a level-set approach,” J. Opt. Soc. Am. A 20, 948–954 (2003).
[CrossRef]

Toader, O.

T. Y. M. Chan, O. Toader, and S. John, “Photonic band gap templating using optical interference lithography,” Phys. Rev. E 71, 046605 (2005).
[CrossRef]

Turberfield, A. J.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

Ullal, C. K.

C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. J. Han, and S. Yang, “Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures,” Appl. Phys. Lett. 84, 5434–5436 (2004).
[CrossRef]

C. K. Ullal, M. Maldovan, M. Wohlgemuth, and E. L. Thomas, “Triply periodic bicontinuous structures through interference lithography: a level-set approach,” J. Opt. Soc. Am. A 20, 948–954 (2003).
[CrossRef]

Von Freymann, G.

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
[CrossRef]

Wang, Y. R.

Wegener, M.

D. C. Meisel, M. Diem, M. Deubel, F. Perez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater. 18, 2964–2968 (2006).
[CrossRef]

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
[CrossRef]

D. C. Meisel, M. Wegener, and K. Busch, “Three-dimensional photonic crystals by holographic lithography using the umbrella configuration: Symmetries and complete photonic band gaps,” Phys. Rev. B 70, 165104 (2004).
[CrossRef]

Wohlgemuth, M.

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge U. Press, 1999).
[PubMed]

Wu, X. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Xavier, J.

Xu, Y. A.

G. Q. Liang, X. L. Zhu, Y. A. Xu, J. Li, and S. Yang, “Holographic design and fabrication of diamond symmetry photonic crystals via dual-beam quadruple exposure,” Adv. Mater. 22, 4524–4529 (2010).
[CrossRef] [PubMed]

Y. A. Xu, X. L. Zhu, and S. Yang, “Crack-free 3D hybrid microstructures from photosensitive organosilicates as versatile photonic templates,” ACS Nano 3, 3251–3259 (2009).
[CrossRef] [PubMed]

A. Hayek, Y. A. Xu, T. Okada, S. Barlow, X. L. Zhu, J. H. Moon, S. R. Marder, and S. Yang, “Poly(glycidyl methacrylate)s with controlled molecular weights as low-shrinkage resins for 3D multibeam interference lithography,” J. Mater. Chem. 18, 3316–3318 (2008).
[CrossRef]

X. L. Zhu, Y. A. Xu, and S. Yang, “Distortion of 3D SU8 photonic structures fabricated by four-beam holographic lithography with umbrella configuration,” Opt. Express 15, 16546–16560 (2007).
[CrossRef] [PubMed]

Yang, S.

J. H. Moon and S. Yang, “Chemical aspects of three-dimensional photonic crystals,” Chem. Rev. (Washington, D.C.) 110, 547–574 (2010).
[CrossRef]

G. Q. Liang, X. L. Zhu, Y. A. Xu, J. Li, and S. Yang, “Holographic design and fabrication of diamond symmetry photonic crystals via dual-beam quadruple exposure,” Adv. Mater. 22, 4524–4529 (2010).
[CrossRef] [PubMed]

Y. A. Xu, X. L. Zhu, and S. Yang, “Crack-free 3D hybrid microstructures from photosensitive organosilicates as versatile photonic templates,” ACS Nano 3, 3251–3259 (2009).
[CrossRef] [PubMed]

A. Hayek, Y. A. Xu, T. Okada, S. Barlow, X. L. Zhu, J. H. Moon, S. R. Marder, and S. Yang, “Poly(glycidyl methacrylate)s with controlled molecular weights as low-shrinkage resins for 3D multibeam interference lithography,” J. Mater. Chem. 18, 3316–3318 (2008).
[CrossRef]

X. L. Zhu, Y. A. Xu, and S. Yang, “Distortion of 3D SU8 photonic structures fabricated by four-beam holographic lithography with umbrella configuration,” Opt. Express 15, 16546–16560 (2007).
[CrossRef] [PubMed]

J. H. Moon, S. Yang, W. T. Dong, J. W. Perry, A. Adibi, and S. M. Yang, “Core-shell diamond-like silicon photonic crystals from 3D polymer templates created by holographic lithography,” Opt. Express 14, 6297–6302 (2006).
[CrossRef] [PubMed]

C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. J. Han, and S. Yang, “Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures,” Appl. Phys. Lett. 84, 5434–5436 (2004).
[CrossRef]

Yang, S. M.

Yang, X. L.

Zaccaria, R. P.

H. B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85, 3708–3710 (2004).
[CrossRef]

Zhang, X. S.

Zhu, X. L.

G. Q. Liang, X. L. Zhu, Y. A. Xu, J. Li, and S. Yang, “Holographic design and fabrication of diamond symmetry photonic crystals via dual-beam quadruple exposure,” Adv. Mater. 22, 4524–4529 (2010).
[CrossRef] [PubMed]

Y. A. Xu, X. L. Zhu, and S. Yang, “Crack-free 3D hybrid microstructures from photosensitive organosilicates as versatile photonic templates,” ACS Nano 3, 3251–3259 (2009).
[CrossRef] [PubMed]

A. Hayek, Y. A. Xu, T. Okada, S. Barlow, X. L. Zhu, J. H. Moon, S. R. Marder, and S. Yang, “Poly(glycidyl methacrylate)s with controlled molecular weights as low-shrinkage resins for 3D multibeam interference lithography,” J. Mater. Chem. 18, 3316–3318 (2008).
[CrossRef]

X. L. Zhu, Y. A. Xu, and S. Yang, “Distortion of 3D SU8 photonic structures fabricated by four-beam holographic lithography with umbrella configuration,” Opt. Express 15, 16546–16560 (2007).
[CrossRef] [PubMed]

ACS Nano (1)

Y. A. Xu, X. L. Zhu, and S. Yang, “Crack-free 3D hybrid microstructures from photosensitive organosilicates as versatile photonic templates,” ACS Nano 3, 3251–3259 (2009).
[CrossRef] [PubMed]

Adv. Mater. (2)

G. Q. Liang, X. L. Zhu, Y. A. Xu, J. Li, and S. Yang, “Holographic design and fabrication of diamond symmetry photonic crystals via dual-beam quadruple exposure,” Adv. Mater. 22, 4524–4529 (2010).
[CrossRef] [PubMed]

D. C. Meisel, M. Diem, M. Deubel, F. Perez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater. 18, 2964–2968 (2006).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

S. Shoji and S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76, 2668–2670 (2000).
[CrossRef]

H. B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85, 3708–3710 (2004).
[CrossRef]

C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. J. Han, and S. Yang, “Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures,” Appl. Phys. Lett. 84, 5434–5436 (2004).
[CrossRef]

Chem. Rev. (Washington, D.C.) (1)

J. H. Moon and S. Yang, “Chemical aspects of three-dimensional photonic crystals,” Chem. Rev. (Washington, D.C.) 110, 547–574 (2010).
[CrossRef]

J. Mater. Chem. (1)

A. Hayek, Y. A. Xu, T. Okada, S. Barlow, X. L. Zhu, J. H. Moon, S. R. Marder, and S. Yang, “Poly(glycidyl methacrylate)s with controlled molecular weights as low-shrinkage resins for 3D multibeam interference lithography,” J. Mater. Chem. 18, 3316–3318 (2008).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

A. Chelnokov, S. Rowson, J. M. Lourtioz, V. Berger, and J. Y. Courtois, “An optical drill for the fabrication of photonic crystals,” J. Opt. A, Pure Appl. Opt. 1, L3–L6 (1999).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nature (2)

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef] [PubMed]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999).
[CrossRef]

Nature Mater. (1)

M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004).
[CrossRef]

Opt. Express (3)

Opt. Laser Technol. (1)

R. C. Gauthier and K. W. Mnaymneh, “Design of photonic band gap structures through a dual-beam multiple exposure technique,” Opt. Laser Technol. 36, 625–633 (2004).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

D. C. Meisel, M. Wegener, and K. Busch, “Three-dimensional photonic crystals by holographic lithography using the umbrella configuration: Symmetries and complete photonic band gaps,” Phys. Rev. B 70, 165104 (2004).
[CrossRef]

Phys. Rev. E (1)

T. Y. M. Chan, O. Toader, and S. John, “Photonic band gap templating using optical interference lithography,” Phys. Rev. E 71, 046605 (2005).
[CrossRef]

Other (2)

Data from Thorlabs, retrieved from http://www.thorlabs.com/Thorcat/16500/16580-D02.pdf.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge U. Press, 1999).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Illustration of two-beam interference lithography with the sample fixed on a rotation stage. The black dashed line shows the normal of the photoresist film and the red dashed line is the bisector of the two laser beams. (b)–(f) Construction of three-term diamond-like lattice via dual-beam triple exposure and unidirectional photoresist shrinkage. (b)–(d) A set of one-dimensional lattice planes obtained from the corresponding three dual-beam exposures. (e) By combining the three exposures from (b) to (d), an elongated three-term diamond-like rhombohedral light intensity distribution with the (111) plane parallel to the substrate is generated in the photoresist. (f) After shrinkage in the [111] direction, the final structure has an fcc translational symmetry.

Fig. 2
Fig. 2

(a) Angle between the normal and the bisector, Γ , as a function of the photoresist shrinkage during fabrication, s r . (b) Error of the compensated shrinkage caused by the deviation of Γ for materials at different Γ values. (c) Lattice constant d versus two-beam angle θ and shrinkage s r . (d) Error of lattice constant caused by the deviation of θ at different θ values. (e) a z / a z 0 versus s r for various values of Δ Γ within the region of s r [ 0 , 0.9 ] .

Fig. 3
Fig. 3

SEM images of three-term diamond-like SU-8 structures. (a),(c) top surface of the structure with lattice constants of 1.34 and 2.38 μ m , respectively. Insets: the simulation structures. (b),(d) the corresponding cross sections of (a) and (c) with the top surface tilted by 52°. The cross sections are FIB milled perpendicular to the (111) plane. The green dashed lines indicate the adjacent lattice planes in [111] direction. Taking into account the viewing angle (38°), the distances between the adjacent lattice planes in the [111] direction are (b) h 111 = 0.73 μ m and (d) h 111 = 1.36 μ m , and hence the periodicities in [111] direction ( a z = 3 h 111 ) are (b) a z = 2.19 μ m and (c) a z = 4.08 μ m . Scale bars: 2 μ m .

Fig. 4
Fig. 4

Illustration of the 2D projection of the optical setup in Fig. 1a on an optical table. The pivot axis of rotational stage and the two incident beams are parallel to the surface of the optical table.

Tables (2)

Tables Icon

Table 1 Comparison of Theoretical and Experimental Parameters for Three-Term Diamond-Like SU-8 Structures under Different Incident Angles a

Tables Icon

Table 2 Wave Vectors and Polarization Vectors in Air and SU-8 Using Interference Lithography with Visible Light ( λ = 532   nm )

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

F ( r ) = cos [ 2 π d ( x + y + z ) ] + cos [ 2 π d ( x y + z ) ] + cos [ 2 π d ( x + y z ) ] ,
F elongated ( r ) = cos { 2 π d [ 2 2 3 x ̃ + ( 1 s r ) 3 z ̃ ] } + cos { 2 π d [ 2 3 x ̃ 2 y ̃ + ( 1 s r ) 3 z ̃ ] } + cos { 2 π d [ 2 3 x ̃ + 2 y ̃ + ( 1 s r ) 3 z ̃ ] } ,
I ( r ) = i = 1 3 { | E i 1 | 2 + | E i 2 | 2 + 2 E i 1 E i 2   cos [ ( k i 2 k i 1 ) r ] } ,
| Δ k in   A | = | k i 2   in   A k i 1   in   A | = | 2 π n r λ [ sin ( Γ + θ 2 ) sin ( Γ θ 2 ) ] | = 4 π n r λ cos   Γ   sin θ 2 ,
| Δ k z ̃ | = | k i 2 z ̃ k i 1 z ̃ | = | 2 π n r λ [ cos ( Γ + θ 2 ) cos ( Γ θ 2 ) ] | = 4 π n r λ sin   Γ   sin θ 2 ,
| Δ k z ̃ | / | Δ k in   A | = tan   Γ = ( 1 s r ) 2 2 ,
| Δ k | = | Δ k z ̃ | 2 + | Δ k in   A | 2 = 4 π n r λ sin θ 2 = 2 π d 8 + ( 1 s r ) 2 3 .
Γ = arctan [ ( 1 s r ) 2 2 ] ,
θ = 2   arcsin [ λ 2 d n r 8 + ( 1 s r ) 2 3 ] .
φ 1 = Γ θ 2 ,     φ 2 = Γ + θ 2 .
φ j = arcsin ( n r   sin   φ j ) ,     j = 1 , 2.
s r = 1 2 2   tan   Γ ,
d = λ 2 n r 8 + ( 1 s r ) 2 3   sin ( θ / 2 ) .
Δ s r Δ Γ = 2 2 cos 2 Γ .
Δ d / Δ θ d = cot ( θ / 2 ) 2 .
a z a z 0 = 1 s r 1 s r Δ s r = 2 2 ( 1 s r ) 2 2 ( 1 s r ) + ( s r 2 2 s r + 9 ) Δ Γ = sin   Γ   cos   Γ sin   Γ   cos   Γ + Δ Γ ,
F elongated ( r ) = cos { 2 π d [ ( 1 + s r 3 ) x + ( 1 s r 3 ) y + ( 1 s r 3 ) z ] } + cos { 2 π d [ ( 1 s r 3 ) x ( 1 + s r 3 ) y + ( 1 s r 3 ) z ] } + cos { 2 π d [ ( 1 s r 3 ) x + ( 1 s r 3 ) y ( 1 + s r 3 ) z ] } ,
I ( r ) = i = 0 3 E i 2 + 2 l = 1 3 c l   cos [ ( k l k 0 ) r ] + 2 l > m = 1 3 c l m   cos [ ( k l k m ) r + ϕ l m ϕ l + ϕ m ] = I 0 + I c s + I s s ,

Metrics