Abstract

Pulsed- and continuous-wave type-I and type-II difference-frequency generations (DFGs) in monolithic AlGaAs Bragg reflection waveguides were comparatively investigated. Phase matching bandwidth of exceeding 40 nm was observed in all the processes. Highest difference-frequency (DF) power of 2.45 nW was obtained in continuous-wave type-II interaction with the average external pump and signal powers of 62.9 and 2.9 mW, respectively. The corresponding nonlinear conversion efficiency is about 1.3×103%W1 for a sample with a length of 1.5 mm. Using split-step Fourier method, the impacts of third-order nonlinearities including two-photon absorption and self-phase modulation on the efficiency of the DFG are numerically investigated. Furthermore, the adverse effects of group velocity mismatch and group velocity dispersion of the interacting frequencies on the efficiency of the pulsed nonlinear process are theoretically studied. Simulations indicate that the dominant factors in limiting the efficiency of the pulsed interaction are group velocity mismatch between pump and DF signal and two-photon absorption of the interacting waves.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72, 947–952 (2001).
    [CrossRef]
  2. U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44, 699–710 (2006).
    [CrossRef]
  3. S. Woutersen, U. Emmerichs, and H. J. Bakker, “Femtosecond mid-IR pump-probe spectroscopy of liquid water: evidence for a two-component structure,” Science 278, 658–660 (1997).
    [CrossRef]
  4. C. J. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection limits,” Sensors 9, 8230–8262 (2009).
    [CrossRef]
  5. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
    [CrossRef]
  6. P. Bravetti, A. Fiore, V. Berger, E. Rosencher, J. Nagle, and O. Gauthier- Lafaye, “5.2–5.6-μm source tunable by frequency conversion in a GaAs-based waveguide,” Opt. Lett. 23, 331–333 (1998).
    [CrossRef]
  7. D. Zheng, L. A. Gordon, Y. S. Wu, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “16-μm infrared generation by difference-frequency mixing in diffusion-bonded stacked GaAs,” Opt. Lett. 23, 1010–1012 (1998).
    [CrossRef]
  8. K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photonics Rev. 2, 11–25 (2008).
    [CrossRef]
  9. M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286, 1513–1517 (1999).
    [CrossRef] [PubMed]
  10. E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94, 171110 (2009).
    [CrossRef]
  11. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett. 71, 3622–3624 (1997).
    [CrossRef]
  12. S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and Neo Anoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
    [CrossRef]
  13. D. S. Hum and M. M. Fejer, “Recent advances in crystal optics,” C. R. Phys. 8, 180–198 (2007).
    [CrossRef]
  14. A. S. Helmy, “Phase matching using Bragg reflection waveguides for monolithic nonlinear optics applications,” Opt. Express 14, 1243–1252 (2006).
    [CrossRef] [PubMed]
  15. A. S. Helmy, B. Bijlani, and P. Abolghasem, “Phase matching in monolithic Bragg reflection waveguide,” Opt. Lett. 32, 2399–2401 (2007).
    [CrossRef] [PubMed]
  16. S. J. Wagner, A. A. Muhairi, J. S. Aitchison, and A. S. Helmy, “Modeling and optimization of quasi-phase matching via domain-disordering,” IEEE J. Quantum Electron. 44, 424–429 (2008).
    [CrossRef]
  17. J. B. Han, P. Abolghasem, B. J. Bijlani, A. Arjmand, S. Chaitanya Kumar, A. Esteban-Martin, M. Ebrahim-Zadeh, and A. S. Helmy, “Femtosecond second-harmonic generation in AlGaAs Bragg reflection waveguides: theory and experiment,” J. Opt. Soc. Am. B 27, 1291–1298 (2010).
    [CrossRef]
  18. P. Abolghasem, J. Han, A. Arjmand, B. J. Bijlani, and A. S. Helmy, “Highly efficient second-Harmonic generation in monolithic matching-layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
    [CrossRef]
  19. J. B. Han, P. Abolghasem, D. Kang, B. J. Bijlani, and A. S. Helmy, “Difference-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 35, 2334–2336 (2010).
    [CrossRef] [PubMed]
  20. R. A. Baumgartner and R. L. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron. 15, 432–444 (1979).
    [CrossRef]
  21. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).
  22. J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
    [CrossRef]
  23. E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, “Energy band-gap dependence of two-photon absorption,” Opt. Lett. 10, 490–492 (1985).
    [CrossRef] [PubMed]
  24. B. S. Wherrett, “Scaling rules for multiphoton interband absorption in semiconductors,” J. Opt. Soc. Am. B 1, 67–72 (1984).
    [CrossRef]
  25. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” Opt. Quantum Electron. 27, 1296–1309 (1991).
    [CrossRef]
  26. K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Optical parametric oscillation in quasi-phase-matched GaAs,” Opt. Lett. 29, 1912–1914 (2004).
    [CrossRef] [PubMed]
  27. P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. F. Bliss, and D. Weyburne, “GaAs optical parametric oscillator with circularly polarized and depolarized pump,” Opt. Lett. 32, 2735–2737 (2007).
    [CrossRef] [PubMed]
  28. B. J. Bijlani and A. S. Helmy, “Bragg reflection waveguide diode lasers,” Opt. Lett. 34, 3734–3736 (2009).
    [CrossRef] [PubMed]

2010 (2)

2009 (4)

B. J. Bijlani and A. S. Helmy, “Bragg reflection waveguide diode lasers,” Opt. Lett. 34, 3734–3736 (2009).
[CrossRef] [PubMed]

P. Abolghasem, J. Han, A. Arjmand, B. J. Bijlani, and A. S. Helmy, “Highly efficient second-Harmonic generation in monolithic matching-layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[CrossRef]

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94, 171110 (2009).
[CrossRef]

C. J. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection limits,” Sensors 9, 8230–8262 (2009).
[CrossRef]

2008 (2)

K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photonics Rev. 2, 11–25 (2008).
[CrossRef]

S. J. Wagner, A. A. Muhairi, J. S. Aitchison, and A. S. Helmy, “Modeling and optimization of quasi-phase matching via domain-disordering,” IEEE J. Quantum Electron. 44, 424–429 (2008).
[CrossRef]

2007 (3)

2006 (2)

A. S. Helmy, “Phase matching using Bragg reflection waveguides for monolithic nonlinear optics applications,” Opt. Express 14, 1243–1252 (2006).
[CrossRef] [PubMed]

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44, 699–710 (2006).
[CrossRef]

2004 (1)

2001 (1)

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72, 947–952 (2001).
[CrossRef]

1999 (2)

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286, 1513–1517 (1999).
[CrossRef] [PubMed]

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[CrossRef]

1998 (2)

1997 (3)

S. Woutersen, U. Emmerichs, and H. J. Bakker, “Femtosecond mid-IR pump-probe spectroscopy of liquid water: evidence for a two-component structure,” Science 278, 658–660 (1997).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett. 71, 3622–3624 (1997).
[CrossRef]

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[CrossRef]

1996 (1)

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and Neo Anoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

1995 (1)

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

1991 (1)

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” Opt. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

1985 (1)

1984 (1)

1979 (1)

R. A. Baumgartner and R. L. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron. 15, 432–444 (1979).
[CrossRef]

Abolghasem, P.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

Aitchison, J. S.

S. J. Wagner, A. A. Muhairi, J. S. Aitchison, and A. S. Helmy, “Modeling and optimization of quasi-phase matching via domain-disordering,” IEEE J. Quantum Electron. 44, 424–429 (2008).
[CrossRef]

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[CrossRef]

Anoniades, Neo

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and Neo Anoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

Arjmand, A.

J. B. Han, P. Abolghasem, B. J. Bijlani, A. Arjmand, S. Chaitanya Kumar, A. Esteban-Martin, M. Ebrahim-Zadeh, and A. S. Helmy, “Femtosecond second-harmonic generation in AlGaAs Bragg reflection waveguides: theory and experiment,” J. Opt. Soc. Am. B 27, 1291–1298 (2010).
[CrossRef]

P. Abolghasem, J. Han, A. Arjmand, B. J. Bijlani, and A. S. Helmy, “Highly efficient second-Harmonic generation in monolithic matching-layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[CrossRef]

Bakker, H. J.

S. Woutersen, U. Emmerichs, and H. J. Bakker, “Femtosecond mid-IR pump-probe spectroscopy of liquid water: evidence for a two-component structure,” Science 278, 658–660 (1997).
[CrossRef]

Baumgartner, R. A.

R. A. Baumgartner and R. L. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron. 15, 432–444 (1979).
[CrossRef]

Becouarn, L.

Berger, V.

P. Bravetti, A. Fiore, V. Berger, E. Rosencher, J. Nagle, and O. Gauthier- Lafaye, “5.2–5.6-μm source tunable by frequency conversion in a GaAs-based waveguide,” Opt. Lett. 23, 331–333 (1998).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett. 71, 3622–3624 (1997).
[CrossRef]

Bhat, R.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and Neo Anoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

Bijlani, B.

Bijlani, B. J.

Bliss, D. F.

Bravetti, P.

P. Bravetti, A. Fiore, V. Berger, E. Rosencher, J. Nagle, and O. Gauthier- Lafaye, “5.2–5.6-μm source tunable by frequency conversion in a GaAs-based waveguide,” Opt. Lett. 23, 331–333 (1998).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett. 71, 3622–3624 (1997).
[CrossRef]

Byer, R. L.

Caneau, C.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and Neo Anoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

Chaitanya Kumar, S.

Ducci, S.

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94, 171110 (2009).
[CrossRef]

Dunn, M. H.

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286, 1513–1517 (1999).
[CrossRef] [PubMed]

Ebrahimzadeh, M.

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286, 1513–1517 (1999).
[CrossRef] [PubMed]

Ebrahim-Zadeh, M.

Emmerichs, U.

S. Woutersen, U. Emmerichs, and H. J. Bakker, “Femtosecond mid-IR pump-probe spectroscopy of liquid water: evidence for a two-component structure,” Science 278, 658–660 (1997).
[CrossRef]

Erdelyi, M.

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72, 947–952 (2001).
[CrossRef]

Esteban-Martin, A.

Favero, I.

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94, 171110 (2009).
[CrossRef]

Feigelson, R. S.

Fejer, M. M.

Fiore, A.

P. Bravetti, A. Fiore, V. Berger, E. Rosencher, J. Nagle, and O. Gauthier- Lafaye, “5.2–5.6-μm source tunable by frequency conversion in a GaAs-based waveguide,” Opt. Lett. 23, 331–333 (1998).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett. 71, 3622–3624 (1997).
[CrossRef]

Fraser, M.

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72, 947–952 (2001).
[CrossRef]

Friedfeld, S.

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72, 947–952 (2001).
[CrossRef]

Gauthier- Lafaye, O.

Geiser, P.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44, 699–710 (2006).
[CrossRef]

Gerard, B.

Ghiglieno, F.

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94, 171110 (2009).
[CrossRef]

Gordon, L. A.

Guillotel, E.

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94, 171110 (2009).
[CrossRef]

Hagan, D. J.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” Opt. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

Han, J.

P. Abolghasem, J. Han, A. Arjmand, B. J. Bijlani, and A. S. Helmy, “Highly efficient second-Harmonic generation in monolithic matching-layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[CrossRef]

Han, J. B.

Harris, J. S.

Helmy, A. S.

Hum, D. S.

D. S. Hum and M. M. Fejer, “Recent advances in crystal optics,” C. R. Phys. 8, 180–198 (2007).
[CrossRef]

Hutchings, D. C.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[CrossRef]

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” Opt. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

Kang, D.

Kang, J. U.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[CrossRef]

Khorsandi, A.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44, 699–710 (2006).
[CrossRef]

Koza, M. A.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and Neo Anoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

Kuo, P. S.

Lallier, E.

Langlois, C.

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94, 171110 (2009).
[CrossRef]

Laurent, N.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett. 71, 3622–3624 (1997).
[CrossRef]

Leleux, D.

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72, 947–952 (2001).
[CrossRef]

Leo, G.

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94, 171110 (2009).
[CrossRef]

Levi, O.

Muhairi, A. A.

S. J. Wagner, A. A. Muhairi, J. S. Aitchison, and A. S. Helmy, “Modeling and optimization of quasi-phase matching via domain-disordering,” IEEE J. Quantum Electron. 44, 424–429 (2008).
[CrossRef]

Nagle, J.

P. Bravetti, A. Fiore, V. Berger, E. Rosencher, J. Nagle, and O. Gauthier- Lafaye, “5.2–5.6-μm source tunable by frequency conversion in a GaAs-based waveguide,” Opt. Lett. 23, 331–333 (1998).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett. 71, 3622–3624 (1997).
[CrossRef]

Pinguet, T. J.

Rajhel, A.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and Neo Anoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

Ravaro, M.

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94, 171110 (2009).
[CrossRef]

Rehle, D.

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72, 947–952 (2001).
[CrossRef]

Ricolleau, C.

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94, 171110 (2009).
[CrossRef]

Rosencher, E.

P. Bravetti, A. Fiore, V. Berger, E. Rosencher, J. Nagle, and O. Gauthier- Lafaye, “5.2–5.6-μm source tunable by frequency conversion in a GaAs-based waveguide,” Opt. Lett. 23, 331–333 (1998).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett. 71, 3622–3624 (1997).
[CrossRef]

Sahay, P.

C. J. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection limits,” Sensors 9, 8230–8262 (2009).
[CrossRef]

Saraji, M.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44, 699–710 (2006).
[CrossRef]

Schade, W.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44, 699–710 (2006).
[CrossRef]

Schmitt, J. M.

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[CrossRef]

Sheik-Bahae, M.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” Opt. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

Soileau, M. J.

Stegeman, G. I.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[CrossRef]

Tittel, F.

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72, 947–952 (2001).
[CrossRef]

Van Stryland, E. W.

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” Opt. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, “Energy band-gap dependence of two-photon absorption,” Opt. Lett. 10, 490–492 (1985).
[CrossRef] [PubMed]

Vanherzeele, H.

Villeneuve, A.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[CrossRef]

Vodopyanov, K. L.

Wagner, S. J.

S. J. Wagner, A. A. Muhairi, J. S. Aitchison, and A. S. Helmy, “Modeling and optimization of quasi-phase matching via domain-disordering,” IEEE J. Quantum Electron. 44, 424–429 (2008).
[CrossRef]

Wang, C. J.

C. J. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection limits,” Sensors 9, 8230–8262 (2009).
[CrossRef]

Weyburne, D.

Wherrett, B. S.

Willer, U.

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44, 699–710 (2006).
[CrossRef]

Woodall, M. A.

Woutersen, S.

S. Woutersen, U. Emmerichs, and H. J. Bakker, “Femtosecond mid-IR pump-probe spectroscopy of liquid water: evidence for a two-component structure,” Science 278, 658–660 (1997).
[CrossRef]

Wu, Y. S.

Yoo, S. J. B.

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and Neo Anoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

Yu, X.

Zheng, D.

Appl. Phys. B (1)

D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72, 947–952 (2001).
[CrossRef]

Appl. Phys. Lett. (3)

E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94, 171110 (2009).
[CrossRef]

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett. 71, 3622–3624 (1997).
[CrossRef]

S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and Neo Anoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996).
[CrossRef]

C. R. Phys. (1)

D. S. Hum and M. M. Fejer, “Recent advances in crystal optics,” C. R. Phys. 8, 180–198 (2007).
[CrossRef]

IEEE J. Quantum Electron. (3)

S. J. Wagner, A. A. Muhairi, J. S. Aitchison, and A. S. Helmy, “Modeling and optimization of quasi-phase matching via domain-disordering,” IEEE J. Quantum Electron. 44, 424–429 (2008).
[CrossRef]

R. A. Baumgartner and R. L. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron. 15, 432–444 (1979).
[CrossRef]

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. Abolghasem, J. Han, A. Arjmand, B. J. Bijlani, and A. S. Helmy, “Highly efficient second-Harmonic generation in monolithic matching-layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009).
[CrossRef]

J. Opt. Soc. Am. B (2)

Laser Photonics Rev. (1)

K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photonics Rev. 2, 11–25 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (1)

U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44, 699–710 (2006).
[CrossRef]

Opt. Lett. (8)

P. Bravetti, A. Fiore, V. Berger, E. Rosencher, J. Nagle, and O. Gauthier- Lafaye, “5.2–5.6-μm source tunable by frequency conversion in a GaAs-based waveguide,” Opt. Lett. 23, 331–333 (1998).
[CrossRef]

D. Zheng, L. A. Gordon, Y. S. Wu, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “16-μm infrared generation by difference-frequency mixing in diffusion-bonded stacked GaAs,” Opt. Lett. 23, 1010–1012 (1998).
[CrossRef]

A. S. Helmy, B. Bijlani, and P. Abolghasem, “Phase matching in monolithic Bragg reflection waveguide,” Opt. Lett. 32, 2399–2401 (2007).
[CrossRef] [PubMed]

J. B. Han, P. Abolghasem, D. Kang, B. J. Bijlani, and A. S. Helmy, “Difference-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 35, 2334–2336 (2010).
[CrossRef] [PubMed]

K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Optical parametric oscillation in quasi-phase-matched GaAs,” Opt. Lett. 29, 1912–1914 (2004).
[CrossRef] [PubMed]

P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. F. Bliss, and D. Weyburne, “GaAs optical parametric oscillator with circularly polarized and depolarized pump,” Opt. Lett. 32, 2735–2737 (2007).
[CrossRef] [PubMed]

B. J. Bijlani and A. S. Helmy, “Bragg reflection waveguide diode lasers,” Opt. Lett. 34, 3734–3736 (2009).
[CrossRef] [PubMed]

E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, “Energy band-gap dependence of two-photon absorption,” Opt. Lett. 10, 490–492 (1985).
[CrossRef] [PubMed]

Opt. Quantum Electron. (1)

M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” Opt. Quantum Electron. 27, 1296–1309 (1991).
[CrossRef]

Science (2)

M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286, 1513–1517 (1999).
[CrossRef] [PubMed]

S. Woutersen, U. Emmerichs, and H. J. Bakker, “Femtosecond mid-IR pump-probe spectroscopy of liquid water: evidence for a two-component structure,” Science 278, 658–660 (1997).
[CrossRef]

Sensors (1)

C. J. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection limits,” Sensors 9, 8230–8262 (2009).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Variation of the DF power as a function of pulsed pump wavelength for λ s = 1545.9   nm . Hollow and filled circles are the experimental data for type-I and type-II interactions, respectively. The dashed and solid lines are Lorentzian fits to the corresponding data. (Inset) Dependence of P DF on P p P s for type-I (hollow circles) and type-II (filled circles) interactions.

Fig. 2
Fig. 2

Normalized power spectral density (PSD) of the signal at 1545.9 nm ( λ s ) and the converted DF ( λ DF ) . (a) Type-I interaction, (b) type-II interaction. The central peak with the wavelength of 2 λ p is the second-order diffraction of the pump from the OSA internal grating.

Fig. 3
Fig. 3

DF power as a function of signal wavelength with the pump wavelength set at the degeneracy. The hollow and filled circles are the measured data for type-I and type-II interactions, respectively.

Fig. 4
Fig. 4

Signal and DF wavelengths as functions of pump wavelength for type-I and type-II interactions.

Fig. 5
Fig. 5

Variation of the DF power as a function of cw pump wavelength for λ s = 1545.9   nm . Hollow and filled circles are the experimental data for type-I and type-II interactions, respectively. The dashed and solid lines are Lorentzian fits to the corresponding data. (Inset) Dependence of P DF on P p P s for type-I (hollow circles) and type- II (filled circles) interactions.

Fig. 6
Fig. 6

Normalized PSD of the signal at 1545.9 nm ( λ s ) and the converted DF ( λ DF ) . (a) Type-I interaction, (b) type-II interaction. The central peak with the wavelength of 2 λ p is the second-order diffraction of the pump from the OSA internal grating.

Fig. 7
Fig. 7

DF power as a function of signal wavelength with the pump wavelength set at the degeneracy. The hollow circles and filled circles are the measured data for type-I and type-II cw interactions, respectively.

Fig. 8
Fig. 8

Simulated DF output power as a function of sample length, where the effects of TPA with coefficient α 2 , SPM with coefficient n 2 , GVM, and GVD are independently included. All curves were obtained with a 2 ps pulsed pump and a cw signal. P p and P s were set as 3.1 and 1.3 mW, respectively.

Fig. 9
Fig. 9

Simulated DF output power as a function of sample length, where the effects of TPA with coefficient α 2 and SPM with coefficient n 2 are independently included. All curves were obtained with cw pump and cw signal. P p and P s were set as 3.1 and 1.3 mW, respectively.

Fig. 10
Fig. 10

Simulated (a) DF power and (b) internal conversion efficiency η as functions of pump power for a sample with L = 1.5   mm . The solid line represents pulsed pumped DFG which includes the effects of SPM, TPA, GVM, and GVD with their numerical values summarized in Table 2; while the dashed line is the cw-pumped DFG which was obtained by including the effects of SPM and TPA.

Tables (2)

Tables Icon

Table 1 Comparison of Type-I and Type-II DFG Interactions with Pulsed-Wave and cw Pumps

Tables Icon

Table 2 Simulation Parameters of BRW

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E i ( x , y , z , t ) = A i ( z ) E i ( x , y ) exp [ j ( β i z ω i t ) ] ,
d A p d z = j κ p ν A s A DF   exp [ j Δ β z ] 1 v g , p d A p d t + j β 2 , p 2 d A p 2 d t 2 α 0 , p 2 A p [ α 2 , p 2 j 2 π n 2 , p λ p ] | A p | 2 A eff , p ( 3 ) A p ,
d A s d z = j κ s ν A p A DF   exp [ j Δ β z ] 1 v g , s d A s d t + j β 2 , s 2 d A s 2 d t 2 α 0 , s 2 A s [ α 2 , s 2 j 2 π n 2 , s λ s ] | A s | 2 A eff , s ( 3 ) A s ,
d A DF d z = j κ DF ν A p A s   exp [ j Δ β z ] 1 v g , DF d A DF d t + j β 2 , DF 2 d A DF 2 d t 2 α 0 , DF 2 A DF [ α 2 , DF 2 j 2 π n 2 , DF λ DF ] | A DF | 2 A eff , DF ( 3 ) A DF ,
κ i = ( 8 π 2 d eff 2 n p n s n DF c ϵ 0 λ i 2 ) 1 / 2 ,

Metrics