Abstract

In the past 50 years since Maiman’s first demonstration of the ruby laser [Nature 187, 493 (1960) ], numerous types of laser ions and host materials have been developed with emission wavelengths from the ultraviolet to the mid-infrared spectral range. Despite the rapid progress in semiconductor laser technology, solid-state lasers still play an important role in many fields in science, industry, and daily life. In this paper we give a brief introduction into the fabrication techniques for laser crystals and the interplay between the host material and the laser ion. We review the current state of the art of some important solid-state laser concepts for continuous wave and pulsed operation modes. Finally, we present a selection of potential well-noted topics which may be important in future research and for the development of novel solid-state lasers.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
    [CrossRef]
  2. J. E. Geusic, H. M. Marcos, and L. G. V. Uitert, “Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium, and gadolinium garnets,” Appl. Phys. Lett. 4, 182–184 (1964).
    [CrossRef]
  3. T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24, 895–912 (1988).
    [CrossRef]
  4. T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
    [CrossRef]
  5. L. Esterowitz, “Diode-pumped holmium, thulium, and erbium lasers between 2 and 3 μm operating cw at room temperature,” Opt. Eng. (Bellingham) 29, 676–680 (1990).
    [CrossRef]
  6. P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16, 1089–1091 (1991).
    [CrossRef] [PubMed]
  7. S. A. Payne, W. F. Krupke, L. K. Smith, L. D. DeLoach, and W. L. Kway, “Laser properties of Yb in fluorapatite and comparison with other Yb-doped gain media,” in Conference on Lasers and Electro-Optics, Vol. 12 of OSA Technical Digest (Optical Society of America, 1992), p. 540.
  8. J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
    [CrossRef]
  9. B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, and E. V. Zharikov, “Tunable room-temperature cw-laser action in Cr3+:GdScGa-garnet,” Appl. Phys. B 30, 117–120 (1983).
    [CrossRef]
  10. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. Newkirk, “Laser performance of LiSrAlF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989).
    [CrossRef]
  11. P. F. Moulton, “Ti-doped sapphire: A tunable solid-state laser,” Optics News 8, 9 (1982).
    [CrossRef]
  12. P. Albers, E. Stark, and G. Huber, “Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire,” J. Opt. Soc. Am. B 3, 134–139 (1986).
    [CrossRef]
  13. G. M. Zverev and A. V. Shestakov, “Tunable near-infrared oxide crystal lasers,” in Tunable Solid State Lasers, OSA Proceedings Series, M.L.Shand and H.P.Jenssen, eds. (Optical Society of America, 1989), pp. 66–70.
  14. W. Jia, B. M. Tissue, L. Lu, K. R. Hoffmann, and W. M. Yen, “Near-infrared luminescence in Cr,Ca-doped yttrium aluminium garnet,” in Advanced Solid-State Lasers, OSA Proceedings Series, G.Dubé and L.Chase, eds. (Optical Society of America, 1991), pp. 87–91.
  15. S. Kück, K. Petermann, and G. Huber, “Spectroscopic investigation of the Cr4+-center in YAG,” in Advanced Solid-State Lasers, OSA Proceedings Series, G.Dubé and L.Chase, eds. (Optical Society of America, 1991), p. 92–94.
  16. V. Petričević, S. K. Gayen, and R. R. Alfano, “Laser action in chromium-activated forsterite for near-infrared excitation: is Cr4+ the lasing ion?” Appl. Phys. Lett. 53, 2590–2592 (1988).
    [CrossRef]
  17. R. H. Page, L. D. DeLoach, G. D. Wilke, S. A. Payne, and W. F. Krupke, “A new class of tunable mid-IR lasers based on Cr2+-doped II-VI compounds,” in Conference on Lasers and Electro-Optics, Vol. 15 of OSA Technical Digest (Optical Society of America, 1995), paper CWH5.
  18. A. A. Kaminskii, Laser Crystals: Their Physics and Properties (Springer Verlag, 1990).
  19. U. Keller, “Ultrafast solid-state lasers,” in Landolt-Börnstein Laser Physics and Applications. Subvolume B: Laser Systems Part I, G.Herziger, H.Weber, and R.Proprawe, eds. (Springer Verlag, 2007), pp. 33–67.
  20. S. Kück, G. Huber, and M. Pollnau, Springer Handbook of Lasers and Optics: Solid-State Lasers (Springer, 2007), pp. 614–695.
  21. V. V. Kochurikhin, K. Shimamura, and T. Fukuda, “Czochralski growth of gadolinium vanadate single crystals,” J. Cryst. Growth 151, 393–395 (1995).
    [CrossRef]
  22. P. V. Klevtsov and L. P. Kozeeva, “Synthesis and X-ray and thermal studies of potassium rare-earth tungstates, KLn(WO4)2, Ln=rate-earth element,” Sov. Phys. Dokl. 14, 185–187 (1969).
  23. R. Solé, V. Nikolov, X. Ruiz, J. Gavaldà, X. Solans, M. Aguiló, and F. Díaz, “Growth of β-KGd1−xNdx(WO4)2 single crystals in K2W2O7 solvents,” J. Cryst. Growth 169, 600–603 (1996).
    [CrossRef]
  24. D. B. Joyce and F. Schmid, “Progress in the growth of large scale Ti:sapphire crystals by the heat exchanger method (HEM) for petawatt class lasers,” J. Cryst. Growth 312, 1138–1141 (2010).
    [CrossRef]
  25. V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237–239, 879–883 (2002).
    [CrossRef]
  26. R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, have prepared a manuscript to be called “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides.”
  27. C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett. 35, 2302–2304 (2010).
    [CrossRef] [PubMed]
  28. L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
    [CrossRef]
  29. J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83, 1101–1103 (2003).
    [CrossRef]
  30. J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81, 4324–4326 (2002).
    [CrossRef]
  31. Y. E. Romanyuk, C. N. Borca, M. Pollnau, S. Rivier, V. Petrov, and U. Griebner, “Yb-doped KY(WO4)2 planar waveguide laser,” Opt. Lett. 31, 53–55 (2006).
    [CrossRef] [PubMed]
  32. T. Yoshitake, G. Shiraishi, and K. Nagayama, “Elimination of droplets using a vane velocity filter for pulsed laser ablation of FeSi2,” Appl. Surf. Sci. 197–198, 379–383 (2002).
    [CrossRef]
  33. H. Kühn, S. Heinrich, A. Kahn, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, and G. Huber, “Monocrystalline Yb3+:(Gd,Lu)2O3 channel waveguide laser at 976.8 nm,” Opt. Lett. 34, 2718–2720 (2009).
    [CrossRef] [PubMed]
  34. A. Kahn, S. Heinrich, H. Kühn, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, and G. Huber, “Low threshold monocrystalline Nd:(Gd,Lu)2O3 channel waveguide laser,” Opt. Express 17, 4412–4418 (2009).
    [CrossRef] [PubMed]
  35. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide-laser written with a femtosecond-laser,” Opt. Express 18, 16035–16041 (2010).
    [CrossRef] [PubMed]
  36. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100, 131–135 (2010).
    [CrossRef]
  37. B. He, J. Zhou, Q. Lou, Y. Xue, Z. Li, W. Wang, J. Dong, Y. Wei, and W. Chen, “1.75-kilowatt continuous-wave output fiber laser using homemade ytterbium-doped large-core fiber,” Microwave Opt. Technol. Lett. 52, 1668–1671 (2010).
    [CrossRef]
  38. P. S. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
    [CrossRef]
  39. G. H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals (Wiley-Interscience, 1968).
  40. L. Fornasiero, “Nd3+- und Tm3+-dotierte sesquioxide,” Ph.D. dissertation (University of Hamburg, 1999).
  41. S. A. Payne, L. L. Chase, L.-K. Smith, L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
    [CrossRef]
  42. Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions. I,” J. Phys. Soc. Jpn. 9, 753–766 (1954).
    [CrossRef]
  43. Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions. II,” J. Phys. Soc. Jpn. 9, 766–779 (1954).
    [CrossRef]
  44. T. Gün, P. Metz, K. Petermann, and G. Huber, “Power scaling of GaN-laser diode pumped Pr:LiYF4 lasers,” in 4th EPS-QEOD Europhoton Conference, Technical Digest (2010), paper FrA5.
  45. V. G. Ostroumov, W. R. Seelert, L. E. Hunziker, C. Ihli, A. Richter, E. Heumann, and G. Huber, “UV generation by intracavity frequency doubling of an OPS-pumped Pr:YLF laser with 500 mW of cw power at 360 nm,” in Photonic West, Vol. 6451 of Technical Program and Proceedings of SPIE (2007), p. 6451-02.
  46. V. G. Ostroumov, W. R. Seelert, L. E. Hunziker, and C. Ihli, “522/261 nm cw generation in a Pr3+:LiYF4 laser pumped by an optically pumped semiconductor laser,” in Photonics West, Vol. 6451 of Technical Program and Proceedings of SPIE (2007), p. 6451-03.
  47. N.-O. Hansen, A. R. Bellancourt, U. Weichmann, and G. Huber, “Efficient green continuous-wave lasing of blue-diode-pumped solid-state lasers based on praseodymium-doped LiYF4,” Appl. Opt. 49, 3864–3868 (2010).
    [CrossRef] [PubMed]
  48. E. Heumann, S. Bär, and H. Kretschmann, “Diode-pumped continuous-wave green upconversion lasing of Er3+:LiLuF4 using multipass pumping,” Opt. Lett. 27, 1699–1701 (2002).
    [CrossRef]
  49. C. D. Marshall, J. A. Speth, S. A. Payne, W. F. Krupke, G. J. Quarles, V. Castillo, and B. H. T. Chai, “Ultraviolet laser emission properties of Ce3+-doped LiSrAlF6 and LiCaAlF6,” J. Opt. Soc. Am. B 11, 2054–2065 (1994).
    [CrossRef]
  50. R. Lavi, S. Jackel, Y. Tzuk, M. Winik, E. Lebiush, M. Katz, and I. Paiss, “Efficient pumping scheme for neodymium-doped materials by direct excitation of the upper lasing level,” Appl. Opt. 38, 7382–7385 (1999).
    [CrossRef]
  51. M. A. Dubinskii, V. V. Semashko, A. K. Naumov, R. Y. Abdulsabirov, and S. L. Korableva, “Spectroscopy of a new active medium of a solid-state UV laser with broadband single-pass gain,” Laser Phys. 3, 216–217 (1993).
  52. N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, “Neodymium concentration dependence of 0.94-, 1.06- and 1.34-μm laser emission and of heating effects under 809- and 885-nm diode laser pumping of Nd:YAG,” Appl. Phys. B 82, 599–605 (2006).
    [CrossRef]
  53. D. Sangla, M. Castaing, F. Balembois, and P. Georges, “Highly efficient Nd:YVO4 laser by direct in-band diode pumping at 914 nm,” Opt. Lett. 34, 2159–2161 (2009).
    [CrossRef] [PubMed]
  54. D. Sangla, F. Balembois, and P. Georges, “Nd:YAG laser diode-pumped directly into the emitting level at 938 nm,” Opt. Express 17, 10091–10097 (2009).
    [CrossRef] [PubMed]
  55. T. Kellner, C. Czeranowsky, and G. Huber, “Laser operation of Nd:YVO4 at 915 nm and 1064 nm under direct excitation of the upper laser manifold,” in Novel Lasers and Devices—Basic Aspects, OSA Technical Digest (Optical Society of America, 1999), pp. 107–109.
  56. H. Bruesselbach and D. S. Sumida, “A 2.65-kW Yb:YAG single-rod laser,” IEEE J. Sel. Top. Quantum Electron. 11, 600–603 (2005).
    [CrossRef]
  57. S. J. McNaught, H. Komine, S. B. Weiss, R. Simpson, A. M. F. Johnson, J. Machan, C. P. Asman, M. Weber, G. C. Jones, M. M. Valley, A. Jankevics, D. Burchman, M. McClellan, J. Sollee, J. Marmo, and H. Injeyan, “100 kW coherently combined slab MOPAs,” in Conference on Lasers and Electro-Optics, Vol. 15 of OSA Technical Digest (Optical Society of America, 2009), paper CThA1.
  58. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
    [CrossRef]
  59. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: Results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598–609 (2007).
    [CrossRef]
  60. O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97, 369–373 (2009).
    [CrossRef]
  61. J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007).
    [CrossRef]
  62. See www.ipgphotonics.com.
  63. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient in-band pumped Er:YAG laser with 60 W of output at 1645 nm,” Opt. Lett. 31, 754–756 (2006).
    [CrossRef] [PubMed]
  64. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12, 6088–6092 (2004).
    [CrossRef] [PubMed]
  65. D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, “Ultrabroadband pulses in the two-cycle regime by SESAM-assisted Kerr-lens modelocking of an all-solid-state Ti:sapphire laser,” OSA Trends Opt. Photonics Ser. 26, 358–365 (1999).
  66. U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24, 411–413 (1999).
    [CrossRef]
  67. U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser: addenda,” Opt. Lett. 24, 920 (1999).
    [CrossRef]
  68. R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, “Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser,” Opt. Lett. 26, 373–375 (2001).
    [CrossRef]
  69. S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
    [CrossRef]
  70. L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. 38, 1331–1338 (2002).
    [CrossRef]
  71. A. Oehler, M. Stumpf, S. Pekarek, T. Südmeyer, K. Weingarten, and U. Keller, “Picosecond diode-pumped 1.5 μm Er,Yb:glass lasers operating at 10–100 GHz repetition rate,” Appl. Phys. B 99, 53–62 (2010).
    [CrossRef]
  72. U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry–Perot saturable absorber,” Opt. Lett. 17, 505–507 (1992).
    [CrossRef] [PubMed]
  73. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
    [CrossRef]
  74. S. V. Marchese, C. R. E. Baer, A. G. Engqvist, S. Hashimoto, D. J. H. C. Maas, M. Golling, T. Südmeyer, and U. Keller, “Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level,” Opt. Express 16, 6397–6407 (2008).
    [CrossRef] [PubMed]
  75. J. Neuhaus, D. Bauer, J. Zhang, A. Killi, J. Kleinbauer, M. Kumkar, S. Weiler, M. Guina, D. H. Sutter, and T. Dekorsy, “Subpicosecond thin-disk laser oscillator with pulse energies of up to 25.9 microjoules by use of an active multipass geometry,” Opt. Express 16, 20530–20539 (2008).
    [CrossRef] [PubMed]
  76. T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97, 281–295 (2009).
    [CrossRef]
  77. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35, 94–96 (2010).
    [CrossRef] [PubMed]
  78. P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400 W Yb:YAG Innoslab fs-amplifier,” Opt. Express 17, 12230–12245 (2009).
    [CrossRef] [PubMed]
  79. G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. B 16, 376–388 (1999).
    [CrossRef]
  80. A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421, 51–54 (2003).
    [CrossRef] [PubMed]
  81. A. K. McQuillan, W. R. L. Clements, and B. P. Stoicheff, “Stimulated Raman emission in diamond: Spectrum, gain, and angular distribution of intensity,” Phys. Rev. A 1, 628–635 (1970).
    [CrossRef]
  82. S. C. Rand and L. G. DeShazer, “Visible color-center laser in diamond,” Opt. Lett. 10, 481–483 (1985).
    [CrossRef] [PubMed]
  83. I. Friel, S. L. Clewes, H. D. Dhillon, N. Perkins, D. J. Twitchen, and G. A. Scarsbrook, “Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition,” Diamond Relat. Mater. 18, 808–815 (2009).
    [CrossRef]
  84. G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064 μm,” Opt. Eng. (Bellingham) 46, 064002 (2007).
    [CrossRef]
  85. S. Koizumi, K. Watanabe, M. Hasegawa, and H. Kanda, “Ultraviolet emission from a diamond p-n junction,” Science 292, 1899–1901 (2001).
    [CrossRef] [PubMed]

2010 (8)

D. B. Joyce and F. Schmid, “Progress in the growth of large scale Ti:sapphire crystals by the heat exchanger method (HEM) for petawatt class lasers,” J. Cryst. Growth 312, 1138–1141 (2010).
[CrossRef]

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett. 35, 2302–2304 (2010).
[CrossRef] [PubMed]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide-laser written with a femtosecond-laser,” Opt. Express 18, 16035–16041 (2010).
[CrossRef] [PubMed]

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100, 131–135 (2010).
[CrossRef]

B. He, J. Zhou, Q. Lou, Y. Xue, Z. Li, W. Wang, J. Dong, Y. Wei, and W. Chen, “1.75-kilowatt continuous-wave output fiber laser using homemade ytterbium-doped large-core fiber,” Microwave Opt. Technol. Lett. 52, 1668–1671 (2010).
[CrossRef]

N.-O. Hansen, A. R. Bellancourt, U. Weichmann, and G. Huber, “Efficient green continuous-wave lasing of blue-diode-pumped solid-state lasers based on praseodymium-doped LiYF4,” Appl. Opt. 49, 3864–3868 (2010).
[CrossRef] [PubMed]

A. Oehler, M. Stumpf, S. Pekarek, T. Südmeyer, K. Weingarten, and U. Keller, “Picosecond diode-pumped 1.5 μm Er,Yb:glass lasers operating at 10–100 GHz repetition rate,” Appl. Phys. B 99, 53–62 (2010).
[CrossRef]

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35, 94–96 (2010).
[CrossRef] [PubMed]

2009 (8)

P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400 W Yb:YAG Innoslab fs-amplifier,” Opt. Express 17, 12230–12245 (2009).
[CrossRef] [PubMed]

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97, 281–295 (2009).
[CrossRef]

I. Friel, S. L. Clewes, H. D. Dhillon, N. Perkins, D. J. Twitchen, and G. A. Scarsbrook, “Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition,” Diamond Relat. Mater. 18, 808–815 (2009).
[CrossRef]

D. Sangla, M. Castaing, F. Balembois, and P. Georges, “Highly efficient Nd:YVO4 laser by direct in-band diode pumping at 914 nm,” Opt. Lett. 34, 2159–2161 (2009).
[CrossRef] [PubMed]

D. Sangla, F. Balembois, and P. Georges, “Nd:YAG laser diode-pumped directly into the emitting level at 938 nm,” Opt. Express 17, 10091–10097 (2009).
[CrossRef] [PubMed]

O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97, 369–373 (2009).
[CrossRef]

H. Kühn, S. Heinrich, A. Kahn, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, and G. Huber, “Monocrystalline Yb3+:(Gd,Lu)2O3 channel waveguide laser at 976.8 nm,” Opt. Lett. 34, 2718–2720 (2009).
[CrossRef] [PubMed]

A. Kahn, S. Heinrich, H. Kühn, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, and G. Huber, “Low threshold monocrystalline Nd:(Gd,Lu)2O3 channel waveguide laser,” Opt. Express 17, 4412–4418 (2009).
[CrossRef] [PubMed]

2008 (2)

2007 (3)

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064 μm,” Opt. Eng. (Bellingham) 46, 064002 (2007).
[CrossRef]

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007).
[CrossRef]

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: Results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598–609 (2007).
[CrossRef]

2006 (4)

2005 (2)

H. Bruesselbach and D. S. Sumida, “A 2.65-kW Yb:YAG single-rod laser,” IEEE J. Sel. Top. Quantum Electron. 11, 600–603 (2005).
[CrossRef]

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[CrossRef]

2004 (1)

2003 (2)

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421, 51–54 (2003).
[CrossRef] [PubMed]

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83, 1101–1103 (2003).
[CrossRef]

2002 (5)

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81, 4324–4326 (2002).
[CrossRef]

T. Yoshitake, G. Shiraishi, and K. Nagayama, “Elimination of droplets using a vane velocity filter for pulsed laser ablation of FeSi2,” Appl. Surf. Sci. 197–198, 379–383 (2002).
[CrossRef]

E. Heumann, S. Bär, and H. Kretschmann, “Diode-pumped continuous-wave green upconversion lasing of Er3+:LiLuF4 using multipass pumping,” Opt. Lett. 27, 1699–1701 (2002).
[CrossRef]

V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237–239, 879–883 (2002).
[CrossRef]

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. 38, 1331–1338 (2002).
[CrossRef]

2001 (2)

1999 (5)

1996 (2)

R. Solé, V. Nikolov, X. Ruiz, J. Gavaldà, X. Solans, M. Aguiló, and F. Díaz, “Growth of β-KGd1−xNdx(WO4)2 single crystals in K2W2O7 solvents,” J. Cryst. Growth 169, 600–603 (1996).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

1995 (1)

V. V. Kochurikhin, K. Shimamura, and T. Fukuda, “Czochralski growth of gadolinium vanadate single crystals,” J. Cryst. Growth 151, 393–395 (1995).
[CrossRef]

1994 (2)

C. D. Marshall, J. A. Speth, S. A. Payne, W. F. Krupke, G. J. Quarles, V. Castillo, and B. H. T. Chai, “Ultraviolet laser emission properties of Ce3+-doped LiSrAlF6 and LiCaAlF6,” J. Opt. Soc. Am. B 11, 2054–2065 (1994).
[CrossRef]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

1993 (2)

M. A. Dubinskii, V. V. Semashko, A. K. Naumov, R. Y. Abdulsabirov, and S. L. Korableva, “Spectroscopy of a new active medium of a solid-state UV laser with broadband single-pass gain,” Laser Phys. 3, 216–217 (1993).

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

1992 (2)

S. A. Payne, L. L. Chase, L.-K. Smith, L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry–Perot saturable absorber,” Opt. Lett. 17, 505–507 (1992).
[CrossRef] [PubMed]

1991 (1)

1990 (1)

L. Esterowitz, “Diode-pumped holmium, thulium, and erbium lasers between 2 and 3 μm operating cw at room temperature,” Opt. Eng. (Bellingham) 29, 676–680 (1990).
[CrossRef]

1989 (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. Newkirk, “Laser performance of LiSrAlF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989).
[CrossRef]

1988 (3)

V. Petričević, S. K. Gayen, and R. R. Alfano, “Laser action in chromium-activated forsterite for near-infrared excitation: is Cr4+ the lasing ion?” Appl. Phys. Lett. 53, 2590–2592 (1988).
[CrossRef]

T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24, 895–912 (1988).
[CrossRef]

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
[CrossRef]

1986 (1)

1985 (1)

1983 (1)

B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, and E. V. Zharikov, “Tunable room-temperature cw-laser action in Cr3+:GdScGa-garnet,” Appl. Phys. B 30, 117–120 (1983).
[CrossRef]

1982 (1)

1980 (1)

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[CrossRef]

1970 (1)

A. K. McQuillan, W. R. L. Clements, and B. P. Stoicheff, “Stimulated Raman emission in diamond: Spectrum, gain, and angular distribution of intensity,” Phys. Rev. A 1, 628–635 (1970).
[CrossRef]

1969 (1)

P. V. Klevtsov and L. P. Kozeeva, “Synthesis and X-ray and thermal studies of potassium rare-earth tungstates, KLn(WO4)2, Ln=rate-earth element,” Sov. Phys. Dokl. 14, 185–187 (1969).

1964 (1)

J. E. Geusic, H. M. Marcos, and L. G. V. Uitert, “Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium, and gadolinium garnets,” Appl. Phys. Lett. 4, 182–184 (1964).
[CrossRef]

1960 (1)

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
[CrossRef]

1954 (2)

Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions. I,” J. Phys. Soc. Jpn. 9, 753–766 (1954).
[CrossRef]

Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions. II,” J. Phys. Soc. Jpn. 9, 766–779 (1954).
[CrossRef]

Abdulsabirov, R. Y.

M. A. Dubinskii, V. V. Semashko, A. K. Naumov, R. Y. Abdulsabirov, and S. L. Korableva, “Spectroscopy of a new active medium of a solid-state UV laser with broadband single-pass gain,” Laser Phys. 3, 216–217 (1993).

Aggarwal, R. L.

Aguiló, M.

R. Solé, V. Nikolov, X. Ruiz, J. Gavaldà, X. Solans, M. Aguiló, and F. Díaz, “Growth of β-KGd1−xNdx(WO4)2 single crystals in K2W2O7 solvents,” J. Cryst. Growth 169, 600–603 (1996).
[CrossRef]

Albers, P.

Alfano, R. R.

V. Petričević, S. K. Gayen, and R. R. Alfano, “Laser action in chromium-activated forsterite for near-infrared excitation: is Cr4+ the lasing ion?” Appl. Phys. Lett. 53, 2590–2592 (1988).
[CrossRef]

Andersen, T. V.

Angelow, G.

Apolonski, A.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[CrossRef]

Asman, C. P.

S. J. McNaught, H. Komine, S. B. Weiss, R. Simpson, A. M. F. Johnson, J. Machan, C. P. Asman, M. Weber, G. C. Jones, M. M. Valley, A. Jankevics, D. Burchman, M. McClellan, J. Sollee, J. Marmo, and H. Injeyan, “100 kW coherently combined slab MOPAs,” in Conference on Lasers and Electro-Optics, Vol. 15 of OSA Technical Digest (Optical Society of America, 2009), paper CThA1.

Asom, M. T.

Aus der Au, J.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Backus, S.

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421, 51–54 (2003).
[CrossRef] [PubMed]

Baer, C. R. E.

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett. 35, 2302–2304 (2010).
[CrossRef] [PubMed]

O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97, 369–373 (2009).
[CrossRef]

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97, 281–295 (2009).
[CrossRef]

S. V. Marchese, C. R. E. Baer, A. G. Engqvist, S. Hashimoto, D. J. H. C. Maas, M. Golling, T. Südmeyer, and U. Keller, “Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level,” Opt. Express 16, 6397–6407 (2008).
[CrossRef] [PubMed]

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, have prepared a manuscript to be called “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides.”

Balembois, F.

Bär, S.

Baronowski, M.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064 μm,” Opt. Eng. (Bellingham) 46, 064002 (2007).
[CrossRef]

Bartels, R. A.

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421, 51–54 (2003).
[CrossRef] [PubMed]

Bass, M.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064 μm,” Opt. Eng. (Bellingham) 46, 064002 (2007).
[CrossRef]

Bauer, D.

Beil, K.

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, have prepared a manuscript to be called “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides.”

Bellancourt, A. R.

Benabid, F.

O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97, 369–373 (2009).
[CrossRef]

Bennett, J. M.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064 μm,” Opt. Eng. (Bellingham) 46, 064002 (2007).
[CrossRef]

Bisson, J. F.

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83, 1101–1103 (2003).
[CrossRef]

Boiko, A.

Bolz, A.

V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237–239, 879–883 (2002).
[CrossRef]

Borca, C. N.

Boyd, G. D.

Bradley, J. D. B.

Brauch, U.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

Braun, B.

G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. B 16, 376–388 (1999).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Bruesselbach, H.

H. Bruesselbach and D. S. Sumida, “A 2.65-kW Yb:YAG single-rod laser,” IEEE J. Sel. Top. Quantum Electron. 11, 600–603 (2005).
[CrossRef]

Burchman, D.

S. J. McNaught, H. Komine, S. B. Weiss, R. Simpson, A. M. F. Johnson, J. Machan, C. P. Asman, M. Weber, G. C. Jones, M. M. Valley, A. Jankevics, D. Burchman, M. McClellan, J. Sollee, J. Marmo, and H. Injeyan, “100 kW coherently combined slab MOPAs,” in Conference on Lasers and Electro-Optics, Vol. 15 of OSA Technical Digest (Optical Society of America, 2009), paper CThA1.

Butler, J. E.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064 μm,” Opt. Eng. (Bellingham) 46, 064002 (2007).
[CrossRef]

Byer, R. L.

T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24, 895–912 (1988).
[CrossRef]

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
[CrossRef]

Calmano, T.

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide-laser written with a femtosecond-laser,” Opt. Express 18, 16035–16041 (2010).
[CrossRef] [PubMed]

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100, 131–135 (2010).
[CrossRef]

Castaing, M.

Castillo, V.

Chai, B. H. T.

Chase, L. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

S. A. Payne, L. L. Chase, L.-K. Smith, L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. Newkirk, “Laser performance of LiSrAlF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989).
[CrossRef]

Chen, W.

B. He, J. Zhou, Q. Lou, Y. Xue, Z. Li, W. Wang, J. Dong, Y. Wei, and W. Chen, “1.75-kilowatt continuous-wave output fiber laser using homemade ytterbium-doped large-core fiber,” Microwave Opt. Technol. Lett. 52, 1668–1671 (2010).
[CrossRef]

Chen, Y.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064 μm,” Opt. Eng. (Bellingham) 46, 064002 (2007).
[CrossRef]

U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser: addenda,” Opt. Lett. 24, 920 (1999).
[CrossRef]

U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24, 411–413 (1999).
[CrossRef]

Chiu, T. H.

Cho, S. H.

Choi, H. K.

Christov, I. P.

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421, 51–54 (2003).
[CrossRef] [PubMed]

Clarkson, W. A.

Clements, W. R. L.

A. K. McQuillan, W. R. L. Clements, and B. P. Stoicheff, “Stimulated Raman emission in diamond: Spectrum, gain, and angular distribution of intensity,” Phys. Rev. A 1, 628–635 (1970).
[CrossRef]

Clewes, S. L.

I. Friel, S. L. Clewes, H. D. Dhillon, N. Perkins, D. J. Twitchen, and G. A. Scarsbrook, “Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition,” Diamond Relat. Mater. 18, 808–815 (2009).
[CrossRef]

Couny, F.

O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97, 369–373 (2009).
[CrossRef]

Czeranowsky, C.

T. Kellner, C. Czeranowsky, and G. Huber, “Laser operation of Nd:YVO4 at 915 nm and 1064 nm under direct excitation of the upper laser manifold,” in Novel Lasers and Devices—Basic Aspects, OSA Technical Digest (Optical Society of America, 1999), pp. 107–109.

Dekorsy, T.

DeLoach, L. D.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

S. A. Payne, W. F. Krupke, L. K. Smith, L. D. DeLoach, and W. L. Kway, “Laser properties of Yb in fluorapatite and comparison with other Yb-doped gain media,” in Conference on Lasers and Electro-Optics, Vol. 12 of OSA Technical Digest (Optical Society of America, 1992), p. 540.

R. H. Page, L. D. DeLoach, G. D. Wilke, S. A. Payne, and W. F. Krupke, “A new class of tunable mid-IR lasers based on Cr2+-doped II-VI compounds,” in Conference on Lasers and Electro-Optics, Vol. 15 of OSA Technical Digest (Optical Society of America, 1995), paper CWH5.

DeShazer, L. G.

Dewees, R. V.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064 μm,” Opt. Eng. (Bellingham) 46, 064002 (2007).
[CrossRef]

Dhillon, H. D.

I. Friel, S. L. Clewes, H. D. Dhillon, N. Perkins, D. J. Twitchen, and G. A. Scarsbrook, “Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition,” Diamond Relat. Mater. 18, 808–815 (2009).
[CrossRef]

Díaz, F.

R. Solé, V. Nikolov, X. Ruiz, J. Gavaldà, X. Solans, M. Aguiló, and F. Díaz, “Growth of β-KGd1−xNdx(WO4)2 single crystals in K2W2O7 solvents,” J. Cryst. Growth 169, 600–603 (1996).
[CrossRef]

Dieke, G. H.

G. H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals (Wiley-Interscience, 1968).

Dombi, P.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[CrossRef]

Dong, J.

B. He, J. Zhou, Q. Lou, Y. Xue, Z. Li, W. Wang, J. Dong, Y. Wei, and W. Chen, “1.75-kilowatt continuous-wave output fiber laser using homemade ytterbium-doped large-core fiber,” Microwave Opt. Technol. Lett. 52, 1668–1671 (2010).
[CrossRef]

Dubinskii, M. A.

M. A. Dubinskii, V. V. Semashko, A. K. Naumov, R. Y. Abdulsabirov, and S. L. Korableva, “Spectroscopy of a new active medium of a solid-state UV laser with broadband single-pass gain,” Laser Phys. 3, 216–217 (1993).

Eberhardt, R.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007).
[CrossRef]

Eidam, T.

Ell, R.

Engqvist, A. G.

Esterowitz, L.

L. Esterowitz, “Diode-pumped holmium, thulium, and erbium lasers between 2 and 3 μm operating cw at room temperature,” Opt. Eng. (Bellingham) 29, 676–680 (1990).
[CrossRef]

Fan, T. Y.

P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16, 1089–1091 (1991).
[CrossRef] [PubMed]

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
[CrossRef]

T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24, 895–912 (1988).
[CrossRef]

Ferguson, J. F.

Fernandez, A.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[CrossRef]

Feygelson, T.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064 μm,” Opt. Eng. (Bellingham) 46, 064002 (2007).
[CrossRef]

Fluck, R.

G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. B 16, 376–388 (1999).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Fornasiero, L.

L. Fornasiero, “Nd3+- und Tm3+-dotierte sesquioxide,” Ph.D. dissertation (University of Hamburg, 1999).

Fourspring, K.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064 μm,” Opt. Eng. (Bellingham) 46, 064002 (2007).
[CrossRef]

Fredrich-Thornton, S. T.

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, have prepared a manuscript to be called “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides.”

Friel, I.

I. Friel, S. L. Clewes, H. D. Dhillon, N. Perkins, D. J. Twitchen, and G. A. Scarsbrook, “Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition,” Diamond Relat. Mater. 18, 808–815 (2009).
[CrossRef]

Fujimoto, J. G.

Fukuda, T.

V. V. Kochurikhin, K. Shimamura, and T. Fukuda, “Czochralski growth of gadolinium vanadate single crystals,” J. Cryst. Growth 151, 393–395 (1995).
[CrossRef]

Gabler, T.

Gallmann, L.

D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, “Ultrabroadband pulses in the two-cycle regime by SESAM-assisted Kerr-lens modelocking of an all-solid-state Ti:sapphire laser,” OSA Trends Opt. Photonics Ser. 26, 358–365 (1999).

Gavaldà, J.

R. Solé, V. Nikolov, X. Ruiz, J. Gavaldà, X. Solans, M. Aguiló, and F. Díaz, “Growth of β-KGd1−xNdx(WO4)2 single crystals in K2W2O7 solvents,” J. Cryst. Growth 169, 600–603 (1996).
[CrossRef]

Gayen, S. K.

V. Petričević, S. K. Gayen, and R. R. Alfano, “Laser action in chromium-activated forsterite for near-infrared excitation: is Cr4+ the lasing ion?” Appl. Phys. Lett. 53, 2590–2592 (1988).
[CrossRef]

Georges, P.

Geusic, J. E.

J. E. Geusic, H. M. Marcos, and L. G. V. Uitert, “Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium, and gadolinium garnets,” Appl. Phys. Lett. 4, 182–184 (1964).
[CrossRef]

Giesen, A.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: Results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598–609 (2007).
[CrossRef]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

Gini, E.

Golling, M.

Graf, R.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[CrossRef]

Green, H.

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421, 51–54 (2003).
[CrossRef] [PubMed]

Griebner, U.

Guenthner, A.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064 μm,” Opt. Eng. (Bellingham) 46, 064002 (2007).
[CrossRef]

Guina, M.

Gün, T.

T. Gün, P. Metz, K. Petermann, and G. Huber, “Power scaling of GaN-laser diode pumped Pr:LiYF4 lasers,” in 4th EPS-QEOD Europhoton Conference, Technical Digest (2010), paper FrA5.

Hanf, S.

Hansen, N. -O.

Harris, D. C.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064 μm,” Opt. Eng. (Bellingham) 46, 064002 (2007).
[CrossRef]

Hasegawa, M.

S. Koizumi, K. Watanabe, M. Hasegawa, and H. Kanda, “Ultraviolet emission from a diamond p-n junction,” Science 292, 1899–1901 (2001).
[CrossRef] [PubMed]

Hashimoto, S.

Haus, H. A.

Hawkins, S.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064 μm,” Opt. Eng. (Bellingham) 46, 064002 (2007).
[CrossRef]

He, B.

B. He, J. Zhou, Q. Lou, Y. Xue, Z. Li, W. Wang, J. Dong, Y. Wei, and W. Chen, “1.75-kilowatt continuous-wave output fiber laser using homemade ytterbium-doped large-core fiber,” Microwave Opt. Technol. Lett. 52, 1668–1671 (2010).
[CrossRef]

Heckl, O. H.

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett. 35, 2302–2304 (2010).
[CrossRef] [PubMed]

O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97, 369–373 (2009).
[CrossRef]

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97, 281–295 (2009).
[CrossRef]

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, have prepared a manuscript to be called “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides.”

Heinrich, S.

Hellmig, O.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100, 131–135 (2010).
[CrossRef]

Heumann, E.

E. Heumann, S. Bär, and H. Kretschmann, “Diode-pumped continuous-wave green upconversion lasing of Er3+:LiLuF4 using multipass pumping,” Opt. Lett. 27, 1699–1701 (2002).
[CrossRef]

V. G. Ostroumov, W. R. Seelert, L. E. Hunziker, C. Ihli, A. Richter, E. Heumann, and G. Huber, “UV generation by intracavity frequency doubling of an OPS-pumped Pr:YLF laser with 500 mW of cw power at 360 nm,” in Photonic West, Vol. 6451 of Technical Program and Proceedings of SPIE (2007), p. 6451-02.

Hoffmann, H. D.

Hoffmann, K. R.

W. Jia, B. M. Tissue, L. Lu, K. R. Hoffmann, and W. M. Yen, “Near-infrared luminescence in Cr,Ca-doped yttrium aluminium garnet,” in Advanced Solid-State Lasers, OSA Proceedings Series, G.Dubé and L.Chase, eds. (Optical Society of America, 1991), pp. 87–91.

Holler, M.

O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97, 369–373 (2009).
[CrossRef]

Hönninger, C.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Huber, G.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100, 131–135 (2010).
[CrossRef]

N.-O. Hansen, A. R. Bellancourt, U. Weichmann, and G. Huber, “Efficient green continuous-wave lasing of blue-diode-pumped solid-state lasers based on praseodymium-doped LiYF4,” Appl. Opt. 49, 3864–3868 (2010).
[CrossRef] [PubMed]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide-laser written with a femtosecond-laser,” Opt. Express 18, 16035–16041 (2010).
[CrossRef] [PubMed]

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett. 35, 2302–2304 (2010).
[CrossRef] [PubMed]

A. Kahn, S. Heinrich, H. Kühn, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, and G. Huber, “Low threshold monocrystalline Nd:(Gd,Lu)2O3 channel waveguide laser,” Opt. Express 17, 4412–4418 (2009).
[CrossRef] [PubMed]

H. Kühn, S. Heinrich, A. Kahn, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, and G. Huber, “Monocrystalline Yb3+:(Gd,Lu)2O3 channel waveguide laser at 976.8 nm,” Opt. Lett. 34, 2718–2720 (2009).
[CrossRef] [PubMed]

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97, 281–295 (2009).
[CrossRef]

V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237–239, 879–883 (2002).
[CrossRef]

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
[CrossRef]

P. Albers, E. Stark, and G. Huber, “Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire,” J. Opt. Soc. Am. B 3, 134–139 (1986).
[CrossRef]

B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, and E. V. Zharikov, “Tunable room-temperature cw-laser action in Cr3+:GdScGa-garnet,” Appl. Phys. B 30, 117–120 (1983).
[CrossRef]

S. Kück, K. Petermann, and G. Huber, “Spectroscopic investigation of the Cr4+-center in YAG,” in Advanced Solid-State Lasers, OSA Proceedings Series, G.Dubé and L.Chase, eds. (Optical Society of America, 1991), p. 92–94.

S. Kück, G. Huber, and M. Pollnau, Springer Handbook of Lasers and Optics: Solid-State Lasers (Springer, 2007), pp. 614–695.

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, have prepared a manuscript to be called “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides.”

V. G. Ostroumov, W. R. Seelert, L. E. Hunziker, C. Ihli, A. Richter, E. Heumann, and G. Huber, “UV generation by intracavity frequency doubling of an OPS-pumped Pr:YLF laser with 500 mW of cw power at 360 nm,” in Photonic West, Vol. 6451 of Technical Program and Proceedings of SPIE (2007), p. 6451-02.

T. Gün, P. Metz, K. Petermann, and G. Huber, “Power scaling of GaN-laser diode pumped Pr:LiYF4 lasers,” in 4th EPS-QEOD Europhoton Conference, Technical Digest (2010), paper FrA5.

T. Kellner, C. Czeranowsky, and G. Huber, “Laser operation of Nd:YVO4 at 915 nm and 1064 nm under direct excitation of the upper laser manifold,” in Novel Lasers and Devices—Basic Aspects, OSA Technical Digest (Optical Society of America, 1999), pp. 107–109.

Hügel, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

Hunziker, L. E.

V. G. Ostroumov, W. R. Seelert, L. E. Hunziker, C. Ihli, A. Richter, E. Heumann, and G. Huber, “UV generation by intracavity frequency doubling of an OPS-pumped Pr:YLF laser with 500 mW of cw power at 360 nm,” in Photonic West, Vol. 6451 of Technical Program and Proceedings of SPIE (2007), p. 6451-02.

V. G. Ostroumov, W. R. Seelert, L. E. Hunziker, and C. Ihli, “522/261 nm cw generation in a Pr3+:LiYF4 laser pumped by an optically pumped semiconductor laser,” in Photonics West, Vol. 6451 of Technical Program and Proceedings of SPIE (2007), p. 6451-03.

Ihli, C.

V. G. Ostroumov, W. R. Seelert, L. E. Hunziker, and C. Ihli, “522/261 nm cw generation in a Pr3+:LiYF4 laser pumped by an optically pumped semiconductor laser,” in Photonics West, Vol. 6451 of Technical Program and Proceedings of SPIE (2007), p. 6451-03.

V. G. Ostroumov, W. R. Seelert, L. E. Hunziker, C. Ihli, A. Richter, E. Heumann, and G. Huber, “UV generation by intracavity frequency doubling of an OPS-pumped Pr:YLF laser with 500 mW of cw power at 360 nm,” in Photonic West, Vol. 6451 of Technical Program and Proceedings of SPIE (2007), p. 6451-02.

Injeyan, H.

S. J. McNaught, H. Komine, S. B. Weiss, R. Simpson, A. M. F. Johnson, J. Machan, C. P. Asman, M. Weber, G. C. Jones, M. M. Valley, A. Jankevics, D. Burchman, M. McClellan, J. Sollee, J. Marmo, and H. Injeyan, “100 kW coherently combined slab MOPAs,” in Conference on Lasers and Electro-Optics, Vol. 15 of OSA Technical Digest (Optical Society of America, 2009), paper CThA1.

Ippen, E. P.

Jackel, S.

Jankevics, A.

S. J. McNaught, H. Komine, S. B. Weiss, R. Simpson, A. M. F. Johnson, J. Machan, C. P. Asman, M. Weber, G. C. Jones, M. M. Valley, A. Jankevics, D. Burchman, M. McClellan, J. Sollee, J. Marmo, and H. Injeyan, “100 kW coherently combined slab MOPAs,” in Conference on Lasers and Electro-Optics, Vol. 15 of OSA Technical Digest (Optical Society of America, 2009), paper CThA1.

Jenssen, H. P.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[CrossRef]

Jeong, Y.

Jia, W.

W. Jia, B. M. Tissue, L. Lu, K. R. Hoffmann, and W. M. Yen, “Near-infrared luminescence in Cr,Ca-doped yttrium aluminium garnet,” in Advanced Solid-State Lasers, OSA Proceedings Series, G.Dubé and L.Chase, eds. (Optical Society of America, 1991), pp. 87–91.

Johnson, A. M. F.

S. J. McNaught, H. Komine, S. B. Weiss, R. Simpson, A. M. F. Johnson, J. Machan, C. P. Asman, M. Weber, G. C. Jones, M. M. Valley, A. Jankevics, D. Burchman, M. McClellan, J. Sollee, J. Marmo, and H. Injeyan, “100 kW coherently combined slab MOPAs,” in Conference on Lasers and Electro-Optics, Vol. 15 of OSA Technical Digest (Optical Society of America, 2009), paper CThA1.

Jones, G. C.

S. J. McNaught, H. Komine, S. B. Weiss, R. Simpson, A. M. F. Johnson, J. Machan, C. P. Asman, M. Weber, G. C. Jones, M. M. Valley, A. Jankevics, D. Burchman, M. McClellan, J. Sollee, J. Marmo, and H. Injeyan, “100 kW coherently combined slab MOPAs,” in Conference on Lasers and Electro-Optics, Vol. 15 of OSA Technical Digest (Optical Society of America, 2009), paper CThA1.

Joyce, D. B.

D. B. Joyce and F. Schmid, “Progress in the growth of large scale Ti:sapphire crystals by the heat exchanger method (HEM) for petawatt class lasers,” J. Cryst. Growth 312, 1138–1141 (2010).
[CrossRef]

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Kahn, A.

Kaminskii, A. A.

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83, 1101–1103 (2003).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81, 4324–4326 (2002).
[CrossRef]

A. A. Kaminskii, Laser Crystals: Their Physics and Properties (Springer Verlag, 1990).

Kan, H.

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, “Neodymium concentration dependence of 0.94-, 1.06- and 1.34-μm laser emission and of heating effects under 809- and 885-nm diode laser pumping of Nd:YAG,” Appl. Phys. B 82, 599–605 (2006).
[CrossRef]

Kanda, H.

S. Koizumi, K. Watanabe, M. Hasegawa, and H. Kanda, “Ultraviolet emission from a diamond p-n junction,” Science 292, 1899–1901 (2001).
[CrossRef] [PubMed]

Kapteyn, H. C.

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421, 51–54 (2003).
[CrossRef] [PubMed]

Kärtner, F. X.

Katz, M.

Keller, U.

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett. 35, 2302–2304 (2010).
[CrossRef] [PubMed]

A. Oehler, M. Stumpf, S. Pekarek, T. Südmeyer, K. Weingarten, and U. Keller, “Picosecond diode-pumped 1.5 μm Er,Yb:glass lasers operating at 10–100 GHz repetition rate,” Appl. Phys. B 99, 53–62 (2010).
[CrossRef]

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97, 281–295 (2009).
[CrossRef]

O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97, 369–373 (2009).
[CrossRef]

S. V. Marchese, C. R. E. Baer, A. G. Engqvist, S. Hashimoto, D. J. H. C. Maas, M. Golling, T. Südmeyer, and U. Keller, “Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level,” Opt. Express 16, 6397–6407 (2008).
[CrossRef] [PubMed]

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. 38, 1331–1338 (2002).
[CrossRef]

D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, “Ultrabroadband pulses in the two-cycle regime by SESAM-assisted Kerr-lens modelocking of an all-solid-state Ti:sapphire laser,” OSA Trends Opt. Photonics Ser. 26, 358–365 (1999).

G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. B 16, 376–388 (1999).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry–Perot saturable absorber,” Opt. Lett. 17, 505–507 (1992).
[CrossRef] [PubMed]

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, have prepared a manuscript to be called “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides.”

U. Keller, “Ultrafast solid-state lasers,” in Landolt-Börnstein Laser Physics and Applications. Subvolume B: Laser Systems Part I, G.Herziger, H.Weber, and R.Proprawe, eds. (Springer Verlag, 2007), pp. 33–67.

Kellner, T.

T. Kellner, C. Czeranowsky, and G. Huber, “Laser operation of Nd:YVO4 at 915 nm and 1064 nm under direct excitation of the upper laser manifold,” in Novel Lasers and Devices—Basic Aspects, OSA Technical Digest (Optical Society of America, 1999), pp. 107–109.

Killi, A.

Kleinbauer, J.

Klevtsov, P. V.

P. V. Klevtsov and L. P. Kozeeva, “Synthesis and X-ray and thermal studies of potassium rare-earth tungstates, KLn(WO4)2, Ln=rate-earth element,” Sov. Phys. Dokl. 14, 185–187 (1969).

Klingebiel, S.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007).
[CrossRef]

Kochurikhin, V. V.

V. V. Kochurikhin, K. Shimamura, and T. Fukuda, “Czochralski growth of gadolinium vanadate single crystals,” J. Cryst. Growth 151, 393–395 (1995).
[CrossRef]

Koizumi, S.

S. Koizumi, K. Watanabe, M. Hasegawa, and H. Kanda, “Ultraviolet emission from a diamond p-n junction,” Science 292, 1899–1901 (2001).
[CrossRef] [PubMed]

Komine, H.

S. J. McNaught, H. Komine, S. B. Weiss, R. Simpson, A. M. F. Johnson, J. Machan, C. P. Asman, M. Weber, G. C. Jones, M. M. Valley, A. Jankevics, D. Burchman, M. McClellan, J. Sollee, J. Marmo, and H. Injeyan, “100 kW coherently combined slab MOPAs,” in Conference on Lasers and Electro-Optics, Vol. 15 of OSA Technical Digest (Optical Society of America, 2009), paper CThA1.

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Korableva, S. L.

M. A. Dubinskii, V. V. Semashko, A. K. Naumov, R. Y. Abdulsabirov, and S. L. Korableva, “Spectroscopy of a new active medium of a solid-state UV laser with broadband single-pass gain,” Laser Phys. 3, 216–217 (1993).

Kozeeva, L. P.

P. V. Klevtsov and L. P. Kozeeva, “Synthesis and X-ray and thermal studies of potassium rare-earth tungstates, KLn(WO4)2, Ln=rate-earth element,” Sov. Phys. Dokl. 14, 185–187 (1969).

Krainer, L.

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. 38, 1331–1338 (2002).
[CrossRef]

Kränkel, C.

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett. 35, 2302–2304 (2010).
[CrossRef] [PubMed]

O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97, 369–373 (2009).
[CrossRef]

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97, 281–295 (2009).
[CrossRef]

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, have prepared a manuscript to be called “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides.”

Krausz, F.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[CrossRef]

Kretschmann, H.

Krupke, W. F.

C. D. Marshall, J. A. Speth, S. A. Payne, W. F. Krupke, G. J. Quarles, V. Castillo, and B. H. T. Chai, “Ultraviolet laser emission properties of Ce3+-doped LiSrAlF6 and LiCaAlF6,” J. Opt. Soc. Am. B 11, 2054–2065 (1994).
[CrossRef]

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

S. A. Payne, L. L. Chase, L.-K. Smith, L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

R. H. Page, L. D. DeLoach, G. D. Wilke, S. A. Payne, and W. F. Krupke, “A new class of tunable mid-IR lasers based on Cr2+-doped II-VI compounds,” in Conference on Lasers and Electro-Optics, Vol. 15 of OSA Technical Digest (Optical Society of America, 1995), paper CWH5.

S. A. Payne, W. F. Krupke, L. K. Smith, L. D. DeLoach, and W. L. Kway, “Laser properties of Yb in fluorapatite and comparison with other Yb-doped gain media,” in Conference on Lasers and Electro-Optics, Vol. 12 of OSA Technical Digest (Optical Society of America, 1992), p. 540.

Kück, S.

S. Kück, G. Huber, and M. Pollnau, Springer Handbook of Lasers and Optics: Solid-State Lasers (Springer, 2007), pp. 614–695.

S. Kück, K. Petermann, and G. Huber, “Spectroscopic investigation of the Cr4+-center in YAG,” in Advanced Solid-State Lasers, OSA Proceedings Series, G.Dubé and L.Chase, eds. (Optical Society of America, 1991), p. 92–94.

Kühn, H.

Kumkar, M.

Kway, L.

S. A. Payne, L. L. Chase, L.-K. Smith, L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Kway, W. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. Newkirk, “Laser performance of LiSrAlF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989).
[CrossRef]

S. A. Payne, W. F. Krupke, L. K. Smith, L. D. DeLoach, and W. L. Kway, “Laser properties of Yb in fluorapatite and comparison with other Yb-doped gain media,” in Conference on Lasers and Electro-Optics, Vol. 12 of OSA Technical Digest (Optical Society of America, 1992), p. 540.

Lacovara, P.

Laptev, V. V.

B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, and E. V. Zharikov, “Tunable room-temperature cw-laser action in Cr3+:GdScGa-garnet,” Appl. Phys. B 30, 117–120 (1983).
[CrossRef]

Lavi, R.

Lebiush, E.

Lecomte, S.

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. 38, 1331–1338 (2002).
[CrossRef]

Lederer, M. J.

Li, Z.

B. He, J. Zhou, Q. Lou, Y. Xue, Z. Li, W. Wang, J. Dong, Y. Wei, and W. Chen, “1.75-kilowatt continuous-wave output fiber laser using homemade ytterbium-doped large-core fiber,” Microwave Opt. Technol. Lett. 52, 1668–1671 (2010).
[CrossRef]

Light, P.

O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97, 369–373 (2009).
[CrossRef]

Limpert, J.

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35, 94–96 (2010).
[CrossRef] [PubMed]

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007).
[CrossRef]

Lou, Q.

B. He, J. Zhou, Q. Lou, Y. Xue, Z. Li, W. Wang, J. Dong, Y. Wei, and W. Chen, “1.75-kilowatt continuous-wave output fiber laser using homemade ytterbium-doped large-core fiber,” Microwave Opt. Technol. Lett. 52, 1668–1671 (2010).
[CrossRef]

Lu, J.

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83, 1101–1103 (2003).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81, 4324–4326 (2002).
[CrossRef]

Lu, L.

W. Jia, B. M. Tissue, L. Lu, K. R. Hoffmann, and W. M. Yen, “Near-infrared luminescence in Cr,Ca-doped yttrium aluminium garnet,” in Advanced Solid-State Lasers, OSA Proceedings Series, G.Dubé and L.Chase, eds. (Optical Society of America, 1991), pp. 87–91.

Lupei, V.

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, “Neodymium concentration dependence of 0.94-, 1.06- and 1.34-μm laser emission and of heating effects under 809- and 885-nm diode laser pumping of Nd:YAG,” Appl. Phys. B 82, 599–605 (2006).
[CrossRef]

Luther-Davies, B.

Maas, D. J. H. C.

Machan, J.

S. J. McNaught, H. Komine, S. B. Weiss, R. Simpson, A. M. F. Johnson, J. Machan, C. P. Asman, M. Weber, G. C. Jones, M. M. Valley, A. Jankevics, D. Burchman, M. McClellan, J. Sollee, J. Marmo, and H. Injeyan, “100 kW coherently combined slab MOPAs,” in Conference on Lasers and Electro-Optics, Vol. 15 of OSA Technical Digest (Optical Society of America, 2009), paper CThA1.

Magana, S.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064 μm,” Opt. Eng. (Bellingham) 46, 064002 (2007).
[CrossRef]

Maiman, T. H.

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
[CrossRef]

Mans, T.

Marchese, S. V.

O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97, 369–373 (2009).
[CrossRef]

S. V. Marchese, C. R. E. Baer, A. G. Engqvist, S. Hashimoto, D. J. H. C. Maas, M. Golling, T. Südmeyer, and U. Keller, “Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level,” Opt. Express 16, 6397–6407 (2008).
[CrossRef] [PubMed]

Marcos, H. M.

J. E. Geusic, H. M. Marcos, and L. G. V. Uitert, “Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium, and gadolinium garnets,” Appl. Phys. Lett. 4, 182–184 (1964).
[CrossRef]

Marmo, J.

S. J. McNaught, H. Komine, S. B. Weiss, R. Simpson, A. M. F. Johnson, J. Machan, C. P. Asman, M. Weber, G. C. Jones, M. M. Valley, A. Jankevics, D. Burchman, M. McClellan, J. Sollee, J. Marmo, and H. Injeyan, “100 kW coherently combined slab MOPAs,” in Conference on Lasers and Electro-Optics, Vol. 15 of OSA Technical Digest (Optical Society of America, 2009), paper CThA1.

Marshall, C. D.

Matuschek, N.

D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, “Ultrabroadband pulses in the two-cycle regime by SESAM-assisted Kerr-lens modelocking of an all-solid-state Ti:sapphire laser,” OSA Trends Opt. Photonics Ser. 26, 358–365 (1999).

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

McClellan, M.

S. J. McNaught, H. Komine, S. B. Weiss, R. Simpson, A. M. F. Johnson, J. Machan, C. P. Asman, M. Weber, G. C. Jones, M. M. Valley, A. Jankevics, D. Burchman, M. McClellan, J. Sollee, J. Marmo, and H. Injeyan, “100 kW coherently combined slab MOPAs,” in Conference on Lasers and Electro-Optics, Vol. 15 of OSA Technical Digest (Optical Society of America, 2009), paper CThA1.

McNaught, S. J.

S. J. McNaught, H. Komine, S. B. Weiss, R. Simpson, A. M. F. Johnson, J. Machan, C. P. Asman, M. Weber, G. C. Jones, M. M. Valley, A. Jankevics, D. Burchman, M. McClellan, J. Sollee, J. Marmo, and H. Injeyan, “100 kW coherently combined slab MOPAs,” in Conference on Lasers and Electro-Optics, Vol. 15 of OSA Technical Digest (Optical Society of America, 2009), paper CThA1.

McQuillan, A. K.

A. K. McQuillan, W. R. L. Clements, and B. P. Stoicheff, “Stimulated Raman emission in diamond: Spectrum, gain, and angular distribution of intensity,” Phys. Rev. A 1, 628–635 (1970).
[CrossRef]

Metz, P.

T. Gün, P. Metz, K. Petermann, and G. Huber, “Power scaling of GaN-laser diode pumped Pr:LiYF4 lasers,” in 4th EPS-QEOD Europhoton Conference, Technical Digest (2010), paper FrA5.

Miller, D. A. B.

Mitzscherlich, P.

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
[CrossRef]

Morgner, U.

Morier-Genoud, F.

D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, “Ultrabroadband pulses in the two-cycle regime by SESAM-assisted Kerr-lens modelocking of an all-solid-state Ti:sapphire laser,” OSA Trends Opt. Photonics Ser. 26, 358–365 (1999).

Morris, R. C.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[CrossRef]

Moser, M.

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. 38, 1331–1338 (2002).
[CrossRef]

G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. B 16, 376–388 (1999).
[CrossRef]

Moulton, P. F.

Murnane, M. M.

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421, 51–54 (2003).
[CrossRef] [PubMed]

Musha, M.

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83, 1101–1103 (2003).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81, 4324–4326 (2002).
[CrossRef]

Nagayama, K.

T. Yoshitake, G. Shiraishi, and K. Nagayama, “Elimination of droplets using a vane velocity filter for pulsed laser ablation of FeSi2,” Appl. Surf. Sci. 197–198, 379–383 (2002).
[CrossRef]

Naumov, A. K.

M. A. Dubinskii, V. V. Semashko, A. K. Naumov, R. Y. Abdulsabirov, and S. L. Korableva, “Spectroscopy of a new active medium of a solid-state UV laser with broadband single-pass gain,” Laser Phys. 3, 216–217 (1993).

Naumov, S.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[CrossRef]

Neuhaus, J.

Newkirk, H.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. Newkirk, “Laser performance of LiSrAlF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989).
[CrossRef]

Nikolov, V.

R. Solé, V. Nikolov, X. Ruiz, J. Gavaldà, X. Solans, M. Aguiló, and F. Díaz, “Growth of β-KGd1−xNdx(WO4)2 single crystals in K2W2O7 solvents,” J. Cryst. Growth 169, 600–603 (1996).
[CrossRef]

Nilsson, J.

O’Dell, E. W.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[CrossRef]

Oehler, A.

A. Oehler, M. Stumpf, S. Pekarek, T. Südmeyer, K. Weingarten, and U. Keller, “Picosecond diode-pumped 1.5 μm Er,Yb:glass lasers operating at 10–100 GHz repetition rate,” Appl. Phys. B 99, 53–62 (2010).
[CrossRef]

Opower, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

Orchard, D.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064 μm,” Opt. Eng. (Bellingham) 46, 064002 (2007).
[CrossRef]

Ostroumov, V. G.

V. G. Ostroumov, W. R. Seelert, L. E. Hunziker, C. Ihli, A. Richter, E. Heumann, and G. Huber, “UV generation by intracavity frequency doubling of an OPS-pumped Pr:YLF laser with 500 mW of cw power at 360 nm,” in Photonic West, Vol. 6451 of Technical Program and Proceedings of SPIE (2007), p. 6451-02.

V. G. Ostroumov, W. R. Seelert, L. E. Hunziker, and C. Ihli, “522/261 nm cw generation in a Pr3+:LiYF4 laser pumped by an optically pumped semiconductor laser,” in Photonics West, Vol. 6451 of Technical Program and Proceedings of SPIE (2007), p. 6451-03.

Page, R. H.

R. H. Page, L. D. DeLoach, G. D. Wilke, S. A. Payne, and W. F. Krupke, “A new class of tunable mid-IR lasers based on Cr2+-doped II-VI compounds,” in Conference on Lasers and Electro-Optics, Vol. 15 of OSA Technical Digest (Optical Society of America, 1995), paper CWH5.

Paiss, I.

Paschotta, R.

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. 38, 1331–1338 (2002).
[CrossRef]

G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. B 16, 376–388 (1999).
[CrossRef]

Paul, A.

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421, 51–54 (2003).
[CrossRef] [PubMed]

Pavel, N.

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, “Neodymium concentration dependence of 0.94-, 1.06- and 1.34-μm laser emission and of heating effects under 809- and 885-nm diode laser pumping of Nd:YAG,” Appl. Phys. B 82, 599–605 (2006).
[CrossRef]

Payne, D. N.

Payne, S. A.

C. D. Marshall, J. A. Speth, S. A. Payne, W. F. Krupke, G. J. Quarles, V. Castillo, and B. H. T. Chai, “Ultraviolet laser emission properties of Ce3+-doped LiSrAlF6 and LiCaAlF6,” J. Opt. Soc. Am. B 11, 2054–2065 (1994).
[CrossRef]

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

S. A. Payne, L. L. Chase, L.-K. Smith, L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. Newkirk, “Laser performance of LiSrAlF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989).
[CrossRef]

S. A. Payne, W. F. Krupke, L. K. Smith, L. D. DeLoach, and W. L. Kway, “Laser properties of Yb in fluorapatite and comparison with other Yb-doped gain media,” in Conference on Lasers and Electro-Optics, Vol. 12 of OSA Technical Digest (Optical Society of America, 1992), p. 540.

R. H. Page, L. D. DeLoach, G. D. Wilke, S. A. Payne, and W. F. Krupke, “A new class of tunable mid-IR lasers based on Cr2+-doped II-VI compounds,” in Conference on Lasers and Electro-Optics, Vol. 15 of OSA Technical Digest (Optical Society of America, 1995), paper CWH5.

Pekarek, S.

A. Oehler, M. Stumpf, S. Pekarek, T. Südmeyer, K. Weingarten, and U. Keller, “Picosecond diode-pumped 1.5 μm Er,Yb:glass lasers operating at 10–100 GHz repetition rate,” Appl. Phys. B 99, 53–62 (2010).
[CrossRef]

Pentony, J.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064 μm,” Opt. Eng. (Bellingham) 46, 064002 (2007).
[CrossRef]

Perkins, N.

I. Friel, S. L. Clewes, H. D. Dhillon, N. Perkins, D. J. Twitchen, and G. A. Scarsbrook, “Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition,” Diamond Relat. Mater. 18, 808–815 (2009).
[CrossRef]

Peschel, T.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007).
[CrossRef]

Petermann, K.

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett. 35, 2302–2304 (2010).
[CrossRef] [PubMed]

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100, 131–135 (2010).
[CrossRef]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide-laser written with a femtosecond-laser,” Opt. Express 18, 16035–16041 (2010).
[CrossRef] [PubMed]

A. Kahn, S. Heinrich, H. Kühn, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, and G. Huber, “Low threshold monocrystalline Nd:(Gd,Lu)2O3 channel waveguide laser,” Opt. Express 17, 4412–4418 (2009).
[CrossRef] [PubMed]

H. Kühn, S. Heinrich, A. Kahn, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, and G. Huber, “Monocrystalline Yb3+:(Gd,Lu)2O3 channel waveguide laser at 976.8 nm,” Opt. Lett. 34, 2718–2720 (2009).
[CrossRef] [PubMed]

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97, 281–295 (2009).
[CrossRef]

V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237–239, 879–883 (2002).
[CrossRef]

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, have prepared a manuscript to be called “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides.”

S. Kück, K. Petermann, and G. Huber, “Spectroscopic investigation of the Cr4+-center in YAG,” in Advanced Solid-State Lasers, OSA Proceedings Series, G.Dubé and L.Chase, eds. (Optical Society of America, 1991), p. 92–94.

T. Gün, P. Metz, K. Petermann, and G. Huber, “Power scaling of GaN-laser diode pumped Pr:LiYF4 lasers,” in 4th EPS-QEOD Europhoton Conference, Technical Digest (2010), paper FrA5.

Peters, R.

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett. 35, 2302–2304 (2010).
[CrossRef] [PubMed]

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97, 281–295 (2009).
[CrossRef]

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, have prepared a manuscript to be called “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides.”

Peters, V.

V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237–239, 879–883 (2002).
[CrossRef]

Peterson, O. G.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[CrossRef]

Petricevic, V.

V. Petričević, S. K. Gayen, and R. R. Alfano, “Laser action in chromium-activated forsterite for near-infrared excitation: is Cr4+ the lasing ion?” Appl. Phys. Lett. 53, 2590–2592 (1988).
[CrossRef]

Petrov, V.

Pollnau, M.

Poprawe, R.

Quarles, G. J.

Rand, S. C.

Richter, A.

V. G. Ostroumov, W. R. Seelert, L. E. Hunziker, C. Ihli, A. Richter, E. Heumann, and G. Huber, “UV generation by intracavity frequency doubling of an OPS-pumped Pr:YLF laser with 500 mW of cw power at 360 nm,” in Photonic West, Vol. 6451 of Technical Program and Proceedings of SPIE (2007), p. 6451-02.

Rivier, S.

Robinson, J. S.

O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97, 369–373 (2009).
[CrossRef]

Romanyuk, Y. E.

Röser, F.

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007).
[CrossRef]

Rotarius, G.

Ruiz, X.

R. Solé, V. Nikolov, X. Ruiz, J. Gavaldà, X. Solans, M. Aguiló, and F. Díaz, “Growth of β-KGd1−xNdx(WO4)2 single crystals in K2W2O7 solvents,” J. Cryst. Growth 169, 600–603 (1996).
[CrossRef]

Russbueldt, P.

Russell, P. S. J.

Sahu, J. K.

Saikawa, J.

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, “Neodymium concentration dependence of 0.94-, 1.06- and 1.34-μm laser emission and of heating effects under 809- and 885-nm diode laser pumping of Nd:YAG,” Appl. Phys. B 82, 599–605 (2006).
[CrossRef]

Sangla, D.

Saraceno, C. J.

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett. 35, 2302–2304 (2010).
[CrossRef] [PubMed]

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97, 281–295 (2009).
[CrossRef]

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, have prepared a manuscript to be called “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides.”

Scarsbrook, G. A.

I. Friel, S. L. Clewes, H. D. Dhillon, N. Perkins, D. J. Twitchen, and G. A. Scarsbrook, “Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition,” Diamond Relat. Mater. 18, 808–815 (2009).
[CrossRef]

Schapper, F.

O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97, 369–373 (2009).
[CrossRef]

Scheuer, V.

Schmid, F.

D. B. Joyce and F. Schmid, “Progress in the growth of large scale Ti:sapphire crystals by the heat exchanger method (HEM) for petawatt class lasers,” J. Cryst. Growth 312, 1138–1141 (2010).
[CrossRef]

Schreiber, T.

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35, 94–96 (2010).
[CrossRef] [PubMed]

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007).
[CrossRef]

Seelert, W. R.

V. G. Ostroumov, W. R. Seelert, L. E. Hunziker, C. Ihli, A. Richter, E. Heumann, and G. Huber, “UV generation by intracavity frequency doubling of an OPS-pumped Pr:YLF laser with 500 mW of cw power at 360 nm,” in Photonic West, Vol. 6451 of Technical Program and Proceedings of SPIE (2007), p. 6451-02.

V. G. Ostroumov, W. R. Seelert, L. E. Hunziker, and C. Ihli, “522/261 nm cw generation in a Pr3+:LiYF4 laser pumped by an optically pumped semiconductor laser,” in Photonics West, Vol. 6451 of Technical Program and Proceedings of SPIE (2007), p. 6451-03.

Seise, E.

Seltzer, M. D.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064 μm,” Opt. Eng. (Bellingham) 46, 064002 (2007).
[CrossRef]

Semashko, V. V.

M. A. Dubinskii, V. V. Semashko, A. K. Naumov, R. Y. Abdulsabirov, and S. L. Korableva, “Spectroscopy of a new active medium of a solid-state UV laser with broadband single-pass gain,” Laser Phys. 3, 216–217 (1993).

Shcherbakov, I. A.

B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, and E. V. Zharikov, “Tunable room-temperature cw-laser action in Cr3+:GdScGa-garnet,” Appl. Phys. B 30, 117–120 (1983).
[CrossRef]

Shen, D. Y.

Shestakov, A. V.

G. M. Zverev and A. V. Shestakov, “Tunable near-infrared oxide crystal lasers,” in Tunable Solid State Lasers, OSA Proceedings Series, M.L.Shand and H.P.Jenssen, eds. (Optical Society of America, 1989), pp. 66–70.

Shimamura, K.

V. V. Kochurikhin, K. Shimamura, and T. Fukuda, “Czochralski growth of gadolinium vanadate single crystals,” J. Cryst. Growth 151, 393–395 (1995).
[CrossRef]

Shiraishi, G.

T. Yoshitake, G. Shiraishi, and K. Nagayama, “Elimination of droplets using a vane velocity filter for pulsed laser ablation of FeSi2,” Appl. Surf. Sci. 197–198, 379–383 (2002).
[CrossRef]

Shirakawa, A.

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83, 1101–1103 (2003).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81, 4324–4326 (2002).
[CrossRef]

Siebenmorgen, J.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100, 131–135 (2010).
[CrossRef]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide-laser written with a femtosecond-laser,” Opt. Express 18, 16035–16041 (2010).
[CrossRef] [PubMed]

Simpson, R.

S. J. McNaught, H. Komine, S. B. Weiss, R. Simpson, A. M. F. Johnson, J. Machan, C. P. Asman, M. Weber, G. C. Jones, M. M. Valley, A. Jankevics, D. Burchman, M. McClellan, J. Sollee, J. Marmo, and H. Injeyan, “100 kW coherently combined slab MOPAs,” in Conference on Lasers and Electro-Optics, Vol. 15 of OSA Technical Digest (Optical Society of America, 2009), paper CThA1.

Smith, L. K.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. Newkirk, “Laser performance of LiSrAlF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989).
[CrossRef]

S. A. Payne, W. F. Krupke, L. K. Smith, L. D. DeLoach, and W. L. Kway, “Laser properties of Yb in fluorapatite and comparison with other Yb-doped gain media,” in Conference on Lasers and Electro-Optics, Vol. 12 of OSA Technical Digest (Optical Society of America, 1992), p. 540.

Smith, L. -K.

S. A. Payne, L. L. Chase, L.-K. Smith, L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Solans, X.

R. Solé, V. Nikolov, X. Ruiz, J. Gavaldà, X. Solans, M. Aguiló, and F. Díaz, “Growth of β-KGd1−xNdx(WO4)2 single crystals in K2W2O7 solvents,” J. Cryst. Growth 169, 600–603 (1996).
[CrossRef]

Solé, R.

R. Solé, V. Nikolov, X. Ruiz, J. Gavaldà, X. Solans, M. Aguiló, and F. Díaz, “Growth of β-KGd1−xNdx(WO4)2 single crystals in K2W2O7 solvents,” J. Cryst. Growth 169, 600–603 (1996).
[CrossRef]

Sollee, J.

S. J. McNaught, H. Komine, S. B. Weiss, R. Simpson, A. M. F. Johnson, J. Machan, C. P. Asman, M. Weber, G. C. Jones, M. M. Valley, A. Jankevics, D. Burchman, M. McClellan, J. Sollee, J. Marmo, and H. Injeyan, “100 kW coherently combined slab MOPAs,” in Conference on Lasers and Electro-Optics, Vol. 15 of OSA Technical Digest (Optical Society of America, 2009), paper CThA1.

Speiser, J.

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: Results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598–609 (2007).
[CrossRef]

Speth, J. A.

Spühler, G. J.

Stark, E.

Steinmeyer, G.

D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, “Ultrabroadband pulses in the two-cycle regime by SESAM-assisted Kerr-lens modelocking of an all-solid-state Ti:sapphire laser,” OSA Trends Opt. Photonics Ser. 26, 358–365 (1999).

Stickley, C. M.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064 μm,” Opt. Eng. (Bellingham) 46, 064002 (2007).
[CrossRef]

Stoicheff, B. P.

A. K. McQuillan, W. R. L. Clements, and B. P. Stoicheff, “Stimulated Raman emission in diamond: Spectrum, gain, and angular distribution of intensity,” Phys. Rev. A 1, 628–635 (1970).
[CrossRef]

Struve, B.

B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, and E. V. Zharikov, “Tunable room-temperature cw-laser action in Cr3+:GdScGa-garnet,” Appl. Phys. B 30, 117–120 (1983).
[CrossRef]

Stumpf, M.

A. Oehler, M. Stumpf, S. Pekarek, T. Südmeyer, K. Weingarten, and U. Keller, “Picosecond diode-pumped 1.5 μm Er,Yb:glass lasers operating at 10–100 GHz repetition rate,” Appl. Phys. B 99, 53–62 (2010).
[CrossRef]

Südmeyer, T.

A. Oehler, M. Stumpf, S. Pekarek, T. Südmeyer, K. Weingarten, and U. Keller, “Picosecond diode-pumped 1.5 μm Er,Yb:glass lasers operating at 10–100 GHz repetition rate,” Appl. Phys. B 99, 53–62 (2010).
[CrossRef]

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97, 281–295 (2009).
[CrossRef]

O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97, 369–373 (2009).
[CrossRef]

S. V. Marchese, C. R. E. Baer, A. G. Engqvist, S. Hashimoto, D. J. H. C. Maas, M. Golling, T. Südmeyer, and U. Keller, “Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level,” Opt. Express 16, 6397–6407 (2008).
[CrossRef] [PubMed]

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, have prepared a manuscript to be called “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides.”

Sugano, S.

Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions. II,” J. Phys. Soc. Jpn. 9, 766–779 (1954).
[CrossRef]

Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions. I,” J. Phys. Soc. Jpn. 9, 753–766 (1954).
[CrossRef]

Sumida, D. S.

H. Bruesselbach and D. S. Sumida, “A 2.65-kW Yb:YAG single-rod laser,” IEEE J. Sel. Top. Quantum Electron. 11, 600–603 (2005).
[CrossRef]

Sutter, D. H.

J. Neuhaus, D. Bauer, J. Zhang, A. Killi, J. Kleinbauer, M. Kumkar, S. Weiler, M. Guina, D. H. Sutter, and T. Dekorsy, “Subpicosecond thin-disk laser oscillator with pulse energies of up to 25.9 microjoules by use of an active multipass geometry,” Opt. Express 16, 20530–20539 (2008).
[CrossRef] [PubMed]

D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, “Ultrabroadband pulses in the two-cycle regime by SESAM-assisted Kerr-lens modelocking of an all-solid-state Ti:sapphire laser,” OSA Trends Opt. Photonics Ser. 26, 358–365 (1999).

Taira, T.

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, “Neodymium concentration dependence of 0.94-, 1.06- and 1.34-μm laser emission and of heating effects under 809- and 885-nm diode laser pumping of Nd:YAG,” Appl. Phys. B 82, 599–605 (2006).
[CrossRef]

Takaichi, K.

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83, 1101–1103 (2003).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81, 4324–4326 (2002).
[CrossRef]

Tanabe, Y.

Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions. II,” J. Phys. Soc. Jpn. 9, 766–779 (1954).
[CrossRef]

Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions. I,” J. Phys. Soc. Jpn. 9, 753–766 (1954).
[CrossRef]

Thiel, D.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064 μm,” Opt. Eng. (Bellingham) 46, 064002 (2007).
[CrossRef]

Tisch, J. W. G.

O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97, 369–373 (2009).
[CrossRef]

Tissue, B. M.

W. Jia, B. M. Tissue, L. Lu, K. R. Hoffmann, and W. M. Yen, “Near-infrared luminescence in Cr,Ca-doped yttrium aluminium garnet,” in Advanced Solid-State Lasers, OSA Proceedings Series, G.Dubé and L.Chase, eds. (Optical Society of America, 1991), pp. 87–91.

Tobey, R.

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421, 51–54 (2003).
[CrossRef] [PubMed]

Tschudi, T.

Tünnermann, A.

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35, 94–96 (2010).
[CrossRef] [PubMed]

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007).
[CrossRef]

Turri, G.

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064 μm,” Opt. Eng. (Bellingham) 46, 064002 (2007).
[CrossRef]

Twitchen, D. J.

I. Friel, S. L. Clewes, H. D. Dhillon, N. Perkins, D. J. Twitchen, and G. A. Scarsbrook, “Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition,” Diamond Relat. Mater. 18, 808–815 (2009).
[CrossRef]

Tzuk, Y.

Ueda, K.

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83, 1101–1103 (2003).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81, 4324–4326 (2002).
[CrossRef]

Uematsu, T.

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83, 1101–1103 (2003).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81, 4324–4326 (2002).
[CrossRef]

Uitert, L. G. V.

J. E. Geusic, H. M. Marcos, and L. G. V. Uitert, “Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium, and gadolinium garnets,” Appl. Phys. Lett. 4, 182–184 (1964).
[CrossRef]

Valley, M. M.

S. J. McNaught, H. Komine, S. B. Weiss, R. Simpson, A. M. F. Johnson, J. Machan, C. P. Asman, M. Weber, G. C. Jones, M. M. Valley, A. Jankevics, D. Burchman, M. McClellan, J. Sollee, J. Marmo, and H. Injeyan, “100 kW coherently combined slab MOPAs,” in Conference on Lasers and Electro-Optics, Vol. 15 of OSA Technical Digest (Optical Society of America, 2009), paper CThA1.

Voss, A.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

Walling, J. C.

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[CrossRef]

Wang, C. A.

Wang, W.

B. He, J. Zhou, Q. Lou, Y. Xue, Z. Li, W. Wang, J. Dong, Y. Wei, and W. Chen, “1.75-kilowatt continuous-wave output fiber laser using homemade ytterbium-doped large-core fiber,” Microwave Opt. Technol. Lett. 52, 1668–1671 (2010).
[CrossRef]

Watanabe, K.

S. Koizumi, K. Watanabe, M. Hasegawa, and H. Kanda, “Ultraviolet emission from a diamond p-n junction,” Science 292, 1899–1901 (2001).
[CrossRef] [PubMed]

Weber, M.

S. J. McNaught, H. Komine, S. B. Weiss, R. Simpson, A. M. F. Johnson, J. Machan, C. P. Asman, M. Weber, G. C. Jones, M. M. Valley, A. Jankevics, D. Burchman, M. McClellan, J. Sollee, J. Marmo, and H. Injeyan, “100 kW coherently combined slab MOPAs,” in Conference on Lasers and Electro-Optics, Vol. 15 of OSA Technical Digest (Optical Society of America, 2009), paper CThA1.

Wei, Y.

B. He, J. Zhou, Q. Lou, Y. Xue, Z. Li, W. Wang, J. Dong, Y. Wei, and W. Chen, “1.75-kilowatt continuous-wave output fiber laser using homemade ytterbium-doped large-core fiber,” Microwave Opt. Technol. Lett. 52, 1668–1671 (2010).
[CrossRef]

Weichmann, U.

Weiler, S.

Weiman, S.

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421, 51–54 (2003).
[CrossRef] [PubMed]

Weingarten, K.

A. Oehler, M. Stumpf, S. Pekarek, T. Südmeyer, K. Weingarten, and U. Keller, “Picosecond diode-pumped 1.5 μm Er,Yb:glass lasers operating at 10–100 GHz repetition rate,” Appl. Phys. B 99, 53–62 (2010).
[CrossRef]

Weingarten, K. J.

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. 38, 1331–1338 (2002).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

Weiss, S. B.

S. J. McNaught, H. Komine, S. B. Weiss, R. Simpson, A. M. F. Johnson, J. Machan, C. P. Asman, M. Weber, G. C. Jones, M. M. Valley, A. Jankevics, D. Burchman, M. McClellan, J. Sollee, J. Marmo, and H. Injeyan, “100 kW coherently combined slab MOPAs,” in Conference on Lasers and Electro-Optics, Vol. 15 of OSA Technical Digest (Optical Society of America, 2009), paper CThA1.

Weitenberg, J.

Wilke, G. D.

R. H. Page, L. D. DeLoach, G. D. Wilke, S. A. Payne, and W. F. Krupke, “A new class of tunable mid-IR lasers based on Cr2+-doped II-VI compounds,” in Conference on Lasers and Electro-Optics, Vol. 15 of OSA Technical Digest (Optical Society of America, 1995), paper CWH5.

Winik, M.

Wirth, C.

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35, 94–96 (2010).
[CrossRef] [PubMed]

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007).
[CrossRef]

Wittig, K.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

Wörhoff, K.

Xue, Y.

B. He, J. Zhou, Q. Lou, Y. Xue, Z. Li, W. Wang, J. Dong, Y. Wei, and W. Chen, “1.75-kilowatt continuous-wave output fiber laser using homemade ytterbium-doped large-core fiber,” Microwave Opt. Technol. Lett. 52, 1668–1671 (2010).
[CrossRef]

Yagi, H.

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83, 1101–1103 (2003).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81, 4324–4326 (2002).
[CrossRef]

Yanagitani, T.

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83, 1101–1103 (2003).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81, 4324–4326 (2002).
[CrossRef]

Yen, W. M.

W. Jia, B. M. Tissue, L. Lu, K. R. Hoffmann, and W. M. Yen, “Near-infrared luminescence in Cr,Ca-doped yttrium aluminium garnet,” in Advanced Solid-State Lasers, OSA Proceedings Series, G.Dubé and L.Chase, eds. (Optical Society of America, 1991), pp. 87–91.

Yoshitake, T.

T. Yoshitake, G. Shiraishi, and K. Nagayama, “Elimination of droplets using a vane velocity filter for pulsed laser ablation of FeSi2,” Appl. Surf. Sci. 197–198, 379–383 (2002).
[CrossRef]

Zhang, G.

Zhang, J.

Zharikov, E. V.

B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, and E. V. Zharikov, “Tunable room-temperature cw-laser action in Cr3+:GdScGa-garnet,” Appl. Phys. B 30, 117–120 (1983).
[CrossRef]

Zhou, J.

B. He, J. Zhou, Q. Lou, Y. Xue, Z. Li, W. Wang, J. Dong, Y. Wei, and W. Chen, “1.75-kilowatt continuous-wave output fiber laser using homemade ytterbium-doped large-core fiber,” Microwave Opt. Technol. Lett. 52, 1668–1671 (2010).
[CrossRef]

Zverev, G. M.

G. M. Zverev and A. V. Shestakov, “Tunable near-infrared oxide crystal lasers,” in Tunable Solid State Lasers, OSA Proceedings Series, M.L.Shand and H.P.Jenssen, eds. (Optical Society of America, 1989), pp. 66–70.

Appl. Opt. (2)

Appl. Phys. B (7)

N. Pavel, V. Lupei, J. Saikawa, T. Taira, and H. Kan, “Neodymium concentration dependence of 0.94-, 1.06- and 1.34-μm laser emission and of heating effects under 809- and 885-nm diode laser pumping of Nd:YAG,” Appl. Phys. B 82, 599–605 (2006).
[CrossRef]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

O. H. Heckl, C. R. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. Tisch, F. Couny, P. Light, F. Benabid, and U. Keller, “High harmonic generation in a gas-filled hollow-core photonic crystal fiber,” Appl. Phys. B 97, 369–373 (2009).
[CrossRef]

A. Oehler, M. Stumpf, S. Pekarek, T. Südmeyer, K. Weingarten, and U. Keller, “Picosecond diode-pumped 1.5 μm Er,Yb:glass lasers operating at 10–100 GHz repetition rate,” Appl. Phys. B 99, 53–62 (2010).
[CrossRef]

B. Struve, G. Huber, V. V. Laptev, I. A. Shcherbakov, and E. V. Zharikov, “Tunable room-temperature cw-laser action in Cr3+:GdScGa-garnet,” Appl. Phys. B 30, 117–120 (1983).
[CrossRef]

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100, 131–135 (2010).
[CrossRef]

T. Südmeyer, C. Kränkel, C. R. E. Baer, O. H. Heckl, C. J. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation,” Appl. Phys. B 97, 281–295 (2009).
[CrossRef]

Appl. Phys. Lett. (4)

J. Lu, J. F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Yb3+:Sc2O3 ceramic laser,” Appl. Phys. Lett. 83, 1101–1103 (2003).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Promising ceramic laser material: Highly transparent Nd3+:Lu2O3 ceramic,” Appl. Phys. Lett. 81, 4324–4326 (2002).
[CrossRef]

J. E. Geusic, H. M. Marcos, and L. G. V. Uitert, “Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium, and gadolinium garnets,” Appl. Phys. Lett. 4, 182–184 (1964).
[CrossRef]

V. Petričević, S. K. Gayen, and R. R. Alfano, “Laser action in chromium-activated forsterite for near-infrared excitation: is Cr4+ the lasing ion?” Appl. Phys. Lett. 53, 2590–2592 (1988).
[CrossRef]

Appl. Surf. Sci. (1)

T. Yoshitake, G. Shiraishi, and K. Nagayama, “Elimination of droplets using a vane velocity filter for pulsed laser ablation of FeSi2,” Appl. Surf. Sci. 197–198, 379–383 (2002).
[CrossRef]

Diamond Relat. Mater. (1)

I. Friel, S. L. Clewes, H. D. Dhillon, N. Perkins, D. J. Twitchen, and G. A. Scarsbrook, “Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition,” Diamond Relat. Mater. 18, 808–815 (2009).
[CrossRef]

IEEE J. Quantum Electron. (6)

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

T. Y. Fan and R. L. Byer, “Diode laser-pumped solid-state lasers,” IEEE J. Quantum Electron. 24, 895–912 (1988).
[CrossRef]

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron. 24, 924–933 (1988).
[CrossRef]

J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[CrossRef]

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. 38, 1331–1338 (2002).
[CrossRef]

S. A. Payne, L. L. Chase, L.-K. Smith, L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (4)

H. Bruesselbach and D. S. Sumida, “A 2.65-kW Yb:YAG single-rod laser,” IEEE J. Sel. Top. Quantum Electron. 11, 600–603 (2005).
[CrossRef]

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[CrossRef]

J. Limpert, F. Röser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann, “The rising power of fiber lasers and amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 537–545 (2007).
[CrossRef]

A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: Results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598–609 (2007).
[CrossRef]

J. Appl. Phys. (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. Newkirk, “Laser performance of LiSrAlF6:Cr3+,” J. Appl. Phys. 66, 1051–1056 (1989).
[CrossRef]

J. Cryst. Growth (4)

V. V. Kochurikhin, K. Shimamura, and T. Fukuda, “Czochralski growth of gadolinium vanadate single crystals,” J. Cryst. Growth 151, 393–395 (1995).
[CrossRef]

R. Solé, V. Nikolov, X. Ruiz, J. Gavaldà, X. Solans, M. Aguiló, and F. Díaz, “Growth of β-KGd1−xNdx(WO4)2 single crystals in K2W2O7 solvents,” J. Cryst. Growth 169, 600–603 (1996).
[CrossRef]

D. B. Joyce and F. Schmid, “Progress in the growth of large scale Ti:sapphire crystals by the heat exchanger method (HEM) for petawatt class lasers,” J. Cryst. Growth 312, 1138–1141 (2010).
[CrossRef]

V. Peters, A. Bolz, K. Petermann, and G. Huber, “Growth of high-melting sesquioxides by the heat exchanger method,” J. Cryst. Growth 237–239, 879–883 (2002).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (3)

J. Phys. Soc. Jpn. (2)

Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions. I,” J. Phys. Soc. Jpn. 9, 753–766 (1954).
[CrossRef]

Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions. II,” J. Phys. Soc. Jpn. 9, 766–779 (1954).
[CrossRef]

Laser Phys. (1)

M. A. Dubinskii, V. V. Semashko, A. K. Naumov, R. Y. Abdulsabirov, and S. L. Korableva, “Spectroscopy of a new active medium of a solid-state UV laser with broadband single-pass gain,” Laser Phys. 3, 216–217 (1993).

Microwave Opt. Technol. Lett. (1)

B. He, J. Zhou, Q. Lou, Y. Xue, Z. Li, W. Wang, J. Dong, Y. Wei, and W. Chen, “1.75-kilowatt continuous-wave output fiber laser using homemade ytterbium-doped large-core fiber,” Microwave Opt. Technol. Lett. 52, 1668–1671 (2010).
[CrossRef]

Nature (2)

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
[CrossRef]

A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature 421, 51–54 (2003).
[CrossRef] [PubMed]

New J. Phys. (1)

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[CrossRef]

Opt. Eng. (Bellingham) (2)

L. Esterowitz, “Diode-pumped holmium, thulium, and erbium lasers between 2 and 3 μm operating cw at room temperature,” Opt. Eng. (Bellingham) 29, 676–680 (1990).
[CrossRef]

G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, “Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064 μm,” Opt. Eng. (Bellingham) 46, 064002 (2007).
[CrossRef]

Opt. Express (7)

P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400 W Yb:YAG Innoslab fs-amplifier,” Opt. Express 17, 12230–12245 (2009).
[CrossRef] [PubMed]

A. Kahn, S. Heinrich, H. Kühn, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, and G. Huber, “Low threshold monocrystalline Nd:(Gd,Lu)2O3 channel waveguide laser,” Opt. Express 17, 4412–4418 (2009).
[CrossRef] [PubMed]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide-laser written with a femtosecond-laser,” Opt. Express 18, 16035–16041 (2010).
[CrossRef] [PubMed]

S. V. Marchese, C. R. E. Baer, A. G. Engqvist, S. Hashimoto, D. J. H. C. Maas, M. Golling, T. Südmeyer, and U. Keller, “Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level,” Opt. Express 16, 6397–6407 (2008).
[CrossRef] [PubMed]

J. Neuhaus, D. Bauer, J. Zhang, A. Killi, J. Kleinbauer, M. Kumkar, S. Weiler, M. Guina, D. H. Sutter, and T. Dekorsy, “Subpicosecond thin-disk laser oscillator with pulse energies of up to 25.9 microjoules by use of an active multipass geometry,” Opt. Express 16, 20530–20539 (2008).
[CrossRef] [PubMed]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12, 6088–6092 (2004).
[CrossRef] [PubMed]

D. Sangla, F. Balembois, and P. Georges, “Nd:YAG laser diode-pumped directly into the emitting level at 938 nm,” Opt. Express 17, 10091–10097 (2009).
[CrossRef] [PubMed]

Opt. Lett. (13)

D. Sangla, M. Castaing, F. Balembois, and P. Georges, “Highly efficient Nd:YVO4 laser by direct in-band diode pumping at 914 nm,” Opt. Lett. 34, 2159–2161 (2009).
[CrossRef] [PubMed]

E. Heumann, S. Bär, and H. Kretschmann, “Diode-pumped continuous-wave green upconversion lasing of Er3+:LiLuF4 using multipass pumping,” Opt. Lett. 27, 1699–1701 (2002).
[CrossRef]

D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient in-band pumped Er:YAG laser with 60 W of output at 1645 nm,” Opt. Lett. 31, 754–756 (2006).
[CrossRef] [PubMed]

U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, “Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry–Perot saturable absorber,” Opt. Lett. 17, 505–507 (1992).
[CrossRef] [PubMed]

U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24, 411–413 (1999).
[CrossRef]

U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser: addenda,” Opt. Lett. 24, 920 (1999).
[CrossRef]

R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, “Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser,” Opt. Lett. 26, 373–375 (2001).
[CrossRef]

H. Kühn, S. Heinrich, A. Kahn, K. Petermann, J. D. B. Bradley, K. Wörhoff, M. Pollnau, and G. Huber, “Monocrystalline Yb3+:(Gd,Lu)2O3 channel waveguide laser at 976.8 nm,” Opt. Lett. 34, 2718–2720 (2009).
[CrossRef] [PubMed]

Y. E. Romanyuk, C. N. Borca, M. Pollnau, S. Rivier, V. Petrov, and U. Griebner, “Yb-doped KY(WO4)2 planar waveguide laser,” Opt. Lett. 31, 53–55 (2006).
[CrossRef] [PubMed]

C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett. 35, 2302–2304 (2010).
[CrossRef] [PubMed]

P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16, 1089–1091 (1991).
[CrossRef] [PubMed]

S. C. Rand and L. G. DeShazer, “Visible color-center laser in diamond,” Opt. Lett. 10, 481–483 (1985).
[CrossRef] [PubMed]

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35, 94–96 (2010).
[CrossRef] [PubMed]

Optics News (1)

OSA Trends Opt. Photonics Ser. (1)

D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, “Ultrabroadband pulses in the two-cycle regime by SESAM-assisted Kerr-lens modelocking of an all-solid-state Ti:sapphire laser,” OSA Trends Opt. Photonics Ser. 26, 358–365 (1999).

Phys. Rev. A (1)

A. K. McQuillan, W. R. L. Clements, and B. P. Stoicheff, “Stimulated Raman emission in diamond: Spectrum, gain, and angular distribution of intensity,” Phys. Rev. A 1, 628–635 (1970).
[CrossRef]

Science (1)

S. Koizumi, K. Watanabe, M. Hasegawa, and H. Kanda, “Ultraviolet emission from a diamond p-n junction,” Science 292, 1899–1901 (2001).
[CrossRef] [PubMed]

Sov. Phys. Dokl. (1)

P. V. Klevtsov and L. P. Kozeeva, “Synthesis and X-ray and thermal studies of potassium rare-earth tungstates, KLn(WO4)2, Ln=rate-earth element,” Sov. Phys. Dokl. 14, 185–187 (1969).

Other (17)

R. Peters, C. Kränkel, S. T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. H. Heckl, C. R. E. Baer, C. J. Saraceno, T. Südmeyer, and U. Keller, have prepared a manuscript to be called “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides.”

S. A. Payne, W. F. Krupke, L. K. Smith, L. D. DeLoach, and W. L. Kway, “Laser properties of Yb in fluorapatite and comparison with other Yb-doped gain media,” in Conference on Lasers and Electro-Optics, Vol. 12 of OSA Technical Digest (Optical Society of America, 1992), p. 540.

G. M. Zverev and A. V. Shestakov, “Tunable near-infrared oxide crystal lasers,” in Tunable Solid State Lasers, OSA Proceedings Series, M.L.Shand and H.P.Jenssen, eds. (Optical Society of America, 1989), pp. 66–70.

W. Jia, B. M. Tissue, L. Lu, K. R. Hoffmann, and W. M. Yen, “Near-infrared luminescence in Cr,Ca-doped yttrium aluminium garnet,” in Advanced Solid-State Lasers, OSA Proceedings Series, G.Dubé and L.Chase, eds. (Optical Society of America, 1991), pp. 87–91.

S. Kück, K. Petermann, and G. Huber, “Spectroscopic investigation of the Cr4+-center in YAG,” in Advanced Solid-State Lasers, OSA Proceedings Series, G.Dubé and L.Chase, eds. (Optical Society of America, 1991), p. 92–94.

R. H. Page, L. D. DeLoach, G. D. Wilke, S. A. Payne, and W. F. Krupke, “A new class of tunable mid-IR lasers based on Cr2+-doped II-VI compounds,” in Conference on Lasers and Electro-Optics, Vol. 15 of OSA Technical Digest (Optical Society of America, 1995), paper CWH5.

A. A. Kaminskii, Laser Crystals: Their Physics and Properties (Springer Verlag, 1990).

U. Keller, “Ultrafast solid-state lasers,” in Landolt-Börnstein Laser Physics and Applications. Subvolume B: Laser Systems Part I, G.Herziger, H.Weber, and R.Proprawe, eds. (Springer Verlag, 2007), pp. 33–67.

S. Kück, G. Huber, and M. Pollnau, Springer Handbook of Lasers and Optics: Solid-State Lasers (Springer, 2007), pp. 614–695.

See www.ipgphotonics.com.

G. H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals (Wiley-Interscience, 1968).

L. Fornasiero, “Nd3+- und Tm3+-dotierte sesquioxide,” Ph.D. dissertation (University of Hamburg, 1999).

T. Gün, P. Metz, K. Petermann, and G. Huber, “Power scaling of GaN-laser diode pumped Pr:LiYF4 lasers,” in 4th EPS-QEOD Europhoton Conference, Technical Digest (2010), paper FrA5.

V. G. Ostroumov, W. R. Seelert, L. E. Hunziker, C. Ihli, A. Richter, E. Heumann, and G. Huber, “UV generation by intracavity frequency doubling of an OPS-pumped Pr:YLF laser with 500 mW of cw power at 360 nm,” in Photonic West, Vol. 6451 of Technical Program and Proceedings of SPIE (2007), p. 6451-02.

V. G. Ostroumov, W. R. Seelert, L. E. Hunziker, and C. Ihli, “522/261 nm cw generation in a Pr3+:LiYF4 laser pumped by an optically pumped semiconductor laser,” in Photonics West, Vol. 6451 of Technical Program and Proceedings of SPIE (2007), p. 6451-03.

T. Kellner, C. Czeranowsky, and G. Huber, “Laser operation of Nd:YVO4 at 915 nm and 1064 nm under direct excitation of the upper laser manifold,” in Novel Lasers and Devices—Basic Aspects, OSA Technical Digest (Optical Society of America, 1999), pp. 107–109.

S. J. McNaught, H. Komine, S. B. Weiss, R. Simpson, A. M. F. Johnson, J. Machan, C. P. Asman, M. Weber, G. C. Jones, M. M. Valley, A. Jankevics, D. Burchman, M. McClellan, J. Sollee, J. Marmo, and H. Injeyan, “100 kW coherently combined slab MOPAs,” in Conference on Lasers and Electro-Optics, Vol. 15 of OSA Technical Digest (Optical Society of America, 2009), paper CThA1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Czochralski-grown Yb:YAG crystal with 80 mm diameter and 200 mm length; the left part with facets is grown with convex interface and the right part with flat interface (courtesy of FEE, Idar-Oberstein, Germany).

Fig. 2
Fig. 2

High temperature HEM setup for growing sesquioxide crystals from the melt.

Fig. 3
Fig. 3

Weak electron–phonon coupling of RE ions (left) and relatively strong electron–phonon coupling and vibronic states of TM ions represented by the configurational diagram (right). The configurational coordinate Q represents the ligand positions of the crystalline matrix around the TM ion. The electron–phonon coupling is reflected by the fact that the minima of the ground and excited states are located at different Q-values.

Fig. 4
Fig. 4

Nd 3 + level scheme with indicated laser transitions for Nd:YAG (left) and Nd 3 + emission spectra in sesquioxides (right) [40].

Fig. 5
Fig. 5

Yb 3 + level scheme (left) and absorption and emission spectra of Yb 3 + : Lu 2 O 3 .

Fig. 6
Fig. 6

1.5 μ m Er 3 + laser with energy transfer pumping via Yb 3 + (left) and direct in-band pumping of the upper Er 3 + laser manifold (right).

Fig. 7
Fig. 7

Cr 2 + level structure (left) and room temperature absorption and emission spectra (right); the level energies and the crystal field strength Dq are normalized with respect to the Racah parameter B; the sharp structures in the emission spectrum arise from atmospheric absorptions.

Fig. 8
Fig. 8

Level scheme of Pr 3 + with indicated laser transitions; the strongest transitions are in the orange and red spectral ranges.

Fig. 9
Fig. 9

Useful upconversion pump schemes of Er 3 + lasers for emission in the green spectral range.

Fig. 10
Fig. 10

Schematic of the main geometries for solid-state laser materials.

Fig. 11
Fig. 11

Microscope image of the cross section of a microstructured hollow core photonic crystal fiber [60].

Fig. 12
Fig. 12

Laser characteristics of a highly efficient Yb : Lu 2 O 3 thin disk laser [26].

Fig. 13
Fig. 13

Laser characteristics of an Yb:YAG femtosecond-laser written channel waveguide laser [35]; the mode profile of the laser is displayed in the inset.

Tables (1)

Tables Icon

Table 1 Overview and Laser Wavelengths of RE and TM Ions a

Metrics