Abstract

A remarkable miniaturization of lasers has occurred in just the past few years by employing metals to form the laser resonator. From having minimum laser dimensions being at least several wavelengths of the light emitted, many devices have been shown where the laser size is of a wavelength or less. Additionally some devices show lasing in structures significantly smaller than the wavelength of light in several dimensions, and the optical mode is far smaller than allowed by the diffraction limit. In this article we review what has been achieved then look forward to what some of the directions development could take and where possible applications could lie. In particular we show that there are devices with an optical size slightly larger or near the diffraction limit which could soon be employed in many applications requiring coherent light sources. Application of devices with dimensions far below the diffraction limit is also on the horizon, but may take more time.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Iga, “Surface-emitting laser—Its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6, 1201–1215 (2000).
    [CrossRef]
  2. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkusand, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
    [CrossRef] [PubMed]
  3. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 38–45 (April, 2007).
    [CrossRef]
  4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface Plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
    [CrossRef]
  5. M. P. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12, 4072–4079 (2004).
    [CrossRef] [PubMed]
  6. S. A. Maier, “Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides,” Opt. Commun. 258, 295–299 (2006).
    [CrossRef]
  7. A. Maslov and C. Z. Ning, “Size reduction of a semiconductor nanowire laser using metal coating,” Proc. SPIE 6468, 646801–646807 (2007).
    [CrossRef]
  8. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in Metallic-Coated Nanocavities,” Nat. Photonics 1, 589–594 (2007).
    [CrossRef]
  9. G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, 1993).
  10. K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express 18, 8790 (2010).
    [CrossRef] [PubMed]
  11. B. Prade and J. Y. Vinet, “Guided optical waves in fibers with negative dielectric constant,” J. Lightwave Technol. 12, 6–18 (1994).
    [CrossRef]
  12. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
    [CrossRef] [PubMed]
  13. M. P. Nezhad, A. Simic, O. Bondaenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nature Photon. 4, 395–399 (2010).
    [CrossRef]
  14. R. Perahia, T. P. Mayer Alegre, A. H. Safavi-Naeini, and O. Painter, “Surface-plasmon mode hybridization in subwavelength microdisk lasers,” Appl. Phys. Lett. 95, 201114 (2009).
    [CrossRef]
  15. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature (London) 461, 629–632 (2009).
    [CrossRef]
  16. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature (London) 460, 1110–1112 (2009).
    [CrossRef]
  17. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
    [CrossRef] [PubMed]
  18. C.-Y. Lu, S.-W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett. 96, 251101 (2010).
    [CrossRef]
  19. H. G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
    [CrossRef] [PubMed]
  20. H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 485–488 (2006).
    [CrossRef]
  21. B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572 (1991).
    [CrossRef]
  22. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
    [CrossRef]
  23. S.-W. Chang, T.-R. Lin, and S. L. Chuang, “Theory of plasmonic Fabry-Perot nanolasers,” Opt. Express 18, 15039–15053 (2010).
    [CrossRef] [PubMed]
  24. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
    [CrossRef] [PubMed]
  25. S.-H. Kim, Y.-H. Lee, J. Huang, and A. Scherer, “Unidirectional vertical emission from photonic crystal nanolaser,” 11th International Conference on Transparent Optical Networks ( ICTON ’09) (IEEE, 2009), paper Tu.C4.5.
    [CrossRef]
  26. E. K. Lau, A. Lakhani, R. S. Tucker, and M. C. Wu, “Enhanced modulation bandwidth of nanocavity light emitting devices,” Opt. Express 17, 7790–7799 (2009).
    [CrossRef] [PubMed]
  27. M. Miller, M. Grabherr, R. Jager, and K. J. Ebeling, “High-power VCSEL arrays for emission in the watt regime at room temperature,” IEEE Photon. Technol. Lett. 13, 173–175 (2001).
    [CrossRef]
  28. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21, 2442–2446 (2004).
    [CrossRef]
  29. D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
    [CrossRef]
  30. R. J. Walters, R. V. A. Van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nature Mater. 9, 21–25 (2009).
    [CrossRef]
  31. C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit based resonantor,” Science 327, 1495–1497 (2010).
    [CrossRef] [PubMed]
  32. F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguide,” Appl. Phys. Lett. 86, 211101 (2005).
    [CrossRef]
  33. K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
    [CrossRef]
  34. M. T. Hill, “Micro and nanolasers for digital photonics,” Proceedings of the European Conference on Integrated Optics (ECIO), Copenhagen (Technical University of Denmark, 2007) (pp. WC0-64/67).
  35. M. T. Hill, “Metallic nano-cavity lasers at near infrared wavelengths,” Proc. SPIE 7394, 739409 (2009).
    [CrossRef]
  36. D. J. Gargas, M. C. Moore, A. Ni, S.-W. Chang, Z. Zhang, S.-L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano 4, 3270–3276 (2010).
    [CrossRef] [PubMed]
  37. M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. QE-22, 1915–1921 (1986).
    [CrossRef]
  38. P. Ginzburg, D. Arbel, and M. Orenstein, “Gap Plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett. 31, 3288–3290 (2006).
    [CrossRef] [PubMed]
  39. J. Buus, M. C. Amann, and D. J. Blumenthal, “Distributed Feedback Lasers,” in Tunable Laser Diodes and Related Optical Sources, 2nd ed., (Wiley, 2005), pp. 59–68 .
  40. Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” Bull. Pol. Acad. Sci.: Biol. Sci. 19, 91–93 (2007).
  41. M. J. H. Marell, Dept. of Electrical Engineering, Technische Universiteit Eindhoven, Postbus, 513, 5600 MB Eindhoven, The Netherlands, is preparing a manuscript on gap-plasmon mode DFB lasers in the near infrared wavelengths.
  42. J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Atwater, “Silicon-based plasmonics for on-chip photonics,” IEEE J. Sel. Top. Quantum Electron. 16, 295–305 (2010).
    [CrossRef]

2010

M. P. Nezhad, A. Simic, O. Bondaenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nature Photon. 4, 395–399 (2010).
[CrossRef]

K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express 18, 8790 (2010).
[CrossRef] [PubMed]

C.-Y. Lu, S.-W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett. 96, 251101 (2010).
[CrossRef]

S.-W. Chang, T.-R. Lin, and S. L. Chuang, “Theory of plasmonic Fabry-Perot nanolasers,” Opt. Express 18, 15039–15053 (2010).
[CrossRef] [PubMed]

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit based resonantor,” Science 327, 1495–1497 (2010).
[CrossRef] [PubMed]

D. J. Gargas, M. C. Moore, A. Ni, S.-W. Chang, Z. Zhang, S.-L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano 4, 3270–3276 (2010).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Atwater, “Silicon-based plasmonics for on-chip photonics,” IEEE J. Sel. Top. Quantum Electron. 16, 295–305 (2010).
[CrossRef]

2009

R. J. Walters, R. V. A. Van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nature Mater. 9, 21–25 (2009).
[CrossRef]

M. T. Hill, “Metallic nano-cavity lasers at near infrared wavelengths,” Proc. SPIE 7394, 739409 (2009).
[CrossRef]

E. K. Lau, A. Lakhani, R. S. Tucker, and M. C. Wu, “Enhanced modulation bandwidth of nanocavity light emitting devices,” Opt. Express 17, 7790–7799 (2009).
[CrossRef] [PubMed]

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[CrossRef] [PubMed]

R. Perahia, T. P. Mayer Alegre, A. H. Safavi-Naeini, and O. Painter, “Surface-plasmon mode hybridization in subwavelength microdisk lasers,” Appl. Phys. Lett. 95, 201114 (2009).
[CrossRef]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature (London) 461, 629–632 (2009).
[CrossRef]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature (London) 460, 1110–1112 (2009).
[CrossRef]

2008

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[CrossRef]

2007

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 38–45 (April, 2007).
[CrossRef]

A. Maslov and C. Z. Ning, “Size reduction of a semiconductor nanowire laser using metal coating,” Proc. SPIE 6468, 646801–646807 (2007).
[CrossRef]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in Metallic-Coated Nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” Bull. Pol. Acad. Sci.: Biol. Sci. 19, 91–93 (2007).

2006

P. Ginzburg, D. Arbel, and M. Orenstein, “Gap Plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett. 31, 3288–3290 (2006).
[CrossRef] [PubMed]

S. A. Maier, “Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides,” Opt. Commun. 258, 295–299 (2006).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 485–488 (2006).
[CrossRef]

2005

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguide,” Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

2004

2003

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface Plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef]

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[CrossRef]

2002

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

2001

M. Miller, M. Grabherr, R. Jager, and K. J. Ebeling, “High-power VCSEL arrays for emission in the watt regime at room temperature,” IEEE Photon. Technol. Lett. 13, 173–175 (2001).
[CrossRef]

2000

K. Iga, “Surface-emitting laser—Its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6, 1201–1215 (2000).
[CrossRef]

1999

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkusand, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

1994

B. Prade and J. Y. Vinet, “Guided optical waves in fibers with negative dielectric constant,” J. Lightwave Technol. 12, 6–18 (1994).
[CrossRef]

1991

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

1986

M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. QE-22, 1915–1921 (1986).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, 1993).

Alivisatos, A. P.

J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Atwater, “Silicon-based plasmonics for on-chip photonics,” IEEE J. Sel. Top. Quantum Electron. 16, 295–305 (2010).
[CrossRef]

Altug, H.

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 485–488 (2006).
[CrossRef]

Amann, M. C.

J. Buus, M. C. Amann, and D. J. Blumenthal, “Distributed Feedback Lasers,” in Tunable Laser Diodes and Related Optical Sources, 2nd ed., (Wiley, 2005), pp. 59–68 .

Amanti, M. I.

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit based resonantor,” Science 327, 1495–1497 (2010).
[CrossRef] [PubMed]

Arbel, D.

Asada, M.

M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. QE-22, 1915–1921 (1986).
[CrossRef]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Atwater, “Silicon-based plasmonics for on-chip photonics,” IEEE J. Sel. Top. Quantum Electron. 16, 295–305 (2010).
[CrossRef]

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 38–45 (April, 2007).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Aussenegg, F. R.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[CrossRef]

Baek, J.-H.

H. G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[CrossRef] [PubMed]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature (London) 460, 1110–1112 (2009).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface Plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature (London) 461, 629–632 (2009).
[CrossRef]

Beck, M.

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit based resonantor,” Science 327, 1495–1497 (2010).
[CrossRef] [PubMed]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature (London) 460, 1110–1112 (2009).
[CrossRef]

Bergman, D. J.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef] [PubMed]

Bimberg, D.

C.-Y. Lu, S.-W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett. 96, 251101 (2010).
[CrossRef]

Blumenthal, D. J.

J. Buus, M. C. Amann, and D. J. Blumenthal, “Distributed Feedback Lasers,” in Tunable Laser Diodes and Related Optical Sources, 2nd ed., (Wiley, 2005), pp. 59–68 .

Bondaenko, O.

M. P. Nezhad, A. Simic, O. Bondaenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nature Photon. 4, 395–399 (2010).
[CrossRef]

Brongersma, M. L.

Brunets, I.

R. J. Walters, R. V. A. Van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nature Mater. 9, 21–25 (2009).
[CrossRef]

Buus, J.

J. Buus, M. C. Amann, and D. J. Blumenthal, “Distributed Feedback Lasers,” in Tunable Laser Diodes and Related Optical Sources, 2nd ed., (Wiley, 2005), pp. 59–68 .

Catrysse, P. B.

Chang, S.-W.

C.-Y. Lu, S.-W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett. 96, 251101 (2010).
[CrossRef]

S.-W. Chang, T.-R. Lin, and S. L. Chuang, “Theory of plasmonic Fabry-Perot nanolasers,” Opt. Express 18, 15039–15053 (2010).
[CrossRef] [PubMed]

D. J. Gargas, M. C. Moore, A. Ni, S.-W. Chang, Z. Zhang, S.-L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano 4, 3270–3276 (2010).
[CrossRef] [PubMed]

Chuang, S. L.

C.-Y. Lu, S.-W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett. 96, 251101 (2010).
[CrossRef]

S.-W. Chang, T.-R. Lin, and S. L. Chuang, “Theory of plasmonic Fabry-Perot nanolasers,” Opt. Express 18, 15039–15053 (2010).
[CrossRef] [PubMed]

Chuang, S.-L.

D. J. Gargas, M. C. Moore, A. Ni, S.-W. Chang, Z. Zhang, S.-L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano 4, 3270–3276 (2010).
[CrossRef] [PubMed]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature (London) 461, 629–632 (2009).
[CrossRef]

Dapkusand, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkusand, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

de Vries, T.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in Metallic-Coated Nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

de Waardt, H.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in Metallic-Coated Nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface Plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Atwater, “Silicon-based plasmonics for on-chip photonics,” IEEE J. Sel. Top. Quantum Electron. 16, 295–305 (2010).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Ditlbacher, H.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[CrossRef]

Dutta, N. K.

G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, 1993).

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface Plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Ebeling, K. J.

M. Miller, M. Grabherr, R. Jager, and K. J. Ebeling, “High-power VCSEL arrays for emission in the watt regime at room temperature,” IEEE Photon. Technol. Lett. 13, 173–175 (2001).
[CrossRef]

Eijkemans, T. J.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in Metallic-Coated Nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

Englund, D.

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 485–488 (2006).
[CrossRef]

Fainman, Y.

M. P. Nezhad, A. Simic, O. Bondaenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nature Photon. 4, 395–399 (2010).
[CrossRef]

M. P. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12, 4072–4079 (2004).
[CrossRef] [PubMed]

Faist, J.

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit based resonantor,” Science 327, 1495–1497 (2010).
[CrossRef] [PubMed]

Feng, L.

M. P. Nezhad, A. Simic, O. Bondaenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nature Photon. 4, 395–399 (2010).
[CrossRef]

Forsberg, E.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” Bull. Pol. Acad. Sci.: Biol. Sci. 19, 91–93 (2007).

Galler, N.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[CrossRef]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Gargas, D. J.

D. J. Gargas, M. C. Moore, A. Ni, S.-W. Chang, Z. Zhang, S.-L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano 4, 3270–3276 (2010).
[CrossRef] [PubMed]

Geluk, E. J.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[CrossRef] [PubMed]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in Metallic-Coated Nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

Germann, T. D.

C.-Y. Lu, S.-W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett. 96, 251101 (2010).
[CrossRef]

Ginzburg, P.

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature (London) 461, 629–632 (2009).
[CrossRef]

Grabherr, M.

M. Miller, M. Grabherr, R. Jager, and K. J. Ebeling, “High-power VCSEL arrays for emission in the watt regime at room temperature,” IEEE Photon. Technol. Lett. 13, 173–175 (2001).
[CrossRef]

Han, Z.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” Bull. Pol. Acad. Sci.: Biol. Sci. 19, 91–93 (2007).

He, S.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” Bull. Pol. Acad. Sci.: Biol. Sci. 19, 91–93 (2007).

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature (London) 460, 1110–1112 (2009).
[CrossRef]

Hill, M. T.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[CrossRef] [PubMed]

M. T. Hill, “Metallic nano-cavity lasers at near infrared wavelengths,” Proc. SPIE 7394, 739409 (2009).
[CrossRef]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in Metallic-Coated Nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

M. T. Hill, “Micro and nanolasers for digital photonics,” Proceedings of the European Conference on Integrated Optics (ECIO), Copenhagen (Technical University of Denmark, 2007) (pp. WC0-64/67).

Hohenau, A.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[CrossRef]

Huang, J.

S.-H. Kim, Y.-H. Lee, J. Huang, and A. Scherer, “Unidirectional vertical emission from photonic crystal nanolaser,” 11th International Conference on Transparent Optical Networks ( ICTON ’09) (IEEE, 2009), paper Tu.C4.5.
[CrossRef]

Iga, K.

K. Iga, “Surface-emitting laser—Its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6, 1201–1215 (2000).
[CrossRef]

Jager, R.

M. Miller, M. Grabherr, R. Jager, and K. J. Ebeling, “High-power VCSEL arrays for emission in the watt regime at room temperature,” IEEE Photon. Technol. Lett. 13, 173–175 (2001).
[CrossRef]

Ju, Y.-G.

H. G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[CrossRef] [PubMed]

Karouta, F.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[CrossRef] [PubMed]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkusand, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Kim, S.-B.

H. G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[CrossRef] [PubMed]

Kim, S.-H.

H. G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[CrossRef] [PubMed]

S.-H. Kim, Y.-H. Lee, J. Huang, and A. Scherer, “Unidirectional vertical emission from photonic crystal nanolaser,” 11th International Conference on Transparent Optical Networks ( ICTON ’09) (IEEE, 2009), paper Tu.C4.5.
[CrossRef]

Kobayashi, T.

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguide,” Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

Koller, D. M.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[CrossRef]

Krenn, J. R.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[CrossRef]

Kusunoki, F.

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguide,” Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

Kwon, S.-H.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in Metallic-Coated Nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

H. G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[CrossRef] [PubMed]

Lakhani, A.

Lau, E. K.

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkusand, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Lee, Y.-H.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in Metallic-Coated Nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

H. G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[CrossRef] [PubMed]

S.-H. Kim, Y.-H. Lee, J. Huang, and A. Scherer, “Unidirectional vertical emission from photonic crystal nanolaser,” 11th International Conference on Transparent Optical Networks ( ICTON ’09) (IEEE, 2009), paper Tu.C4.5.
[CrossRef]

Leitner, A.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[CrossRef]

Leong, E. S. P.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[CrossRef] [PubMed]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Lin, T.-R.

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

List, E. J. W.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[CrossRef]

Lomakin, V.

M. P. Nezhad, A. Simic, O. Bondaenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nature Photon. 4, 395–399 (2010).
[CrossRef]

Lu, C.-Y.

C.-Y. Lu, S.-W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett. 96, 251101 (2010).
[CrossRef]

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature (London) 461, 629–632 (2009).
[CrossRef]

Maier, S. A.

S. A. Maier, “Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides,” Opt. Commun. 258, 295–299 (2006).
[CrossRef]

Marell, M.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[CrossRef] [PubMed]

Marell, M. J. H.

M. J. H. Marell, Dept. of Electrical Engineering, Technische Universiteit Eindhoven, Postbus, 513, 5600 MB Eindhoven, The Netherlands, is preparing a manuscript on gap-plasmon mode DFB lasers in the near infrared wavelengths.

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Maslov, A.

A. Maslov and C. Z. Ning, “Size reduction of a semiconductor nanowire laser using metal coating,” Proc. SPIE 6468, 646801–646807 (2007).
[CrossRef]

Mayer Alegre, T. P.

R. Perahia, T. P. Mayer Alegre, A. H. Safavi-Naeini, and O. Painter, “Surface-plasmon mode hybridization in subwavelength microdisk lasers,” Appl. Phys. Lett. 95, 201114 (2009).
[CrossRef]

Miller, M.

M. Miller, M. Grabherr, R. Jager, and K. J. Ebeling, “High-power VCSEL arrays for emission in the watt regime at room temperature,” IEEE Photon. Technol. Lett. 13, 173–175 (2001).
[CrossRef]

Miyamoto, Y.

M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. QE-22, 1915–1921 (1986).
[CrossRef]

Mizrahi, A.

M. P. Nezhad, A. Simic, O. Bondaenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nature Photon. 4, 395–399 (2010).
[CrossRef]

Moore, M. C.

D. J. Gargas, M. C. Moore, A. Ni, S.-W. Chang, Z. Zhang, S.-L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano 4, 3270–3276 (2010).
[CrossRef] [PubMed]

Mysyrowicz, A.

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature (London) 460, 1110–1112 (2009).
[CrossRef]

Nezhad, M. P.

M. P. Nezhad, A. Simic, O. Bondaenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nature Photon. 4, 395–399 (2010).
[CrossRef]

M. P. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12, 4072–4079 (2004).
[CrossRef] [PubMed]

Ni, A.

D. J. Gargas, M. C. Moore, A. Ni, S.-W. Chang, Z. Zhang, S.-L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano 4, 3270–3276 (2010).
[CrossRef] [PubMed]

Ning, C. Z.

A. Maslov and C. Z. Ning, “Size reduction of a semiconductor nanowire laser using metal coating,” Proc. SPIE 6468, 646801–646807 (2007).
[CrossRef]

Ning, C.-Z.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[CrossRef] [PubMed]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature (London) 460, 1110–1112 (2009).
[CrossRef]

Nötzel, R.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[CrossRef] [PubMed]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in Metallic-Coated Nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkusand, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Oei, Y.-S.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[CrossRef] [PubMed]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in Metallic-Coated Nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

Orenstein, M.

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature (London) 461, 629–632 (2009).
[CrossRef]

Painter, O.

R. Perahia, T. P. Mayer Alegre, A. H. Safavi-Naeini, and O. Painter, “Surface-plasmon mode hybridization in subwavelength microdisk lasers,” Appl. Phys. Lett. 95, 201114 (2009).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkusand, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Park, H. G.

H. G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[CrossRef] [PubMed]

Perahia, R.

R. Perahia, T. P. Mayer Alegre, A. H. Safavi-Naeini, and O. Painter, “Surface-plasmon mode hybridization in subwavelength microdisk lasers,” Appl. Phys. Lett. 95, 201114 (2009).
[CrossRef]

Polman, A.

R. J. Walters, R. V. A. Van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nature Mater. 9, 21–25 (2009).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Prade, B.

B. Prade and J. Y. Vinet, “Guided optical waves in fibers with negative dielectric constant,” J. Lightwave Technol. 12, 6–18 (1994).
[CrossRef]

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

Reil, F.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[CrossRef]

Safavi-Naeini, A. H.

R. Perahia, T. P. Mayer Alegre, A. H. Safavi-Naeini, and O. Painter, “Surface-plasmon mode hybridization in subwavelength microdisk lasers,” Appl. Phys. Lett. 95, 201114 (2009).
[CrossRef]

Scalari, G.

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit based resonantor,” Science 327, 1495–1497 (2010).
[CrossRef] [PubMed]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkusand, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

S.-H. Kim, Y.-H. Lee, J. Huang, and A. Scherer, “Unidirectional vertical emission from photonic crystal nanolaser,” 11th International Conference on Transparent Optical Networks ( ICTON ’09) (IEEE, 2009), paper Tu.C4.5.
[CrossRef]

Schmitz, J.

R. J. Walters, R. V. A. Van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nature Mater. 9, 21–25 (2009).
[CrossRef]

Selker, M. D.

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature (London) 460, 1110–1112 (2009).
[CrossRef]

Sheldon, M. T.

J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Atwater, “Silicon-based plasmonics for on-chip photonics,” IEEE J. Sel. Top. Quantum Electron. 16, 295–305 (2010).
[CrossRef]

Simic, A.

M. P. Nezhad, A. Simic, O. Bondaenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nature Photon. 4, 395–399 (2010).
[CrossRef]

Slutsky, B.

M. P. Nezhad, A. Simic, O. Bondaenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nature Photon. 4, 395–399 (2010).
[CrossRef]

Smalbrugge, B.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[CrossRef] [PubMed]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in Metallic-Coated Nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

Smit, M. K.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[CrossRef] [PubMed]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in Metallic-Coated Nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature (London) 461, 629–632 (2009).
[CrossRef]

Stockman, M. I.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef] [PubMed]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature (London) 460, 1110–1112 (2009).
[CrossRef]

Suematsu, Y.

M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. QE-22, 1915–1921 (1986).
[CrossRef]

Sun, M.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[CrossRef] [PubMed]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature (London) 460, 1110–1112 (2009).
[CrossRef]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Atwater, “Silicon-based plasmonics for on-chip photonics,” IEEE J. Sel. Top. Quantum Electron. 16, 295–305 (2010).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Takahara, J.

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguide,” Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

Tanaka, K.

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[CrossRef]

Tanaka, M.

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[CrossRef]

Tetz, K.

Tucker, R. S.

Turkiewicz, J. P.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in Metallic-Coated Nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

Van Loon, R. V. A.

R. J. Walters, R. V. A. Van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nature Mater. 9, 21–25 (2009).
[CrossRef]

van Otten, F. W. M.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in Metallic-Coated Nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

van Veldhoven, P. J.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[CrossRef] [PubMed]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in Metallic-Coated Nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

Vinet, J. Y.

B. Prade and J. Y. Vinet, “Guided optical waves in fibers with negative dielectric constant,” J. Lightwave Technol. 12, 6–18 (1994).
[CrossRef]

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

Vuckovic, J.

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 485–488 (2006).
[CrossRef]

Walters, R. J.

R. J. Walters, R. V. A. Van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nature Mater. 9, 21–25 (2009).
[CrossRef]

Walther, C.

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit based resonantor,” Science 327, 1495–1497 (2010).
[CrossRef] [PubMed]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature (London) 460, 1110–1112 (2009).
[CrossRef]

Wu, M. C.

Yang, J.-K.

H. G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[CrossRef] [PubMed]

Yang, P.

D. J. Gargas, M. C. Moore, A. Ni, S.-W. Chang, Z. Zhang, S.-L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano 4, 3270–3276 (2010).
[CrossRef] [PubMed]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkusand, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

Yotsuya, T.

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguide,” Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

Yu, K.

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature (London) 461, 629–632 (2009).
[CrossRef]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature (London) 461, 629–632 (2009).
[CrossRef]

Zhang, Z.

D. J. Gargas, M. C. Moore, A. Ni, S.-W. Chang, Z. Zhang, S.-L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano 4, 3270–3276 (2010).
[CrossRef] [PubMed]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature (London) 460, 1110–1112 (2009).
[CrossRef]

Zhu, Y.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[CrossRef] [PubMed]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in Metallic-Coated Nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

Zia, R.

ACS Nano

D. J. Gargas, M. C. Moore, A. Ni, S.-W. Chang, Z. Zhang, S.-L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano 4, 3270–3276 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett.

C.-Y. Lu, S.-W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett. 96, 251101 (2010).
[CrossRef]

R. Perahia, T. P. Mayer Alegre, A. H. Safavi-Naeini, and O. Painter, “Surface-plasmon mode hybridization in subwavelength microdisk lasers,” Appl. Phys. Lett. 95, 201114 (2009).
[CrossRef]

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguide,” Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[CrossRef]

Bull. Pol. Acad. Sci.: Biol. Sci.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” Bull. Pol. Acad. Sci.: Biol. Sci. 19, 91–93 (2007).

IEEE J. Quantum Electron.

M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. QE-22, 1915–1921 (1986).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

K. Iga, “Surface-emitting laser—Its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6, 1201–1215 (2000).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Atwater, “Silicon-based plasmonics for on-chip photonics,” IEEE J. Sel. Top. Quantum Electron. 16, 295–305 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Miller, M. Grabherr, R. Jager, and K. J. Ebeling, “High-power VCSEL arrays for emission in the watt regime at room temperature,” IEEE Photon. Technol. Lett. 13, 173–175 (2001).
[CrossRef]

J. Lightwave Technol.

B. Prade and J. Y. Vinet, “Guided optical waves in fibers with negative dielectric constant,” J. Lightwave Technol. 12, 6–18 (1994).
[CrossRef]

J. Opt. Soc. Am. A

Nat. Photonics

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[CrossRef]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in Metallic-Coated Nanocavities,” Nat. Photonics 1, 589–594 (2007).
[CrossRef]

Nat. Phys.

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 485–488 (2006).
[CrossRef]

Nature (London)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface Plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature (London) 461, 629–632 (2009).
[CrossRef]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature (London) 460, 1110–1112 (2009).
[CrossRef]

Nature Mater.

R. J. Walters, R. V. A. Van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nature Mater. 9, 21–25 (2009).
[CrossRef]

Nature Photon.

M. P. Nezhad, A. Simic, O. Bondaenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nature Photon. 4, 395–399 (2010).
[CrossRef]

Opt. Commun.

S. A. Maier, “Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides,” Opt. Commun. 258, 295–299 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572 (1991).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Phys. Rev. Lett.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef] [PubMed]

Proc. SPIE

A. Maslov and C. Z. Ning, “Size reduction of a semiconductor nanowire laser using metal coating,” Proc. SPIE 6468, 646801–646807 (2007).
[CrossRef]

M. T. Hill, “Metallic nano-cavity lasers at near infrared wavelengths,” Proc. SPIE 7394, 739409 (2009).
[CrossRef]

Sci. Am.

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 38–45 (April, 2007).
[CrossRef]

Science

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkusand, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999).
[CrossRef] [PubMed]

H. G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit based resonantor,” Science 327, 1495–1497 (2010).
[CrossRef] [PubMed]

Other

J. Buus, M. C. Amann, and D. J. Blumenthal, “Distributed Feedback Lasers,” in Tunable Laser Diodes and Related Optical Sources, 2nd ed., (Wiley, 2005), pp. 59–68 .

S.-H. Kim, Y.-H. Lee, J. Huang, and A. Scherer, “Unidirectional vertical emission from photonic crystal nanolaser,” 11th International Conference on Transparent Optical Networks ( ICTON ’09) (IEEE, 2009), paper Tu.C4.5.
[CrossRef]

G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, 1993).

M. J. H. Marell, Dept. of Electrical Engineering, Technische Universiteit Eindhoven, Postbus, 513, 5600 MB Eindhoven, The Netherlands, is preparing a manuscript on gap-plasmon mode DFB lasers in the near infrared wavelengths.

M. T. Hill, “Micro and nanolasers for digital photonics,” Proceedings of the European Conference on Integrated Optics (ECIO), Copenhagen (Technical University of Denmark, 2007) (pp. WC0-64/67).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

A number of groups have made metallic or plasmonic nano-lasers recently. a. One approach that has been pursued by several groups is to encapsulate a semiconductor heterostructure pillar in an insulator, then a low-optical-loss metal such as silver or aluminium. Such an approach is particularly suitable for electrical pumping of the laser. The In P In Ga As heterostructure shown is used with an SiN insulator. Some light in the optical mode escapes through the bottom of the pillar and the substrate. b. The optical mode in such structures is trapped on the InGaAs gain region in the center of the pillar due to refractive index differences. The contour lines show | E | 2 of the trapped optical mode in a slice through the pillar center, with color giving intensity. The arrows show the magnitude and direction of the time averaged Poynting vector for this slice of the mode, and show that the energy of the mode is mostly being dissipated as heat in the metal sidewalls.

Fig. 2
Fig. 2

a. Slice through silver encapsulated semiconductor core pillar device showing details of its structure used in a simulation. The height of the InGaAs core is 300 nm . The light gray region between the InGaAs core and silver is the Si O 2 . The substrate below the pillar is InP. The height parameter h can be varied to modify the Q of the cavity, allowing more or less light from the cavity mode to leak to the outside of the cavity. Typically electrical contacts to these pillar devices to pump the InGaAs gain region can be made through the top of the pillar via the actual silver encapsulation, and another contact to the other side of the InGaAs gain region via the InP substrate. b. FDTD simulation results showing | E | 2 plot of a slice through the pillar indicating a TE mode centered on the InGaAs and leaking power to the substrate. c. Plot of quality factor of cavity versus length of InP stub under the InGaA shows tradeoff can be made between Q and emission efficiency.

Fig. 3
Fig. 3

Three spectra from three separate pillar devices in a row. The devices operate with a HE11 mode and the diameter of the pillar differs by approximately 20 nm between each device. The plot shows that single-mode lasing over a wide range of wavelengths can be achieved with devices on the same wafer and close to each other. The spectra have been offset by 3000 counts from each other for clarity.

Fig. 4
Fig. 4

a. Electrically pumped MIM waveguide structure that has the usual flat MIM configuration turned on its side. The propagating mode is confined to the InGaAs gain region in the center of the waveguide by index differences. The dark (red online) region under the top n-contact is n-InGaAs employed to give low contact resistance. The gold/gray layers to the side and at the bottom of the ridge are Au Ti layers employed to help bond the silver encapsulation to the semiconductor/dielectric core. The schematic shows a cut through the ridge structure. In actual devices the ends of the ridge are also encapsulated in dielectric and silver of the same thickness as the sidewalls. b. Plot of | E | 2 for the gap-plasmon mode taken horizontally across the waveguide structure for a 25 nm wide InGaAs region and 5 nm thick SiN insulator. The lighter lines (blue online) are for the real refractive indices of InGaAs and SiN, darker (red online) when the SiN has its refractive index equal to that of InGaAs. A significant proportion of the modal energy can travel in the insulator, which can increase the gain requirements from the InGaAs. c. SEM photos of sections of waveguide cores; after being encapsulated in silver they will form Fabry–Perot cavities. The scale bar is 1 μ m .

Fig. 5
Fig. 5

a. Structure of an active surface plasmon polariton gap waveguide. Lithography, dry etching, and selective wet etching can be used to form the three-dimensional nano-structure. Metal can be deposited by evaporation around the form to complete the waveguide and provide a top electrical contact. b. Slice through simulated 3D structure with deviations from the idealized shape to take into account what can be achieved with typical fabrication techniques. The InGaAs is 45 nm high and 25 nm wide. The InP cladding has an indentation of approximately 60 nm on each side. c. Plot of | E | 2 from FDTD simulation of such a structure showing tightly confined mode.

Fig. 6
Fig. 6

a. Simulated (3D FDTD) vertical confinement of the modal energy in the 45 nm thick InGaAs layer found by looking at | E | 2 through the center of the waveguide pillar, versus InGaAs width. The straight line at the bottom (red online) is the confinement for a TM0 mode in such a In P In Ga As heterostructure with a width of 2 μ m , but without metal or sidewall indentations. b. The crosses show the gain required if in the vertical direction all the modal energy were contained in the InGaAs layer. This is found by using a mode solver and looking at the energy distribution across the waveguide. For a relatively thick InGaAs layer such a threshold gain would be approached. The circles show the gain required if the vertical energy confinement shown in Fig. 6a is taken into account by dividing the gain of the curve of crosses with the vertical energy confinement.

Fig. 7
Fig. 7

a. Actual fabricated semiconductor In P In Ga A S semiconductor core. b. Cross section of a completed waveguide that has been encapsulated in silver. The scale bars in both a. and b.) are 100 nm . c. Emission through substrate of a waveguide similar to b. with active region width of 25 nm and the waveguide 20     μ m long.

Fig. 8
Fig. 8

Semiconductor core of MIM waveguide with modulated width used to form plasmonic DFB lasers as reported in [41]. Scale bar is 100 nm .

Metrics