Abstract

We review our recent work on beam shaping of mid-infrared (mid-IR) and terahertz (THz) quantum cascade lasers (QCLs) using plasmonics. Essentials of QCLs are discussed; these include key developments, the operating principle based on quantum design, and beam quality problems associated with laser waveguide design. The bulk of the present paper is focused on the use of surface plasmons (SPs) to engineer the wavefront of QCLs. This is achieved by tailoring the SP dispersion using properly designed plasmonic structures, in particular, plasmonic Bragg gratings, designer (spoof) surface plasmon structures, and channel polariton structures. Using mid-IR and THz QCLs as a model system, various functionalities have been demonstrated, ranging from beam collimation, polarization control, to multibeam emission and spatial wavelength demultiplexing. Plasmonics offers a monolithic, compact, and low-loss solution to the problem of poor beam quality of QCLs and may have a large impact on applications such as sensing, light detection and ranging (LIDAR), free-space optical communication, and heterodyne detection of chemicals. The plasmonic designs are scalable and applicable to near-infrared active or passive optical devices.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. F. Kazarinov and R. A. Suris, “Amplification of electromagnetic waves in a semiconductor superlattice,” Sov. Phys. Semicond. 5, 707–709 (1971).
  2. J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
    [CrossRef] [PubMed]
  3. C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64, 1533–1601 (2001).
    [CrossRef]
  4. F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, and H. C. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
    [CrossRef]
  5. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
    [CrossRef] [PubMed]
  6. Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 221104 (2009).
    [CrossRef]
  7. M. Razeghi, “High-power high-wall plug efficiency mid-infrared quantum cascade lasers based on InP∕GaInAs∕InAlAs material system,” Proc. SPIE 7230, 723011 (2009).
    [CrossRef]
  8. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
    [CrossRef]
  9. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
    [CrossRef]
  10. C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photonics Technol. Lett. 9, 1090–1092 (1997).
    [CrossRef]
  11. G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769–777 (2005).
    [CrossRef]
  12. R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum-cascade laser tunable from 8.2to10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006).
    [CrossRef]
  13. M. B. Pushkarsky, I. G. Dunayevskiy, M. Prasanna, A. G. Tsekoun, R. Go, and C. K. N. Patel, “High-sensitivity detection of TNT,” Proc. Natl. Acad. Sci. U.S.A. 103, 19630–19634 (2006).
    [CrossRef] [PubMed]
  14. M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. U.S.A. 103, 10846–10849 (2006).
    [CrossRef] [PubMed]
  15. G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
    [CrossRef]
  16. A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44, 1083–1088 (2008).
    [CrossRef]
  17. A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6to11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009).
    [CrossRef]
  18. B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
    [CrossRef]
  19. B. G. Lee, H. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0to9.8 μm,” IEEE Photonics Technol. Lett. 21, 914–916 (2009).
    [CrossRef]
  20. M. Troccoli, L. Diehl, D. P. Bour, S. W. Corzine, N. Yu, C. Y. Wang, M. A. Belkin, G. Hofler, R. Lewicki, G. Wysocki, F. K. Tittel, and F. Capasso, “High-performance quantum cascade lasers grown by metal-organic vapor phase epitaxy and their applications to trace gas sensing,” J. Lightwave Technol. 26, 3534–3555 (2008).
    [CrossRef]
  21. A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
    [CrossRef]
  22. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
    [CrossRef] [PubMed]
  23. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007).
    [CrossRef]
  24. G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photonics Rev. 1, 1–22 (2008).
  25. M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
    [CrossRef]
  26. A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Qing Hu, and J. L. Reno, “Real-time terahertz imaging over a standoff distance (>25 meters),” Appl. Phys. Lett. 89, 141125 (2006).
    [CrossRef]
  27. J. Faist, G. Scalari, C. Walther, and M. Fischer, “Progress in long wavelength terahertz quantum cascade lasers,” presented at the 2007 Materials Research Society (MRS) Spring Meeting, San Francisco, California, April 9–13, 2007, paper CC7.2.
  28. S. Kumar, Q. Hu, and J. L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94, 131105 (2009).
    [CrossRef]
  29. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode,” Opt. Express 13, 3331–3339 (2005).
    [CrossRef] [PubMed]
  30. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “High-power terahertz quantum cascade lasers,” Electron. Lett. 42, 89–91 (2006).
    [CrossRef]
  31. R. H. Rediker, I. Melngailis, and A. Mooradian, “Lasers, their development, and applications at M.I.T. Lincoln Laboratory,” IEEE J. Quantum Electron. 20, 602–615 (1984).
    [CrossRef]
  32. S. Mukherjee and Z. S. Shi, “State-of-the-art IV–VI semiconductor light-emitting devices in mid-infrared opto-electronic applications,” IETE Tech. Rev. 26, 236–246 (2009).
    [CrossRef]
  33. S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
    [CrossRef]
  34. M. Hajenius, P. Khosropanah, J. N. Novenier, J. R. Gao, T. M. Klapwijk, S. Barbieri, S. Dhillon, P. Filloux, C. Sirtori, D. A. Ritchie, and H. E. Beere, “Surface plasmon quantum cascade lasers as terahertz local oscillators,” Opt. Lett. 33, 312–314 (2008).
    [CrossRef] [PubMed]
  35. A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal-metal waveguides,” Opt. Lett. 32, 2840–2842 (2007).
    [CrossRef]
  36. M. I. Amanti, M. Fischer, C. Walther, G. Scalari, and J. Faist, “Horn antennas for terahertz quantum cascade lasers,” Electron. Lett. 43, 573–574 (2007).
    [CrossRef]
  37. M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (λ≈7.4 μm) quantum cascade laser amplifier for high-power single-mode emission and improved beam quality,” Appl. Phys. Lett. 80, 4103–4105 (2002).
    [CrossRef]
  38. L. Nähle, J. Semmel, W. Kaiser, S. Höfling, and A. Forchel, “Tapered quantum cascade lasers,” Appl. Phys. Lett. 91, 181122 (2007).
    [CrossRef]
  39. Y. Bai, S. R. Darvish, S. Slivken, P. Sung, J. Nguyen, A. Evans, W. Zhang, and M. Razeghi, “Electrically pumped photonic crystal distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 91, 141123 (2007).
    [CrossRef]
  40. D. Hofstetter, J. Faist, M. Beck, and U. Oesterle, “Surface-emitting 10.1 μm quantum-cascade distributed feedback lasers,” Appl. Phys. Lett. 75, 3769–3771 (1999).
    [CrossRef]
  41. W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, “Surface-emitting distributed feedback quantum-cascade lasers,” Appl. Phys. Lett. 77, 2086–2088 (2000).
    [CrossRef]
  42. D. Hofstetter, J. Faist, M. Beck, A. Müller, and U. Oesterle, “Edge- and surface-emitting 10.1 μm quantum cascade distributed feedback lasers,” Physica E 7, 25–28 (2000).
    [CrossRef]
  43. C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, “Single-mode surface-emitting quantum-cascade lasers,” Appl. Phys. Lett. 86, 211101 (2005).
    [CrossRef]
  44. J. A. Fan, M. A. Belkin, and F. Capasso, “Surface emitting terahertz quantum cascade laser with a double-metal waveguide,” Opt. Express 14, 11672–11680 (2006).
    [CrossRef] [PubMed]
  45. S. Kumar, B. S. Williams, Q. Qin, A. W. M. Lee, and Q. Hu, “Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides,” Opt. Express 15, 114–128 (2007).
    [CrossRef]
  46. M. I. Amanti, M. Fischer, G. Scalari, M. Beck and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3, 586–590 (2009).
    [CrossRef]
  47. E. Mujagić, L. K. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93, 161101 (2008).
    [CrossRef]
  48. L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics 3, 46–49 (2009).
    [CrossRef]
  49. I. Vurgaftman and J. R. Meyer, “Photonic-crystal distributed-feedback quantum cascade lasers,” IEEE J. Quantum Electron. 38, 592–602 (2002).
    [CrossRef]
  50. R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374–1377 (2003).
    [CrossRef] [PubMed]
  51. Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174–178 (2009).
    [CrossRef] [PubMed]
  52. Q.-Y. Lu, W.-H. Guo, W. Zhang, L.-J. Wang, J.-Q. Liu, L.- Li, F.-Q. Liu, and Z.-G. Wang, “Room temperature operation of photonic-crystal distributed-feedback quantum cascade lasers with single longitudinal and lateral mode performance,” Appl. Phys. Lett. 96, 051112 (2010).
    [CrossRef]
  53. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 56–63 (2007).
    [CrossRef] [PubMed]
  54. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [CrossRef] [PubMed]
  55. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, 2007).
  56. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. (Leipzig) 330, 377–445 (1908).
    [CrossRef]
  57. J. Zenneck, “Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie,” Ann. Phys. 23, 846–866 (1907).
    [CrossRef]
  58. A. Sommerfeld, “Über die Ausbreitung der Wellen in der drahtlosen Telegraphie,” Ann. Phys. 28, 665–736 (1909).
    [CrossRef]
  59. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
    [CrossRef] [PubMed]
  60. J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
    [CrossRef] [PubMed]
  61. F. J. García-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7, S97–S101 (2005).
    [CrossRef]
  62. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
    [CrossRef]
  63. J. A. Kong, Electromagnetic Wave Theory (EMW Publishing, 2000).
  64. J. Q. Lu and A. A. Maradudin, “Channel plasmons,” Phys. Rev. B 42, 11159–11165 (1990).
    [CrossRef]
  65. I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
    [CrossRef]
  66. D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85, 6323–6325 (2004).
    [CrossRef]
  67. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
    [CrossRef] [PubMed]
  68. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
    [CrossRef] [PubMed]
  69. S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon polaritons,” Opt. Express 14, 9467–9476 (2006).
    [CrossRef] [PubMed]
  70. S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16, 2676–2684 (2008).
    [CrossRef] [PubMed]
  71. G. B. Hocker and W. K. Burns, Mode dispersion in diffused channel waveguides by the effective index method, Appl. Opt. 16, 113–118 (1977).
    [CrossRef] [PubMed]
  72. N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
    [CrossRef]
  73. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
    [CrossRef] [PubMed]
  74. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
    [CrossRef] [PubMed]
  75. N. Yu, R. Blanchard, J. Fan, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93, 181101 (2008).
    [CrossRef]
  76. N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16, 19447–19461 (2008).
    [CrossRef] [PubMed]
  77. N. Yu, M. A. Kats, C. Pflugl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95, 161108 (2009).
    [CrossRef]
  78. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (6th ed.) (Oxford University Press, 2007).
  79. H. C. Liu and F. Capasso, Intersubband Transitions in Quantum Wells: Physics and Device Applications I (Academic, 2000).
  80. N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
    [CrossRef]
  81. F. Lopez-Tejeira, Sergio G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
    [CrossRef]
  82. P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87, 2382–2385 (2000).
    [CrossRef]
  83. W. Walukiewicz, L. Lagowski, L. Jastrzebski, M. Lichtensteiger, and H. C. Gatos, “Electron mobility and free-carrier absorption in GaAs: determination of the compensation ratio,” J. Appl. Phys. 50, 899–908 (1979).
    [CrossRef]
  84. I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Imaging and focusing properties of plasmonic metamaterial devices,” Phys. Rev. B 76, 205424 (2007).
    [CrossRef]
  85. J. Beermann, I. P. Radko, A. Boltasseva, and S. I. Bozhevolnyi, “Localized field enhancements in fractal shaped periodic metal nanostructures,” Opt. Express 15, 15234–15241 (2007).
    [CrossRef] [PubMed]
  86. I. P. Radko, V. S. Volkov, J. Beermann, A. B. Evlyukhin, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Plasmonic metasurfaces for waveguiding and field enhancement,” Laser Photon. Rev. 3, 575–590 (2009).
    [CrossRef]
  87. M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17, 18184–18195 (2009).
    [CrossRef] [PubMed]
  88. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
    [CrossRef] [PubMed]
  89. B. Wang, L. Liu, and S. He, “Propagation loss of terahertz surface plasmon polaritons on a periodically structured Ag surface,” J. Appl. Phys. 104, 103531 (2008).
    [CrossRef]
  90. M. C. Gaidis, H. M. Pickett, C. D. Smith, S. C. Martin, R. P. Smith, and P. H. Siegel, “A 2.5-THz receiver front end for spaceborne applications,” IEEE Trans. Microwave Theory Tech. 48, 733–739 (2000).
    [CrossRef]
  91. P. H. Siegel and R. J. Dengler, “The dielectric-filled parabola: A new millimeter/submillimeter wavelength receiver/transmitter front end,” IEEE Trans. Antennas Propag. 39, 40–47 (1991).
    [CrossRef]
  92. N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof-surface-plasmon structures collimate terahertz laser beams,” Nature Mater. doc. ID:10.1038/nmat2822 (posted 8 August 2010, in press).
  93. J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
    [CrossRef] [PubMed]
  94. Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79, 1587–1589 (2001).
    [CrossRef]
  95. R. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
    [CrossRef]
  96. M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5) 35–40 (2004).
    [CrossRef]
  97. E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron. 14, 1448–1461 (2008).
    [CrossRef]
  98. N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Bowtie plasmonic quantum cascade laser antenna,” Opt. Express 15, 13272–13281 (2007).
    [CrossRef] [PubMed]
  99. J. N. Farahani, H.-J. Eisler, D. W. Pohl, M. Pavius, P. Flückiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506–125600 (2007).
    [CrossRef]
  100. S. Palomba and L. Novotny, “Near-field imaging with a localized nonlinear light source,” Nano Lett. 9, 3801–3804 (2009).
    [CrossRef] [PubMed]
  101. Y. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express 17, 10195–10205 (2009).
    [CrossRef] [PubMed]
  102. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Weinheim, Ger.) 21, 3504–3509 (2009).
    [CrossRef]
  103. E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9, 1132–1138 (2009).
    [CrossRef] [PubMed]
  104. Q. Xu, R. M. Rioux, M. D. Dickey, and G. M Whitesies, “Nanoskiving: A new method to produce arrays of nanostructures,” Nano Lett. 41, 1566–1577 (2008).
  105. Y. Xia and G. M. Whitesides, “Soft lithography,” Angew. Chem., Int. Ed. 37, 550–575 (1998).
    [CrossRef]
  106. D. J. Lipomi, M. A. Kats, P. Kim, S. H. Kang, J. Aizenberg, F. Capasso, and G. M. Whitesides, “Fabrication and replication of arrays of single- or multicomponent nanostructures by replica molding and mechanical sectioning,” ACS Nano 4, 4017–4026 (2010).
    [CrossRef] [PubMed]
  107. E. J. Smythe, M. D. Dickey, G. M. Whitesides, and F. Capasso, “A technique to transfer metallic nanoscale patterns to small and non-planar surfaces,” ACS Nano 3, 59–65 (2009).
    [CrossRef] [PubMed]

2010 (2)

Q.-Y. Lu, W.-H. Guo, W. Zhang, L.-J. Wang, J.-Q. Liu, L.- Li, F.-Q. Liu, and Z.-G. Wang, “Room temperature operation of photonic-crystal distributed-feedback quantum cascade lasers with single longitudinal and lateral mode performance,” Appl. Phys. Lett. 96, 051112 (2010).
[CrossRef]

D. J. Lipomi, M. A. Kats, P. Kim, S. H. Kang, J. Aizenberg, F. Capasso, and G. M. Whitesides, “Fabrication and replication of arrays of single- or multicomponent nanostructures by replica molding and mechanical sectioning,” ACS Nano 4, 4017–4026 (2010).
[CrossRef] [PubMed]

2009 (20)

E. J. Smythe, M. D. Dickey, G. M. Whitesides, and F. Capasso, “A technique to transfer metallic nanoscale patterns to small and non-planar surfaces,” ACS Nano 3, 59–65 (2009).
[CrossRef] [PubMed]

S. Palomba and L. Novotny, “Near-field imaging with a localized nonlinear light source,” Nano Lett. 9, 3801–3804 (2009).
[CrossRef] [PubMed]

Y. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express 17, 10195–10205 (2009).
[CrossRef] [PubMed]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Weinheim, Ger.) 21, 3504–3509 (2009).
[CrossRef]

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9, 1132–1138 (2009).
[CrossRef] [PubMed]

N. Yu, M. A. Kats, C. Pflugl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95, 161108 (2009).
[CrossRef]

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
[CrossRef]

I. P. Radko, V. S. Volkov, J. Beermann, A. B. Evlyukhin, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Plasmonic metasurfaces for waveguiding and field enhancement,” Laser Photon. Rev. 3, 575–590 (2009).
[CrossRef]

M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17, 18184–18195 (2009).
[CrossRef] [PubMed]

M. I. Amanti, M. Fischer, G. Scalari, M. Beck and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3, 586–590 (2009).
[CrossRef]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics 3, 46–49 (2009).
[CrossRef]

S. Mukherjee and Z. S. Shi, “State-of-the-art IV–VI semiconductor light-emitting devices in mid-infrared opto-electronic applications,” IETE Tech. Rev. 26, 236–246 (2009).
[CrossRef]

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174–178 (2009).
[CrossRef] [PubMed]

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 221104 (2009).
[CrossRef]

M. Razeghi, “High-power high-wall plug efficiency mid-infrared quantum cascade lasers based on InP∕GaInAs∕InAlAs material system,” Proc. SPIE 7230, 723011 (2009).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
[CrossRef]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6to11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009).
[CrossRef]

B. G. Lee, H. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0to9.8 μm,” IEEE Photonics Technol. Lett. 21, 914–916 (2009).
[CrossRef]

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[CrossRef]

S. Kumar, Q. Hu, and J. L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94, 131105 (2009).
[CrossRef]

2008 (16)

M. Hajenius, P. Khosropanah, J. N. Novenier, J. R. Gao, T. M. Klapwijk, S. Barbieri, S. Dhillon, P. Filloux, C. Sirtori, D. A. Ritchie, and H. E. Beere, “Surface plasmon quantum cascade lasers as terahertz local oscillators,” Opt. Lett. 33, 312–314 (2008).
[CrossRef] [PubMed]

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photonics Rev. 1, 1–22 (2008).

M. Troccoli, L. Diehl, D. P. Bour, S. W. Corzine, N. Yu, C. Y. Wang, M. A. Belkin, G. Hofler, R. Lewicki, G. Wysocki, F. K. Tittel, and F. Capasso, “High-performance quantum cascade lasers grown by metal-organic vapor phase epitaxy and their applications to trace gas sensing,” J. Lightwave Technol. 26, 3534–3555 (2008).
[CrossRef]

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[CrossRef]

A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44, 1083–1088 (2008).
[CrossRef]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[CrossRef]

S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16, 2676–2684 (2008).
[CrossRef] [PubMed]

E. Mujagić, L. K. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93, 161101 (2008).
[CrossRef]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef] [PubMed]

B. Wang, L. Liu, and S. He, “Propagation loss of terahertz surface plasmon polaritons on a periodically structured Ag surface,” J. Appl. Phys. 104, 103531 (2008).
[CrossRef]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93, 181101 (2008).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16, 19447–19461 (2008).
[CrossRef] [PubMed]

Q. Xu, R. M. Rioux, M. D. Dickey, and G. M Whitesies, “Nanoskiving: A new method to produce arrays of nanostructures,” Nano Lett. 41, 1566–1577 (2008).

E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron. 14, 1448–1461 (2008).
[CrossRef]

2007 (13)

N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Bowtie plasmonic quantum cascade laser antenna,” Opt. Express 15, 13272–13281 (2007).
[CrossRef] [PubMed]

J. N. Farahani, H.-J. Eisler, D. W. Pohl, M. Pavius, P. Flückiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506–125600 (2007).
[CrossRef]

F. Lopez-Tejeira, Sergio G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[CrossRef]

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Imaging and focusing properties of plasmonic metamaterial devices,” Phys. Rev. B 76, 205424 (2007).
[CrossRef]

J. Beermann, I. P. Radko, A. Boltasseva, and S. I. Bozhevolnyi, “Localized field enhancements in fractal shaped periodic metal nanostructures,” Opt. Express 15, 15234–15241 (2007).
[CrossRef] [PubMed]

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 56–63 (2007).
[CrossRef] [PubMed]

L. Nähle, J. Semmel, W. Kaiser, S. Höfling, and A. Forchel, “Tapered quantum cascade lasers,” Appl. Phys. Lett. 91, 181122 (2007).
[CrossRef]

Y. Bai, S. R. Darvish, S. Slivken, P. Sung, J. Nguyen, A. Evans, W. Zhang, and M. Razeghi, “Electrically pumped photonic crystal distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 91, 141123 (2007).
[CrossRef]

S. Kumar, B. S. Williams, Q. Qin, A. W. M. Lee, and Q. Hu, “Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides,” Opt. Express 15, 114–128 (2007).
[CrossRef]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007).
[CrossRef]

A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal-metal waveguides,” Opt. Lett. 32, 2840–2842 (2007).
[CrossRef]

M. I. Amanti, M. Fischer, C. Walther, G. Scalari, and J. Faist, “Horn antennas for terahertz quantum cascade lasers,” Electron. Lett. 43, 573–574 (2007).
[CrossRef]

2006 (9)

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “High-power terahertz quantum cascade lasers,” Electron. Lett. 42, 89–91 (2006).
[CrossRef]

A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Qing Hu, and J. L. Reno, “Real-time terahertz imaging over a standoff distance (>25 meters),” Appl. Phys. Lett. 89, 141125 (2006).
[CrossRef]

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum-cascade laser tunable from 8.2to10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

M. B. Pushkarsky, I. G. Dunayevskiy, M. Prasanna, A. G. Tsekoun, R. Go, and C. K. N. Patel, “High-sensitivity detection of TNT,” Proc. Natl. Acad. Sci. U.S.A. 103, 19630–19634 (2006).
[CrossRef] [PubMed]

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. U.S.A. 103, 10846–10849 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon polaritons,” Opt. Express 14, 9467–9476 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

J. A. Fan, M. A. Belkin, and F. Capasso, “Surface emitting terahertz quantum cascade laser with a double-metal waveguide,” Opt. Express 14, 11672–11680 (2006).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

2005 (6)

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, “Single-mode surface-emitting quantum-cascade lasers,” Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

F. J. García-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7, S97–S101 (2005).
[CrossRef]

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769–777 (2005).
[CrossRef]

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode,” Opt. Express 13, 3331–3339 (2005).
[CrossRef] [PubMed]

2004 (2)

D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85, 6323–6325 (2004).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

2003 (2)

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374–1377 (2003).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

2002 (6)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
[CrossRef]

I. Vurgaftman and J. R. Meyer, “Photonic-crystal distributed-feedback quantum cascade lasers,” IEEE J. Quantum Electron. 38, 592–602 (2002).
[CrossRef]

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (λ≈7.4 μm) quantum cascade laser amplifier for high-power single-mode emission and improved beam quality,” Appl. Phys. Lett. 80, 4103–4105 (2002).
[CrossRef]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef] [PubMed]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[CrossRef] [PubMed]

2001 (2)

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64, 1533–1601 (2001).
[CrossRef]

Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79, 1587–1589 (2001).
[CrossRef]

2000 (5)

M. C. Gaidis, H. M. Pickett, C. D. Smith, S. C. Martin, R. P. Smith, and P. H. Siegel, “A 2.5-THz receiver front end for spaceborne applications,” IEEE Trans. Microwave Theory Tech. 48, 733–739 (2000).
[CrossRef]

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87, 2382–2385 (2000).
[CrossRef]

F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, and H. C. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
[CrossRef]

W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, “Surface-emitting distributed feedback quantum-cascade lasers,” Appl. Phys. Lett. 77, 2086–2088 (2000).
[CrossRef]

D. Hofstetter, J. Faist, M. Beck, A. Müller, and U. Oesterle, “Edge- and surface-emitting 10.1 μm quantum cascade distributed feedback lasers,” Physica E 7, 25–28 (2000).
[CrossRef]

1999 (1)

D. Hofstetter, J. Faist, M. Beck, and U. Oesterle, “Surface-emitting 10.1 μm quantum-cascade distributed feedback lasers,” Appl. Phys. Lett. 75, 3769–3771 (1999).
[CrossRef]

1998 (1)

Y. Xia and G. M. Whitesides, “Soft lithography,” Angew. Chem., Int. Ed. 37, 550–575 (1998).
[CrossRef]

1997 (2)

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photonics Technol. Lett. 9, 1090–1092 (1997).
[CrossRef]

1996 (1)

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[CrossRef] [PubMed]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

1991 (1)

P. H. Siegel and R. J. Dengler, “The dielectric-filled parabola: A new millimeter/submillimeter wavelength receiver/transmitter front end,” IEEE Trans. Antennas Propag. 39, 40–47 (1991).
[CrossRef]

1990 (1)

J. Q. Lu and A. A. Maradudin, “Channel plasmons,” Phys. Rev. B 42, 11159–11165 (1990).
[CrossRef]

1987 (1)

J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef] [PubMed]

1984 (1)

R. H. Rediker, I. Melngailis, and A. Mooradian, “Lasers, their development, and applications at M.I.T. Lincoln Laboratory,” IEEE J. Quantum Electron. 20, 602–615 (1984).
[CrossRef]

1979 (1)

W. Walukiewicz, L. Lagowski, L. Jastrzebski, M. Lichtensteiger, and H. C. Gatos, “Electron mobility and free-carrier absorption in GaAs: determination of the compensation ratio,” J. Appl. Phys. 50, 899–908 (1979).
[CrossRef]

1977 (1)

1971 (1)

R. F. Kazarinov and R. A. Suris, “Amplification of electromagnetic waves in a semiconductor superlattice,” Sov. Phys. Semicond. 5, 707–709 (1971).

1936 (1)

R. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
[CrossRef]

1909 (1)

A. Sommerfeld, “Über die Ausbreitung der Wellen in der drahtlosen Telegraphie,” Ann. Phys. 28, 665–736 (1909).
[CrossRef]

1908 (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. (Leipzig) 330, 377–445 (1908).
[CrossRef]

1907 (1)

J. Zenneck, “Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie,” Ann. Phys. 23, 846–866 (1907).
[CrossRef]

Aellen, T.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[CrossRef] [PubMed]

Agrafiotis, S.

Aizenberg, J.

D. J. Lipomi, M. A. Kats, P. Kim, S. H. Kang, J. Aizenberg, F. Capasso, and G. M. Whitesides, “Fabrication and replication of arrays of single- or multicomponent nanostructures by replica molding and mechanical sectioning,” ACS Nano 4, 4017–4026 (2010).
[CrossRef] [PubMed]

Akimov, Y. A.

Allen, L.

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5) 35–40 (2004).
[CrossRef]

Amanti, M. I.

M. I. Amanti, M. Fischer, G. Scalari, M. Beck and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3, 586–590 (2009).
[CrossRef]

M. I. Amanti, M. Fischer, C. Walther, G. Scalari, and J. Faist, “Horn antennas for terahertz quantum cascade lasers,” Electron. Lett. 43, 573–574 (2007).
[CrossRef]

Andrews, S. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[CrossRef]

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87, 2382–2385 (2000).
[CrossRef]

Atwater, H. A.

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 56–63 (2007).
[CrossRef] [PubMed]

Audet, R.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

Austerer, M.

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, “Single-mode surface-emitting quantum-cascade lasers,” Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

Bai, Y.

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 221104 (2009).
[CrossRef]

Y. Bai, S. R. Darvish, S. Slivken, P. Sung, J. Nguyen, A. Evans, W. Zhang, and M. Razeghi, “Electrically pumped photonic crystal distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 91, 141123 (2007).
[CrossRef]

Baillargeon, J. N.

F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, and H. C. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photonics Technol. Lett. 9, 1090–1092 (1997).
[CrossRef]

Bao, J.

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9, 1132–1138 (2009).
[CrossRef] [PubMed]

Barbieri, S.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174–178 (2009).
[CrossRef] [PubMed]

M. Hajenius, P. Khosropanah, J. N. Novenier, J. R. Gao, T. M. Klapwijk, S. Barbieri, S. Dhillon, P. Filloux, C. Sirtori, D. A. Ritchie, and H. E. Beere, “Surface plasmon quantum cascade lasers as terahertz local oscillators,” Opt. Lett. 33, 312–314 (2008).
[CrossRef] [PubMed]

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Weinheim, Ger.) 21, 3504–3509 (2009).
[CrossRef]

Barnes, W. L.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[CrossRef] [PubMed]

Bartoli, F. J.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef] [PubMed]

Beck, M.

M. I. Amanti, M. Fischer, G. Scalari, M. Beck and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3, 586–590 (2009).
[CrossRef]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6to11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009).
[CrossRef]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[CrossRef] [PubMed]

D. Hofstetter, J. Faist, M. Beck, A. Müller, and U. Oesterle, “Edge- and surface-emitting 10.1 μm quantum cascade distributed feedback lasers,” Physica E 7, 25–28 (2000).
[CrossRef]

D. Hofstetter, J. Faist, M. Beck, and U. Oesterle, “Surface-emitting 10.1 μm quantum-cascade distributed feedback lasers,” Appl. Phys. Lett. 75, 3769–3771 (1999).
[CrossRef]

Beere, H.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photonics Rev. 1, 1–22 (2008).

Beere, H. E.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics 3, 46–49 (2009).
[CrossRef]

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174–178 (2009).
[CrossRef] [PubMed]

M. Hajenius, P. Khosropanah, J. N. Novenier, J. R. Gao, T. M. Klapwijk, S. Barbieri, S. Dhillon, P. Filloux, C. Sirtori, D. A. Ritchie, and H. E. Beere, “Surface plasmon quantum cascade lasers as terahertz local oscillators,” Opt. Lett. 33, 312–314 (2008).
[CrossRef] [PubMed]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef] [PubMed]

Beermann, J.

I. P. Radko, V. S. Volkov, J. Beermann, A. B. Evlyukhin, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Plasmonic metasurfaces for waveguiding and field enhancement,” Laser Photon. Rev. 3, 575–590 (2009).
[CrossRef]

J. Beermann, I. P. Radko, A. Boltasseva, and S. I. Bozhevolnyi, “Localized field enhancements in fractal shaped periodic metal nanostructures,” Opt. Express 15, 15234–15241 (2007).
[CrossRef] [PubMed]

Belkin, M. A.

N. Yu, M. A. Kats, C. Pflugl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95, 161108 (2009).
[CrossRef]

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[CrossRef]

B. G. Lee, H. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0to9.8 μm,” IEEE Photonics Technol. Lett. 21, 914–916 (2009).
[CrossRef]

M. Troccoli, L. Diehl, D. P. Bour, S. W. Corzine, N. Yu, C. Y. Wang, M. A. Belkin, G. Hofler, R. Lewicki, G. Wysocki, F. K. Tittel, and F. Capasso, “High-performance quantum cascade lasers grown by metal-organic vapor phase epitaxy and their applications to trace gas sensing,” J. Lightwave Technol. 26, 3534–3555 (2008).
[CrossRef]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

J. A. Fan, M. A. Belkin, and F. Capasso, “Surface emitting terahertz quantum cascade laser with a double-metal waveguide,” Opt. Express 14, 11672–11680 (2006).
[CrossRef] [PubMed]

Beltram, F.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics 3, 46–49 (2009).
[CrossRef]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef] [PubMed]

Belyanin, A.

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[CrossRef]

Beruete, M.

Beth, R.

R. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
[CrossRef]

Blanchard, R.

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16, 19447–19461 (2008).
[CrossRef] [PubMed]

N. Yu, R. Blanchard, J. Fan, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93, 181101 (2008).
[CrossRef]

Boltasseva, A.

I. P. Radko, V. S. Volkov, J. Beermann, A. B. Evlyukhin, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Plasmonic metasurfaces for waveguiding and field enhancement,” Laser Photon. Rev. 3, 575–590 (2009).
[CrossRef]

J. Beermann, I. P. Radko, A. Boltasseva, and S. I. Bozhevolnyi, “Localized field enhancements in fractal shaped periodic metal nanostructures,” Opt. Express 15, 15234–15241 (2007).
[CrossRef] [PubMed]

Bomzon, Z.

Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79, 1587–1589 (2001).
[CrossRef]

Bonetti, Y.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6to11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009).
[CrossRef]

Bour, D.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[CrossRef]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Bowtie plasmonic quantum cascade laser antenna,” Opt. Express 15, 13272–13281 (2007).
[CrossRef] [PubMed]

Bour, D. P.

Bozhevolnyi, S. I.

I. P. Radko, V. S. Volkov, J. Beermann, A. B. Evlyukhin, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Plasmonic metasurfaces for waveguiding and field enhancement,” Laser Photon. Rev. 3, 575–590 (2009).
[CrossRef]

S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16, 2676–2684 (2008).
[CrossRef] [PubMed]

J. Beermann, I. P. Radko, A. Boltasseva, and S. I. Bozhevolnyi, “Localized field enhancements in fractal shaped periodic metal nanostructures,” Opt. Express 15, 15234–15241 (2007).
[CrossRef] [PubMed]

F. Lopez-Tejeira, Sergio G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[CrossRef]

S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon polaritons,” Opt. Express 14, 9467–9476 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Brongersma, M. L.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Weinheim, Ger.) 21, 3504–3509 (2009).
[CrossRef]

Bulliard, J. M.

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769–777 (2005).
[CrossRef]

Burns, W. K.

Capasso, F.

D. J. Lipomi, M. A. Kats, P. Kim, S. H. Kang, J. Aizenberg, F. Capasso, and G. M. Whitesides, “Fabrication and replication of arrays of single- or multicomponent nanostructures by replica molding and mechanical sectioning,” ACS Nano 4, 4017–4026 (2010).
[CrossRef] [PubMed]

E. J. Smythe, M. D. Dickey, G. M. Whitesides, and F. Capasso, “A technique to transfer metallic nanoscale patterns to small and non-planar surfaces,” ACS Nano 3, 59–65 (2009).
[CrossRef] [PubMed]

N. Yu, M. A. Kats, C. Pflugl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95, 161108 (2009).
[CrossRef]

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9, 1132–1138 (2009).
[CrossRef] [PubMed]

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
[CrossRef]

B. G. Lee, H. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0to9.8 μm,” IEEE Photonics Technol. Lett. 21, 914–916 (2009).
[CrossRef]

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[CrossRef]

M. Troccoli, L. Diehl, D. P. Bour, S. W. Corzine, N. Yu, C. Y. Wang, M. A. Belkin, G. Hofler, R. Lewicki, G. Wysocki, F. K. Tittel, and F. Capasso, “High-performance quantum cascade lasers grown by metal-organic vapor phase epitaxy and their applications to trace gas sensing,” J. Lightwave Technol. 26, 3534–3555 (2008).
[CrossRef]

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[CrossRef]

E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron. 14, 1448–1461 (2008).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16, 19447–19461 (2008).
[CrossRef] [PubMed]

N. Yu, R. Blanchard, J. Fan, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93, 181101 (2008).
[CrossRef]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[CrossRef]

N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Bowtie plasmonic quantum cascade laser antenna,” Opt. Express 15, 13272–13281 (2007).
[CrossRef] [PubMed]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

J. A. Fan, M. A. Belkin, and F. Capasso, “Surface emitting terahertz quantum cascade laser with a double-metal waveguide,” Opt. Express 14, 11672–11680 (2006).
[CrossRef] [PubMed]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374–1377 (2003).
[CrossRef] [PubMed]

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (λ≈7.4 μm) quantum cascade laser amplifier for high-power single-mode emission and improved beam quality,” Appl. Phys. Lett. 80, 4103–4105 (2002).
[CrossRef]

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64, 1533–1601 (2001).
[CrossRef]

F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, and H. C. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photonics Technol. Lett. 9, 1090–1092 (1997).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof-surface-plasmon structures collimate terahertz laser beams,” Nature Mater. doc. ID:10.1038/nmat2822 (posted 8 August 2010, in press).

H. C. Liu and F. Capasso, Intersubband Transitions in Quantum Wells: Physics and Device Applications I (Academic, 2000).

Chapman, D.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

Chassagneux, Y.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174–178 (2009).
[CrossRef] [PubMed]

Cho, A. Y.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374–1377 (2003).
[CrossRef] [PubMed]

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (λ≈7.4 μm) quantum cascade laser amplifier for high-power single-mode emission and improved beam quality,” Appl. Phys. Lett. 80, 4103–4105 (2002).
[CrossRef]

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64, 1533–1601 (2001).
[CrossRef]

F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, and H. C. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
[CrossRef]

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photonics Technol. Lett. 9, 1090–1092 (1997).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Chu, S. N. G.

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photonics Technol. Lett. 9, 1090–1092 (1997).
[CrossRef]

Cluff, J. A.

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87, 2382–2385 (2000).
[CrossRef]

Cockburn, J. W.

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, “Single-mode surface-emitting quantum-cascade lasers,” Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

Colombelli, R.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174–178 (2009).
[CrossRef] [PubMed]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374–1377 (2003).
[CrossRef] [PubMed]

Corzine, S.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[CrossRef]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Bowtie plasmonic quantum cascade laser antenna,” Opt. Express 15, 13272–13281 (2007).
[CrossRef] [PubMed]

Corzine, S. W.

Courtial, J.

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5) 35–40 (2004).
[CrossRef]

Crozier, K. B.

E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron. 14, 1448–1461 (2008).
[CrossRef]

N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Bowtie plasmonic quantum cascade laser antenna,” Opt. Express 15, 13272–13281 (2007).
[CrossRef] [PubMed]

Cubukcu, E.

E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron. 14, 1448–1461 (2008).
[CrossRef]

N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Bowtie plasmonic quantum cascade laser antenna,” Opt. Express 15, 13272–13281 (2007).
[CrossRef] [PubMed]

Curl, R. F.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[CrossRef]

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769–777 (2005).
[CrossRef]

Darvish, S. R.

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 221104 (2009).
[CrossRef]

Y. Bai, S. R. Darvish, S. Slivken, P. Sung, J. Nguyen, A. Evans, W. Zhang, and M. Razeghi, “Electrically pumped photonic crystal distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 91, 141123 (2007).
[CrossRef]

Davies, A. G.

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[CrossRef]

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174–178 (2009).
[CrossRef] [PubMed]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef] [PubMed]

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof-surface-plasmon structures collimate terahertz laser beams,” Nature Mater. doc. ID:10.1038/nmat2822 (posted 8 August 2010, in press).

Davis, C. C.

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Imaging and focusing properties of plasmonic metamaterial devices,” Phys. Rev. B 76, 205424 (2007).
[CrossRef]

Degiron, A.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Dengler, R. J.

P. H. Siegel and R. J. Dengler, “The dielectric-filled parabola: A new millimeter/submillimeter wavelength receiver/transmitter front end,” IEEE Trans. Antennas Propag. 39, 40–47 (1991).
[CrossRef]

Dereux, A.

F. Lopez-Tejeira, Sergio G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[CrossRef]

Devaux, E.

F. Lopez-Tejeira, Sergio G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Dhillon, S.

Dickey, M. D.

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9, 1132–1138 (2009).
[CrossRef] [PubMed]

E. J. Smythe, M. D. Dickey, G. M. Whitesides, and F. Capasso, “A technique to transfer metallic nanoscale patterns to small and non-planar surfaces,” ACS Nano 3, 59–65 (2009).
[CrossRef] [PubMed]

Q. Xu, R. M. Rioux, M. D. Dickey, and G. M Whitesies, “Nanoskiving: A new method to produce arrays of nanostructures,” Nano Lett. 41, 1566–1577 (2008).

Diehl, L.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
[CrossRef]

B. G. Lee, H. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0to9.8 μm,” IEEE Photonics Technol. Lett. 21, 914–916 (2009).
[CrossRef]

M. Troccoli, L. Diehl, D. P. Bour, S. W. Corzine, N. Yu, C. Y. Wang, M. A. Belkin, G. Hofler, R. Lewicki, G. Wysocki, F. K. Tittel, and F. Capasso, “High-performance quantum cascade lasers grown by metal-organic vapor phase epitaxy and their applications to trace gas sensing,” J. Lightwave Technol. 26, 3534–3555 (2008).
[CrossRef]

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[CrossRef]

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron. 14, 1448–1461 (2008).
[CrossRef]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16, 19447–19461 (2008).
[CrossRef] [PubMed]

N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Bowtie plasmonic quantum cascade laser antenna,” Opt. Express 15, 13272–13281 (2007).
[CrossRef] [PubMed]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

Ding, Y. J.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef] [PubMed]

Dunayevskiy, I. G.

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. U.S.A. 103, 10846–10849 (2006).
[CrossRef] [PubMed]

M. B. Pushkarsky, I. G. Dunayevskiy, M. Prasanna, A. G. Tsekoun, R. Go, and C. K. N. Patel, “High-sensitivity detection of TNT,” Proc. Natl. Acad. Sci. U.S.A. 103, 19630–19634 (2006).
[CrossRef] [PubMed]

Durnin, J.

J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef] [PubMed]

Ebbesen, T. W.

F. Lopez-Tejeira, Sergio G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Eberly, J. H.

J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef] [PubMed]

Edamura, T.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
[CrossRef]

N. Yu, M. A. Kats, C. Pflugl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95, 161108 (2009).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93, 181101 (2008).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16, 19447–19461 (2008).
[CrossRef] [PubMed]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[CrossRef]

Eisler, H.-J.

J. N. Farahani, H.-J. Eisler, D. W. Pohl, M. Pavius, P. Flückiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506–125600 (2007).
[CrossRef]

Evans, A.

Y. Bai, S. R. Darvish, S. Slivken, P. Sung, J. Nguyen, A. Evans, W. Zhang, and M. Razeghi, “Electrically pumped photonic crystal distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 91, 141123 (2007).
[CrossRef]

Evlyukhin, A. B.

I. P. Radko, V. S. Volkov, J. Beermann, A. B. Evlyukhin, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Plasmonic metasurfaces for waveguiding and field enhancement,” Laser Photon. Rev. 3, 575–590 (2009).
[CrossRef]

Faist, J.

N. Yu, M. A. Kats, C. Pflugl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95, 161108 (2009).
[CrossRef]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics 3, 46–49 (2009).
[CrossRef]

M. I. Amanti, M. Fischer, G. Scalari, M. Beck and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3, 586–590 (2009).
[CrossRef]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6to11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009).
[CrossRef]

B. G. Lee, H. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0to9.8 μm,” IEEE Photonics Technol. Lett. 21, 914–916 (2009).
[CrossRef]

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[CrossRef]

A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44, 1083–1088 (2008).
[CrossRef]

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photonics Rev. 1, 1–22 (2008).

M. I. Amanti, M. Fischer, C. Walther, G. Scalari, and J. Faist, “Horn antennas for terahertz quantum cascade lasers,” Electron. Lett. 43, 573–574 (2007).
[CrossRef]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum-cascade laser tunable from 8.2to10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769–777 (2005).
[CrossRef]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[CrossRef] [PubMed]

D. Hofstetter, J. Faist, M. Beck, A. Müller, and U. Oesterle, “Edge- and surface-emitting 10.1 μm quantum cascade distributed feedback lasers,” Physica E 7, 25–28 (2000).
[CrossRef]

D. Hofstetter, J. Faist, M. Beck, and U. Oesterle, “Surface-emitting 10.1 μm quantum-cascade distributed feedback lasers,” Appl. Phys. Lett. 75, 3769–3771 (1999).
[CrossRef]

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photonics Technol. Lett. 9, 1090–1092 (1997).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

J. Faist, G. Scalari, C. Walther, and M. Fischer, “Progress in long wavelength terahertz quantum cascade lasers,” presented at the 2007 Materials Research Society (MRS) Spring Meeting, San Francisco, California, April 9–13, 2007, paper CC7.2.

Falcone, F.

Fan, J.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16, 19447–19461 (2008).
[CrossRef] [PubMed]

N. Yu, R. Blanchard, J. Fan, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93, 181101 (2008).
[CrossRef]

Fan, J. A.

J. A. Fan, M. A. Belkin, and F. Capasso, “Surface emitting terahertz quantum cascade laser with a double-metal waveguide,” Opt. Express 14, 11672–11680 (2006).
[CrossRef] [PubMed]

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof-surface-plasmon structures collimate terahertz laser beams,” Nature Mater. doc. ID:10.1038/nmat2822 (posted 8 August 2010, in press).

Fan, J. Y.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Farahani, J. N.

J. N. Farahani, H.-J. Eisler, D. W. Pohl, M. Pavius, P. Flückiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506–125600 (2007).
[CrossRef]

Fernández-Domínguez, A. I.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[CrossRef]

Filloux, P.

Finger, N.

W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, “Surface-emitting distributed feedback quantum-cascade lasers,” Appl. Phys. Lett. 77, 2086–2088 (2000).
[CrossRef]

Fischer, M.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6to11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009).
[CrossRef]

B. G. Lee, H. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0to9.8 μm,” IEEE Photonics Technol. Lett. 21, 914–916 (2009).
[CrossRef]

M. I. Amanti, M. Fischer, G. Scalari, M. Beck and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3, 586–590 (2009).
[CrossRef]

N. Yu, M. A. Kats, C. Pflugl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95, 161108 (2009).
[CrossRef]

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photonics Rev. 1, 1–22 (2008).

M. I. Amanti, M. Fischer, C. Walther, G. Scalari, and J. Faist, “Horn antennas for terahertz quantum cascade lasers,” Electron. Lett. 43, 573–574 (2007).
[CrossRef]

J. Faist, G. Scalari, C. Walther, and M. Fischer, “Progress in long wavelength terahertz quantum cascade lasers,” presented at the 2007 Materials Research Society (MRS) Spring Meeting, San Francisco, California, April 9–13, 2007, paper CC7.2.

Flückiger, P.

J. N. Farahani, H.-J. Eisler, D. W. Pohl, M. Pavius, P. Flückiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506–125600 (2007).
[CrossRef]

Forchel, A.

L. Nähle, J. Semmel, W. Kaiser, S. Höfling, and A. Forchel, “Tapered quantum cascade lasers,” Appl. Phys. Lett. 91, 181122 (2007).
[CrossRef]

Fu, Z.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef] [PubMed]

Furuta, S.

N. Yu, M. A. Kats, C. Pflugl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95, 161108 (2009).
[CrossRef]

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
[CrossRef]

Gaidis, M. C.

M. C. Gaidis, H. M. Pickett, C. D. Smith, S. C. Martin, R. P. Smith, and P. H. Siegel, “A 2.5-THz receiver front end for spaceborne applications,” IEEE Trans. Microwave Theory Tech. 48, 733–739 (2000).
[CrossRef]

Gan, Q.

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef] [PubMed]

Gao, J. R.

Garcia-Vidal, F. J.

F. Lopez-Tejeira, Sergio G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[CrossRef]

García-Vidal, F. J.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[CrossRef]

F. J. García-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7, S97–S101 (2005).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Gasser, P.

J. N. Farahani, H.-J. Eisler, D. W. Pohl, M. Pavius, P. Flückiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506–125600 (2007).
[CrossRef]

Gatos, H. C.

W. Walukiewicz, L. Lagowski, L. Jastrzebski, M. Lichtensteiger, and H. C. Gatos, “Electron mobility and free-carrier absorption in GaAs: determination of the compensation ratio,” J. Appl. Phys. 50, 899–908 (1979).
[CrossRef]

Geiser, M.

N. Yu, M. A. Kats, C. Pflugl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95, 161108 (2009).
[CrossRef]

Gianordoli, S.

W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, “Surface-emitting distributed feedback quantum-cascade lasers,” Appl. Phys. Lett. 77, 2086–2088 (2000).
[CrossRef]

Gini, E.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6to11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009).
[CrossRef]

A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44, 1083–1088 (2008).
[CrossRef]

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum-cascade laser tunable from 8.2to10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[CrossRef] [PubMed]

Giovannini, M.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[CrossRef]

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum-cascade laser tunable from 8.2to10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

Gmachl, C.

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (λ≈7.4 μm) quantum cascade laser amplifier for high-power single-mode emission and improved beam quality,” Appl. Phys. Lett. 80, 4103–4105 (2002).
[CrossRef]

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64, 1533–1601 (2001).
[CrossRef]

F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, and H. C. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photonics Technol. Lett. 9, 1090–1092 (1997).
[CrossRef]

Gmachl, C. F.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374–1377 (2003).
[CrossRef] [PubMed]

Go, R.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
[CrossRef]

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

M. B. Pushkarsky, I. G. Dunayevskiy, M. Prasanna, A. G. Tsekoun, R. Go, and C. K. N. Patel, “High-sensitivity detection of TNT,” Proc. Natl. Acad. Sci. U.S.A. 103, 19630–19634 (2006).
[CrossRef] [PubMed]

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. U.S.A. 103, 10846–10849 (2006).
[CrossRef] [PubMed]

Gokden, B.

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 221104 (2009).
[CrossRef]

Golka, S.

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, “Single-mode surface-emitting quantum-cascade lasers,” Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

Gonzalez, M. U.

F. Lopez-Tejeira, Sergio G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[CrossRef]

Gornik, E.

W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, “Surface-emitting distributed feedback quantum-cascade lasers,” Appl. Phys. Lett. 77, 2086–2088 (2000).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85, 6323–6325 (2004).
[CrossRef]

Green, R. P.

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, “Single-mode surface-emitting quantum-cascade lasers,” Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

Guo, W.-H.

Q.-Y. Lu, W.-H. Guo, W. Zhang, L.-J. Wang, J.-Q. Liu, L.- Li, F.-Q. Liu, and Z.-G. Wang, “Room temperature operation of photonic-crystal distributed-feedback quantum cascade lasers with single longitudinal and lateral mode performance,” Appl. Phys. Lett. 96, 051112 (2010).
[CrossRef]

Haddadi, A.

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 221104 (2009).
[CrossRef]

Hajenius, M.

Hasman, E.

Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79, 1587–1589 (2001).
[CrossRef]

He, S.

B. Wang, L. Liu, and S. He, “Propagation loss of terahertz surface plasmon polaritons on a periodically structured Ag surface,” J. Appl. Phys. 104, 103531 (2008).
[CrossRef]

Hecht, B.

J. N. Farahani, H.-J. Eisler, D. W. Pohl, M. Pavius, P. Flückiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506–125600 (2007).
[CrossRef]

Hocker, G. B.

Hoffmann, L. K.

E. Mujagić, L. K. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93, 161101 (2008).
[CrossRef]

Hofler, G.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[CrossRef]

M. Troccoli, L. Diehl, D. P. Bour, S. W. Corzine, N. Yu, C. Y. Wang, M. A. Belkin, G. Hofler, R. Lewicki, G. Wysocki, F. K. Tittel, and F. Capasso, “High-performance quantum cascade lasers grown by metal-organic vapor phase epitaxy and their applications to trace gas sensing,” J. Lightwave Technol. 26, 3534–3555 (2008).
[CrossRef]

Höfler, G.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Bowtie plasmonic quantum cascade laser antenna,” Opt. Express 15, 13272–13281 (2007).
[CrossRef] [PubMed]

Höfling, S.

L. Nähle, J. Semmel, W. Kaiser, S. Höfling, and A. Forchel, “Tapered quantum cascade lasers,” Appl. Phys. Lett. 91, 181122 (2007).
[CrossRef]

Hofstetter, D.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[CrossRef] [PubMed]

D. Hofstetter, J. Faist, M. Beck, A. Müller, and U. Oesterle, “Edge- and surface-emitting 10.1 μm quantum cascade distributed feedback lasers,” Physica E 7, 25–28 (2000).
[CrossRef]

D. Hofstetter, J. Faist, M. Beck, and U. Oesterle, “Surface-emitting 10.1 μm quantum-cascade distributed feedback lasers,” Appl. Phys. Lett. 75, 3769–3771 (1999).
[CrossRef]

Hoyler, N.

A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44, 1083–1088 (2008).
[CrossRef]

Hu, Q.

S. Kumar, Q. Hu, and J. L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94, 131105 (2009).
[CrossRef]

A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal-metal waveguides,” Opt. Lett. 32, 2840–2842 (2007).
[CrossRef]

S. Kumar, B. S. Williams, Q. Qin, A. W. M. Lee, and Q. Hu, “Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides,” Opt. Express 15, 114–128 (2007).
[CrossRef]

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “High-power terahertz quantum cascade lasers,” Electron. Lett. 42, 89–91 (2006).
[CrossRef]

S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
[CrossRef]

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode,” Opt. Express 13, 3331–3339 (2005).
[CrossRef] [PubMed]

Hu, Qing

A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Qing Hu, and J. L. Reno, “Real-time terahertz imaging over a standoff distance (>25 meters),” Appl. Phys. Lett. 89, 141125 (2006).
[CrossRef]

Huggard, P. G.

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87, 2382–2385 (2000).
[CrossRef]

Hugi, A.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6to11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009).
[CrossRef]

A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44, 1083–1088 (2008).
[CrossRef]

Hung, Y.-J.

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Imaging and focusing properties of plasmonic metamaterial devices,” Phys. Rev. B 76, 205424 (2007).
[CrossRef]

Hutchinson, A. L.

F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, and H. C. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Hvozdara, L.

W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, “Surface-emitting distributed feedback quantum-cascade lasers,” Appl. Phys. Lett. 77, 2086–2088 (2000).
[CrossRef]

Ilegems, M.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[CrossRef] [PubMed]

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef] [PubMed]

Jastrzebski, L.

W. Walukiewicz, L. Lagowski, L. Jastrzebski, M. Lichtensteiger, and H. C. Gatos, “Electron mobility and free-carrier absorption in GaAs: determination of the compensation ratio,” J. Appl. Phys. 50, 899–908 (1979).
[CrossRef]

Jung, J.

Kaiser, W.

L. Nähle, J. Semmel, W. Kaiser, S. Höfling, and A. Forchel, “Tapered quantum cascade lasers,” Appl. Phys. Lett. 91, 181122 (2007).
[CrossRef]

Kan, H.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
[CrossRef]

N. Yu, M. A. Kats, C. Pflugl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95, 161108 (2009).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16, 19447–19461 (2008).
[CrossRef] [PubMed]

N. Yu, R. Blanchard, J. Fan, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93, 181101 (2008).
[CrossRef]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[CrossRef]

Kang, S. H.

D. J. Lipomi, M. A. Kats, P. Kim, S. H. Kang, J. Aizenberg, F. Capasso, and G. M. Whitesides, “Fabrication and replication of arrays of single- or multicomponent nanostructures by replica molding and mechanical sectioning,” ACS Nano 4, 4017–4026 (2010).
[CrossRef] [PubMed]

Kats, M. A.

D. J. Lipomi, M. A. Kats, P. Kim, S. H. Kang, J. Aizenberg, F. Capasso, and G. M. Whitesides, “Fabrication and replication of arrays of single- or multicomponent nanostructures by replica molding and mechanical sectioning,” ACS Nano 4, 4017–4026 (2010).
[CrossRef] [PubMed]

N. Yu, M. A. Kats, C. Pflugl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95, 161108 (2009).
[CrossRef]

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof-surface-plasmon structures collimate terahertz laser beams,” Nature Mater. doc. ID:10.1038/nmat2822 (posted 8 August 2010, in press).

Kazarinov, R. F.

R. F. Kazarinov and R. A. Suris, “Amplification of electromagnetic waves in a semiconductor superlattice,” Sov. Phys. Semicond. 5, 707–709 (1971).

Keiding, S. R.

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87, 2382–2385 (2000).
[CrossRef]

Khanna, S. P.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174–178 (2009).
[CrossRef] [PubMed]

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[CrossRef]

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof-surface-plasmon structures collimate terahertz laser beams,” Nature Mater. doc. ID:10.1038/nmat2822 (posted 8 August 2010, in press).

Khosropanah, P.

Kim, P.

D. J. Lipomi, M. A. Kats, P. Kim, S. H. Kang, J. Aizenberg, F. Capasso, and G. M. Whitesides, “Fabrication and replication of arrays of single- or multicomponent nanostructures by replica molding and mechanical sectioning,” ACS Nano 4, 4017–4026 (2010).
[CrossRef] [PubMed]

Kitson, S. C.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[CrossRef] [PubMed]

Klapwijk, T. M.

Kleiner, V.

Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79, 1587–1589 (2001).
[CrossRef]

Koh, W. S.

Kohen, S.

S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
[CrossRef]

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef] [PubMed]

Kong, J. A.

J. A. Kong, Electromagnetic Wave Theory (EMW Publishing, 2000).

Krenn, J. R.

F. Lopez-Tejeira, Sergio G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[CrossRef]

Krysa, A. B.

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, “Single-mode surface-emitting quantum-cascade lasers,” Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

Kumar, S.

S. Kumar, Q. Hu, and J. L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94, 131105 (2009).
[CrossRef]

S. Kumar, B. S. Williams, Q. Qin, A. W. M. Lee, and Q. Hu, “Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides,” Opt. Express 15, 114–128 (2007).
[CrossRef]

A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal-metal waveguides,” Opt. Lett. 32, 2840–2842 (2007).
[CrossRef]

A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Qing Hu, and J. L. Reno, “Real-time terahertz imaging over a standoff distance (>25 meters),” Appl. Phys. Lett. 89, 141125 (2006).
[CrossRef]

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “High-power terahertz quantum cascade lasers,” Electron. Lett. 42, 89–91 (2006).
[CrossRef]

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode,” Opt. Express 13, 3331–3339 (2005).
[CrossRef] [PubMed]

Lagowski, L.

W. Walukiewicz, L. Lagowski, L. Jastrzebski, M. Lichtensteiger, and H. C. Gatos, “Electron mobility and free-carrier absorption in GaAs: determination of the compensation ratio,” J. Appl. Phys. 50, 899–908 (1979).
[CrossRef]

Laluet, J.-Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Lee, A. W. M.

A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal-metal waveguides,” Opt. Lett. 32, 2840–2842 (2007).
[CrossRef]

S. Kumar, B. S. Williams, Q. Qin, A. W. M. Lee, and Q. Hu, “Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides,” Opt. Express 15, 114–128 (2007).
[CrossRef]

A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Qing Hu, and J. L. Reno, “Real-time terahertz imaging over a standoff distance (>25 meters),” Appl. Phys. Lett. 89, 141125 (2006).
[CrossRef]

Lee, B. G.

B. G. Lee, H. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0to9.8 μm,” IEEE Photonics Technol. Lett. 21, 914–916 (2009).
[CrossRef]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

Lewicki, R.

M. Troccoli, L. Diehl, D. P. Bour, S. W. Corzine, N. Yu, C. Y. Wang, M. A. Belkin, G. Hofler, R. Lewicki, G. Wysocki, F. K. Tittel, and F. Capasso, “High-performance quantum cascade lasers grown by metal-organic vapor phase epitaxy and their applications to trace gas sensing,” J. Lightwave Technol. 26, 3534–3555 (2008).
[CrossRef]

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[CrossRef]

Lezec, H. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Li, L.

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof-surface-plasmon structures collimate terahertz laser beams,” Nature Mater. doc. ID:10.1038/nmat2822 (posted 8 August 2010, in press).

Li, L.-

Q.-Y. Lu, W.-H. Guo, W. Zhang, L.-J. Wang, J.-Q. Liu, L.- Li, F.-Q. Liu, and Z.-G. Wang, “Room temperature operation of photonic-crystal distributed-feedback quantum cascade lasers with single longitudinal and lateral mode performance,” Appl. Phys. Lett. 96, 051112 (2010).
[CrossRef]

Lichtensteiger, M.

W. Walukiewicz, L. Lagowski, L. Jastrzebski, M. Lichtensteiger, and H. C. Gatos, “Electron mobility and free-carrier absorption in GaAs: determination of the compensation ratio,” J. Appl. Phys. 50, 899–908 (1979).
[CrossRef]

Linfield, E. H.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174–178 (2009).
[CrossRef] [PubMed]

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[CrossRef]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef] [PubMed]

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87, 2382–2385 (2000).
[CrossRef]

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof-surface-plasmon structures collimate terahertz laser beams,” Nature Mater. doc. ID:10.1038/nmat2822 (posted 8 August 2010, in press).

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Lipomi, D. J.

D. J. Lipomi, M. A. Kats, P. Kim, S. H. Kang, J. Aizenberg, F. Capasso, and G. M. Whitesides, “Fabrication and replication of arrays of single- or multicomponent nanostructures by replica molding and mechanical sectioning,” ACS Nano 4, 4017–4026 (2010).
[CrossRef] [PubMed]

Liu, F.-Q.

Q.-Y. Lu, W.-H. Guo, W. Zhang, L.-J. Wang, J.-Q. Liu, L.- Li, F.-Q. Liu, and Z.-G. Wang, “Room temperature operation of photonic-crystal distributed-feedback quantum cascade lasers with single longitudinal and lateral mode performance,” Appl. Phys. Lett. 96, 051112 (2010).
[CrossRef]

Liu, H. C.

F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, and H. C. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
[CrossRef]

H. C. Liu and F. Capasso, Intersubband Transitions in Quantum Wells: Physics and Device Applications I (Academic, 2000).

Liu, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Weinheim, Ger.) 21, 3504–3509 (2009).
[CrossRef]

Liu, J.-Q.

Q.-Y. Lu, W.-H. Guo, W. Zhang, L.-J. Wang, J.-Q. Liu, L.- Li, F.-Q. Liu, and Z.-G. Wang, “Room temperature operation of photonic-crystal distributed-feedback quantum cascade lasers with single longitudinal and lateral mode performance,” Appl. Phys. Lett. 96, 051112 (2010).
[CrossRef]

Liu, L.

B. Wang, L. Liu, and S. He, “Propagation loss of terahertz surface plasmon polaritons on a periodically structured Ag surface,” J. Appl. Phys. 104, 103531 (2008).
[CrossRef]

Lopez-Tejeira, F.

F. Lopez-Tejeira, Sergio G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[CrossRef]

Lu, J. Q.

J. Q. Lu and A. A. Maradudin, “Channel plasmons,” Phys. Rev. B 42, 11159–11165 (1990).
[CrossRef]

Lu, Q.-Y.

Q.-Y. Lu, W.-H. Guo, W. Zhang, L.-J. Wang, J.-Q. Liu, L.- Li, F.-Q. Liu, and Z.-G. Wang, “Room temperature operation of photonic-crystal distributed-feedback quantum cascade lasers with single longitudinal and lateral mode performance,” Appl. Phys. Lett. 96, 051112 (2010).
[CrossRef]

Lyakh, A.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
[CrossRef]

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

MacArthur, J.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

Mahler, L.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics 3, 46–49 (2009).
[CrossRef]

Maier, S. A.

M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17, 18184–18195 (2009).
[CrossRef] [PubMed]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[CrossRef]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, 2007).

Maineult, W.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174–178 (2009).
[CrossRef] [PubMed]

Maradudin, A. A.

I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
[CrossRef]

J. Q. Lu and A. A. Maradudin, “Channel plasmons,” Phys. Rev. B 42, 11159–11165 (1990).
[CrossRef]

Martin, S. C.

M. C. Gaidis, H. M. Pickett, C. D. Smith, S. C. Martin, R. P. Smith, and P. H. Siegel, “A 2.5-THz receiver front end for spaceborne applications,” IEEE Trans. Microwave Theory Tech. 48, 733–739 (2000).
[CrossRef]

Martin-Moreno, L.

F. Lopez-Tejeira, Sergio G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[CrossRef]

Martín-Moreno, L.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[CrossRef]

F. J. García-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7, S97–S101 (2005).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Masselink, W. T.

E. Mujagić, L. K. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93, 161101 (2008).
[CrossRef]

Maulini, R.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
[CrossRef]

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[CrossRef]

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum-cascade laser tunable from 8.2to10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769–777 (2005).
[CrossRef]

Melchior, H.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[CrossRef] [PubMed]

Melngailis, I.

R. H. Rediker, I. Melngailis, and A. Mooradian, “Lasers, their development, and applications at M.I.T. Lincoln Laboratory,” IEEE J. Quantum Electron. 20, 602–615 (1984).
[CrossRef]

Meyer, J. R.

I. Vurgaftman and J. R. Meyer, “Photonic-crystal distributed-feedback quantum cascade lasers,” IEEE J. Quantum Electron. 38, 592–602 (2002).
[CrossRef]

Miceli, J. J.

J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef] [PubMed]

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. (Leipzig) 330, 377–445 (1908).
[CrossRef]

Mohan, A.

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum-cascade laser tunable from 8.2to10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

Mooradian, A.

R. H. Rediker, I. Melngailis, and A. Mooradian, “Lasers, their development, and applications at M.I.T. Lincoln Laboratory,” IEEE J. Quantum Electron. 20, 602–615 (1984).
[CrossRef]

Moore, G. P.

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87, 2382–2385 (2000).
[CrossRef]

Mujagic, E.

E. Mujagić, L. K. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93, 161101 (2008).
[CrossRef]

Mukherjee, S.

S. Mukherjee and Z. S. Shi, “State-of-the-art IV–VI semiconductor light-emitting devices in mid-infrared opto-electronic applications,” IETE Tech. Rev. 26, 236–246 (2009).
[CrossRef]

Müller, A.

D. Hofstetter, J. Faist, M. Beck, A. Müller, and U. Oesterle, “Edge- and surface-emitting 10.1 μm quantum cascade distributed feedback lasers,” Physica E 7, 25–28 (2000).
[CrossRef]

Nähle, L.

L. Nähle, J. Semmel, W. Kaiser, S. Höfling, and A. Forchel, “Tapered quantum cascade lasers,” Appl. Phys. Lett. 91, 181122 (2007).
[CrossRef]

Napoleone, A.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

Navarro-Cía, M.

Nguyen, J.

Y. Bai, S. R. Darvish, S. Slivken, P. Sung, J. Nguyen, A. Evans, W. Zhang, and M. Razeghi, “Electrically pumped photonic crystal distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 91, 141123 (2007).
[CrossRef]

Nobile, M.

E. Mujagić, L. K. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93, 161101 (2008).
[CrossRef]

Novenier, J. N.

Novikov, I. V.

I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
[CrossRef]

Novotny, L.

S. Palomba and L. Novotny, “Near-field imaging with a localized nonlinear light source,” Nano Lett. 9, 3801–3804 (2009).
[CrossRef] [PubMed]

Oakley, D. C.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

Oesterle, U.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[CrossRef] [PubMed]

D. Hofstetter, J. Faist, M. Beck, A. Müller, and U. Oesterle, “Edge- and surface-emitting 10.1 μm quantum cascade distributed feedback lasers,” Physica E 7, 25–28 (2000).
[CrossRef]

D. Hofstetter, J. Faist, M. Beck, and U. Oesterle, “Surface-emitting 10.1 μm quantum-cascade distributed feedback lasers,” Appl. Phys. Lett. 75, 3769–3771 (1999).
[CrossRef]

Ostrikov, K.

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

Padgett, M.

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5) 35–40 (2004).
[CrossRef]

Paiella, R.

F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, and H. C. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
[CrossRef]

Painter, O.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374–1377 (2003).
[CrossRef] [PubMed]

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Weinheim, Ger.) 21, 3504–3509 (2009).
[CrossRef]

Palomba, S.

S. Palomba and L. Novotny, “Near-field imaging with a localized nonlinear light source,” Nano Lett. 9, 3801–3804 (2009).
[CrossRef] [PubMed]

Patel, C. K. N.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
[CrossRef]

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. U.S.A. 103, 10846–10849 (2006).
[CrossRef] [PubMed]

M. B. Pushkarsky, I. G. Dunayevskiy, M. Prasanna, A. G. Tsekoun, R. Go, and C. K. N. Patel, “High-sensitivity detection of TNT,” Proc. Natl. Acad. Sci. U.S.A. 103, 19630–19634 (2006).
[CrossRef] [PubMed]

Pavius, M.

J. N. Farahani, H.-J. Eisler, D. W. Pohl, M. Pavius, P. Flückiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506–125600 (2007).
[CrossRef]

Pendry, J. B.

F. J. García-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7, S97–S101 (2005).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

Pflugl, C.

N. Yu, M. A. Kats, C. Pflugl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95, 161108 (2009).
[CrossRef]

Pflügl, C.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
[CrossRef]

B. G. Lee, H. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0to9.8 μm,” IEEE Photonics Technol. Lett. 21, 914–916 (2009).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
[CrossRef]

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[CrossRef]

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16, 19447–19461 (2008).
[CrossRef] [PubMed]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[CrossRef]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, “Single-mode surface-emitting quantum-cascade lasers,” Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

Pickett, H. M.

M. C. Gaidis, H. M. Pickett, C. D. Smith, S. C. Martin, R. P. Smith, and P. H. Siegel, “A 2.5-THz receiver front end for spaceborne applications,” IEEE Trans. Microwave Theory Tech. 48, 733–739 (2000).
[CrossRef]

Pile, D. F. P.

D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85, 6323–6325 (2004).
[CrossRef]

Pohl, D. W.

J. N. Farahani, H.-J. Eisler, D. W. Pohl, M. Pavius, P. Flückiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506–125600 (2007).
[CrossRef]

Prasanna, M.

M. B. Pushkarsky, I. G. Dunayevskiy, M. Prasanna, A. G. Tsekoun, R. Go, and C. K. N. Patel, “High-sensitivity detection of TNT,” Proc. Natl. Acad. Sci. U.S.A. 103, 19630–19634 (2006).
[CrossRef] [PubMed]

Pushkarsky, M.

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. U.S.A. 103, 10846–10849 (2006).
[CrossRef] [PubMed]

Pushkarsky, M. B.

M. B. Pushkarsky, I. G. Dunayevskiy, M. Prasanna, A. G. Tsekoun, R. Go, and C. K. N. Patel, “High-sensitivity detection of TNT,” Proc. Natl. Acad. Sci. U.S.A. 103, 19630–19634 (2006).
[CrossRef] [PubMed]

Qin, Q.

S. Kumar, B. S. Williams, Q. Qin, A. W. M. Lee, and Q. Hu, “Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides,” Opt. Express 15, 114–128 (2007).
[CrossRef]

A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal-metal waveguides,” Opt. Lett. 32, 2840–2842 (2007).
[CrossRef]

A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Qing Hu, and J. L. Reno, “Real-time terahertz imaging over a standoff distance (>25 meters),” Appl. Phys. Lett. 89, 141125 (2006).
[CrossRef]

Radko, I. P.

I. P. Radko, V. S. Volkov, J. Beermann, A. B. Evlyukhin, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Plasmonic metasurfaces for waveguiding and field enhancement,” Laser Photon. Rev. 3, 575–590 (2009).
[CrossRef]

J. Beermann, I. P. Radko, A. Boltasseva, and S. I. Bozhevolnyi, “Localized field enhancements in fractal shaped periodic metal nanostructures,” Opt. Express 15, 15234–15241 (2007).
[CrossRef] [PubMed]

Radko, P.

F. Lopez-Tejeira, Sergio G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[CrossRef]

Razeghi, M.

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 221104 (2009).
[CrossRef]

M. Razeghi, “High-power high-wall plug efficiency mid-infrared quantum cascade lasers based on InP∕GaInAs∕InAlAs material system,” Proc. SPIE 7230, 723011 (2009).
[CrossRef]

Y. Bai, S. R. Darvish, S. Slivken, P. Sung, J. Nguyen, A. Evans, W. Zhang, and M. Razeghi, “Electrically pumped photonic crystal distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 91, 141123 (2007).
[CrossRef]

Rediker, R. H.

R. H. Rediker, I. Melngailis, and A. Mooradian, “Lasers, their development, and applications at M.I.T. Lincoln Laboratory,” IEEE J. Quantum Electron. 20, 602–615 (1984).
[CrossRef]

Reno, J. L.

S. Kumar, Q. Hu, and J. L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94, 131105 (2009).
[CrossRef]

A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal-metal waveguides,” Opt. Lett. 32, 2840–2842 (2007).
[CrossRef]

A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Qing Hu, and J. L. Reno, “Real-time terahertz imaging over a standoff distance (>25 meters),” Appl. Phys. Lett. 89, 141125 (2006).
[CrossRef]

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “High-power terahertz quantum cascade lasers,” Electron. Lett. 42, 89–91 (2006).
[CrossRef]

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode,” Opt. Express 13, 3331–3339 (2005).
[CrossRef] [PubMed]

Rioux, R. M.

Q. Xu, R. M. Rioux, M. D. Dickey, and G. M Whitesies, “Nanoskiving: A new method to produce arrays of nanostructures,” Nano Lett. 41, 1566–1577 (2008).

Ritchie, D.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photonics Rev. 1, 1–22 (2008).

Ritchie, D. A.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174–178 (2009).
[CrossRef] [PubMed]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics 3, 46–49 (2009).
[CrossRef]

M. Hajenius, P. Khosropanah, J. N. Novenier, J. R. Gao, T. M. Klapwijk, S. Barbieri, S. Dhillon, P. Filloux, C. Sirtori, D. A. Ritchie, and H. E. Beere, “Surface plasmon quantum cascade lasers as terahertz local oscillators,” Opt. Lett. 33, 312–314 (2008).
[CrossRef] [PubMed]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef] [PubMed]

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87, 2382–2385 (2000).
[CrossRef]

Roberts, J. S.

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, “Single-mode surface-emitting quantum-cascade lasers,” Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

Rodrigo, Sergio G.

F. Lopez-Tejeira, Sergio G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[CrossRef]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef] [PubMed]

Sambles, J. R.

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[CrossRef] [PubMed]

Scalari, G.

M. I. Amanti, M. Fischer, G. Scalari, M. Beck and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3, 586–590 (2009).
[CrossRef]

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photonics Rev. 1, 1–22 (2008).

M. I. Amanti, M. Fischer, C. Walther, G. Scalari, and J. Faist, “Horn antennas for terahertz quantum cascade lasers,” Electron. Lett. 43, 573–574 (2007).
[CrossRef]

J. Faist, G. Scalari, C. Walther, and M. Fischer, “Progress in long wavelength terahertz quantum cascade lasers,” presented at the 2007 Materials Research Society (MRS) Spring Meeting, San Francisco, California, April 9–13, 2007, paper CC7.2.

Schartner, S.

E. Mujagić, L. K. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93, 161101 (2008).
[CrossRef]

Schrenk, W.

E. Mujagić, L. K. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93, 161101 (2008).
[CrossRef]

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, “Single-mode surface-emitting quantum-cascade lasers,” Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, “Surface-emitting distributed feedback quantum-cascade lasers,” Appl. Phys. Lett. 77, 2086–2088 (2000).
[CrossRef]

Semmel, J.

L. Nähle, J. Semmel, W. Kaiser, S. Höfling, and A. Forchel, “Tapered quantum cascade lasers,” Appl. Phys. Lett. 91, 181122 (2007).
[CrossRef]

Semtsiv, M. P.

E. Mujagić, L. K. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93, 161101 (2008).
[CrossRef]

Sergent, A. M.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374–1377 (2003).
[CrossRef] [PubMed]

Shaw, C. J.

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87, 2382–2385 (2000).
[CrossRef]

Shi, Z. S.

S. Mukherjee and Z. S. Shi, “State-of-the-art IV–VI semiconductor light-emitting devices in mid-infrared opto-electronic applications,” IETE Tech. Rev. 26, 236–246 (2009).
[CrossRef]

Siegel, P. H.

M. C. Gaidis, H. M. Pickett, C. D. Smith, S. C. Martin, R. P. Smith, and P. H. Siegel, “A 2.5-THz receiver front end for spaceborne applications,” IEEE Trans. Microwave Theory Tech. 48, 733–739 (2000).
[CrossRef]

P. H. Siegel and R. J. Dengler, “The dielectric-filled parabola: A new millimeter/submillimeter wavelength receiver/transmitter front end,” IEEE Trans. Antennas Propag. 39, 40–47 (1991).
[CrossRef]

Sirtori, C.

M. Hajenius, P. Khosropanah, J. N. Novenier, J. R. Gao, T. M. Klapwijk, S. Barbieri, S. Dhillon, P. Filloux, C. Sirtori, D. A. Ritchie, and H. E. Beere, “Surface plasmon quantum cascade lasers as terahertz local oscillators,” Opt. Lett. 33, 312–314 (2008).
[CrossRef] [PubMed]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photonics Technol. Lett. 9, 1090–1092 (1997).
[CrossRef]

Sivco, D. L.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374–1377 (2003).
[CrossRef] [PubMed]

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (λ≈7.4 μm) quantum cascade laser amplifier for high-power single-mode emission and improved beam quality,” Appl. Phys. Lett. 80, 4103–4105 (2002).
[CrossRef]

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64, 1533–1601 (2001).
[CrossRef]

F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, and H. C. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
[CrossRef]

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photonics Technol. Lett. 9, 1090–1092 (1997).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Slivken, S.

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 221104 (2009).
[CrossRef]

Y. Bai, S. R. Darvish, S. Slivken, P. Sung, J. Nguyen, A. Evans, W. Zhang, and M. Razeghi, “Electrically pumped photonic crystal distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 91, 141123 (2007).
[CrossRef]

Smith, C. D.

M. C. Gaidis, H. M. Pickett, C. D. Smith, S. C. Martin, R. P. Smith, and P. H. Siegel, “A 2.5-THz receiver front end for spaceborne applications,” IEEE Trans. Microwave Theory Tech. 48, 733–739 (2000).
[CrossRef]

Smith, R. P.

M. C. Gaidis, H. M. Pickett, C. D. Smith, S. C. Martin, R. P. Smith, and P. H. Siegel, “A 2.5-THz receiver front end for spaceborne applications,” IEEE Trans. Microwave Theory Tech. 48, 733–739 (2000).
[CrossRef]

Smolyaninov, I. I.

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Imaging and focusing properties of plasmonic metamaterial devices,” Phys. Rev. B 76, 205424 (2007).
[CrossRef]

Smythe, E. J.

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9, 1132–1138 (2009).
[CrossRef] [PubMed]

E. J. Smythe, M. D. Dickey, G. M. Whitesides, and F. Capasso, “A technique to transfer metallic nanoscale patterns to small and non-planar surfaces,” ACS Nano 3, 59–65 (2009).
[CrossRef] [PubMed]

E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron. 14, 1448–1461 (2008).
[CrossRef]

Sommerfeld, A.

A. Sommerfeld, “Über die Ausbreitung der Wellen in der drahtlosen Telegraphie,” Ann. Phys. 28, 665–736 (1909).
[CrossRef]

Søndergaard, T.

I. P. Radko, V. S. Volkov, J. Beermann, A. B. Evlyukhin, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Plasmonic metasurfaces for waveguiding and field enhancement,” Laser Photon. Rev. 3, 575–590 (2009).
[CrossRef]

Sorolla, M.

Srinivasan, K.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374–1377 (2003).
[CrossRef] [PubMed]

Strasser, G.

E. Mujagić, L. K. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93, 161101 (2008).
[CrossRef]

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, “Single-mode surface-emitting quantum-cascade lasers,” Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, “Surface-emitting distributed feedback quantum-cascade lasers,” Appl. Phys. Lett. 77, 2086–2088 (2000).
[CrossRef]

Sung, P.

Y. Bai, S. R. Darvish, S. Slivken, P. Sung, J. Nguyen, A. Evans, W. Zhang, and M. Razeghi, “Electrically pumped photonic crystal distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 91, 141123 (2007).
[CrossRef]

Suris, R. A.

R. F. Kazarinov and R. A. Suris, “Amplification of electromagnetic waves in a semiconductor superlattice,” Sov. Phys. Semicond. 5, 707–709 (1971).

Tanbun-Ek, T.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Tennant, D. M.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374–1377 (2003).
[CrossRef] [PubMed]

Terazzi, R.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6to11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009).
[CrossRef]

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photonics Rev. 1, 1–22 (2008).

Tittel, F. K.

M. Troccoli, L. Diehl, D. P. Bour, S. W. Corzine, N. Yu, C. Y. Wang, M. A. Belkin, G. Hofler, R. Lewicki, G. Wysocki, F. K. Tittel, and F. Capasso, “High-performance quantum cascade lasers grown by metal-organic vapor phase epitaxy and their applications to trace gas sensing,” J. Lightwave Technol. 26, 3534–3555 (2008).
[CrossRef]

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[CrossRef]

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769–777 (2005).
[CrossRef]

Tredicucci, A.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics 3, 46–49 (2009).
[CrossRef]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef] [PubMed]

F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, and H. C. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
[CrossRef]

Troccoli, M.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[CrossRef]

M. Troccoli, L. Diehl, D. P. Bour, S. W. Corzine, N. Yu, C. Y. Wang, M. A. Belkin, G. Hofler, R. Lewicki, G. Wysocki, F. K. Tittel, and F. Capasso, “High-performance quantum cascade lasers grown by metal-organic vapor phase epitaxy and their applications to trace gas sensing,” J. Lightwave Technol. 26, 3534–3555 (2008).
[CrossRef]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374–1377 (2003).
[CrossRef] [PubMed]

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (λ≈7.4 μm) quantum cascade laser amplifier for high-power single-mode emission and improved beam quality,” Appl. Phys. Lett. 80, 4103–4105 (2002).
[CrossRef]

Tsekoun, A.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
[CrossRef]

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. U.S.A. 103, 10846–10849 (2006).
[CrossRef] [PubMed]

Tsekoun, A. G.

M. B. Pushkarsky, I. G. Dunayevskiy, M. Prasanna, A. G. Tsekoun, R. Go, and C. K. N. Patel, “High-sensitivity detection of TNT,” Proc. Natl. Acad. Sci. U.S.A. 103, 19630–19634 (2006).
[CrossRef] [PubMed]

Volkov, V. S.

I. P. Radko, V. S. Volkov, J. Beermann, A. B. Evlyukhin, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Plasmonic metasurfaces for waveguiding and field enhancement,” Laser Photon. Rev. 3, 575–590 (2009).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

Vurgaftman, I.

I. Vurgaftman and J. R. Meyer, “Photonic-crystal distributed-feedback quantum cascade lasers,” IEEE J. Quantum Electron. 38, 592–602 (2002).
[CrossRef]

Walther, C.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics 3, 46–49 (2009).
[CrossRef]

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photonics Rev. 1, 1–22 (2008).

M. I. Amanti, M. Fischer, C. Walther, G. Scalari, and J. Faist, “Horn antennas for terahertz quantum cascade lasers,” Electron. Lett. 43, 573–574 (2007).
[CrossRef]

J. Faist, G. Scalari, C. Walther, and M. Fischer, “Progress in long wavelength terahertz quantum cascade lasers,” presented at the 2007 Materials Research Society (MRS) Spring Meeting, San Francisco, California, April 9–13, 2007, paper CC7.2.

Walukiewicz, W.

W. Walukiewicz, L. Lagowski, L. Jastrzebski, M. Lichtensteiger, and H. C. Gatos, “Electron mobility and free-carrier absorption in GaAs: determination of the compensation ratio,” J. Appl. Phys. 50, 899–908 (1979).
[CrossRef]

Wang, B.

B. Wang, L. Liu, and S. He, “Propagation loss of terahertz surface plasmon polaritons on a periodically structured Ag surface,” J. Appl. Phys. 104, 103531 (2008).
[CrossRef]

Wang, C. Y.

Wang, L.-J.

Q.-Y. Lu, W.-H. Guo, W. Zhang, L.-J. Wang, J.-Q. Liu, L.- Li, F.-Q. Liu, and Z.-G. Wang, “Room temperature operation of photonic-crystal distributed-feedback quantum cascade lasers with single longitudinal and lateral mode performance,” Appl. Phys. Lett. 96, 051112 (2010).
[CrossRef]

Wang, Q. J.

N. Yu, M. A. Kats, C. Pflugl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95, 161108 (2009).
[CrossRef]

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
[CrossRef]

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[CrossRef]

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16, 19447–19461 (2008).
[CrossRef] [PubMed]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[CrossRef]

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof-surface-plasmon structures collimate terahertz laser beams,” Nature Mater. doc. ID:10.1038/nmat2822 (posted 8 August 2010, in press).

Wang, X. J.

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

Wang, Z.-G.

Q.-Y. Lu, W.-H. Guo, W. Zhang, L.-J. Wang, J.-Q. Liu, L.- Li, F.-Q. Liu, and Z.-G. Wang, “Room temperature operation of photonic-crystal distributed-feedback quantum cascade lasers with single longitudinal and lateral mode performance,” Appl. Phys. Lett. 96, 051112 (2010).
[CrossRef]

Weeber, J. C.

F. Lopez-Tejeira, Sergio G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[CrossRef]

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Weinheim, Ger.) 21, 3504–3509 (2009).
[CrossRef]

Whitesides, G. M.

D. J. Lipomi, M. A. Kats, P. Kim, S. H. Kang, J. Aizenberg, F. Capasso, and G. M. Whitesides, “Fabrication and replication of arrays of single- or multicomponent nanostructures by replica molding and mechanical sectioning,” ACS Nano 4, 4017–4026 (2010).
[CrossRef] [PubMed]

E. J. Smythe, M. D. Dickey, G. M. Whitesides, and F. Capasso, “A technique to transfer metallic nanoscale patterns to small and non-planar surfaces,” ACS Nano 3, 59–65 (2009).
[CrossRef] [PubMed]

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9, 1132–1138 (2009).
[CrossRef] [PubMed]

Y. Xia and G. M. Whitesides, “Soft lithography,” Angew. Chem., Int. Ed. 37, 550–575 (1998).
[CrossRef]

Whitesies, G. M

Q. Xu, R. M. Rioux, M. D. Dickey, and G. M Whitesies, “Nanoskiving: A new method to produce arrays of nanostructures,” Nano Lett. 41, 1566–1577 (2008).

Wienold, M.

E. Mujagić, L. K. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93, 161101 (2008).
[CrossRef]

Williams, B. S.

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007).
[CrossRef]

A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, “High-power and high-temperature THz quantum-cascade lasers based on lens-coupled metal-metal waveguides,” Opt. Lett. 32, 2840–2842 (2007).
[CrossRef]

S. Kumar, B. S. Williams, Q. Qin, A. W. M. Lee, and Q. Hu, “Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides,” Opt. Express 15, 114–128 (2007).
[CrossRef]

A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Qing Hu, and J. L. Reno, “Real-time terahertz imaging over a standoff distance (>25 meters),” Appl. Phys. Lett. 89, 141125 (2006).
[CrossRef]

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “High-power terahertz quantum cascade lasers,” Electron. Lett. 42, 89–91 (2006).
[CrossRef]

S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
[CrossRef]

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode,” Opt. Express 13, 3331–3339 (2005).
[CrossRef] [PubMed]

Williams, C. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[CrossRef]

Wilson, L. R.

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, “Single-mode surface-emitting quantum-cascade lasers,” Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

Wittmann, A.

B. G. Lee, H. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0to9.8 μm,” IEEE Photonics Technol. Lett. 21, 914–916 (2009).
[CrossRef]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6to11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009).
[CrossRef]

N. Yu, M. A. Kats, C. Pflugl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95, 161108 (2009).
[CrossRef]

A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44, 1083–1088 (2008).
[CrossRef]

Witzigmann, B.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics 3, 46–49 (2009).
[CrossRef]

Wysocki, G.

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[CrossRef]

M. Troccoli, L. Diehl, D. P. Bour, S. W. Corzine, N. Yu, C. Y. Wang, M. A. Belkin, G. Hofler, R. Lewicki, G. Wysocki, F. K. Tittel, and F. Capasso, “High-performance quantum cascade lasers grown by metal-organic vapor phase epitaxy and their applications to trace gas sensing,” J. Lightwave Technol. 26, 3534–3555 (2008).
[CrossRef]

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769–777 (2005).
[CrossRef]

Xia, Y.

Y. Xia and G. M. Whitesides, “Soft lithography,” Angew. Chem., Int. Ed. 37, 550–575 (1998).
[CrossRef]

Xu, Q.

Q. Xu, R. M. Rioux, M. D. Dickey, and G. M Whitesies, “Nanoskiving: A new method to produce arrays of nanostructures,” Nano Lett. 41, 1566–1577 (2008).

Yamanishi, M.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
[CrossRef]

N. Yu, M. A. Kats, C. Pflugl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95, 161108 (2009).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16, 19447–19461 (2008).
[CrossRef] [PubMed]

N. Yu, R. Blanchard, J. Fan, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93, 181101 (2008).
[CrossRef]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[CrossRef]

Yariv, A.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (6th ed.) (Oxford University Press, 2007).

Yeh, P.

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (6th ed.) (Oxford University Press, 2007).

Yu, N.

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
[CrossRef]

N. Yu, M. A. Kats, C. Pflugl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95, 161108 (2009).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16, 19447–19461 (2008).
[CrossRef] [PubMed]

N. Yu, R. Blanchard, J. Fan, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93, 181101 (2008).
[CrossRef]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[CrossRef]

E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron. 14, 1448–1461 (2008).
[CrossRef]

M. Troccoli, L. Diehl, D. P. Bour, S. W. Corzine, N. Yu, C. Y. Wang, M. A. Belkin, G. Hofler, R. Lewicki, G. Wysocki, F. K. Tittel, and F. Capasso, “High-performance quantum cascade lasers grown by metal-organic vapor phase epitaxy and their applications to trace gas sensing,” J. Lightwave Technol. 26, 3534–3555 (2008).
[CrossRef]

N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Bowtie plasmonic quantum cascade laser antenna,” Opt. Express 15, 13272–13281 (2007).
[CrossRef] [PubMed]

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof-surface-plasmon structures collimate terahertz laser beams,” Nature Mater. doc. ID:10.1038/nmat2822 (posted 8 August 2010, in press).

Zenneck, J.

J. Zenneck, “Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie,” Ann. Phys. 23, 846–866 (1907).
[CrossRef]

Zhang, H. A.

B. G. Lee, H. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0to9.8 μm,” IEEE Photonics Technol. Lett. 21, 914–916 (2009).
[CrossRef]

Zhang, W.

Q.-Y. Lu, W.-H. Guo, W. Zhang, L.-J. Wang, J.-Q. Liu, L.- Li, F.-Q. Liu, and Z.-G. Wang, “Room temperature operation of photonic-crystal distributed-feedback quantum cascade lasers with single longitudinal and lateral mode performance,” Appl. Phys. Lett. 96, 051112 (2010).
[CrossRef]

Y. Bai, S. R. Darvish, S. Slivken, P. Sung, J. Nguyen, A. Evans, W. Zhang, and M. Razeghi, “Electrically pumped photonic crystal distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 91, 141123 (2007).
[CrossRef]

Zhu, J.

ACS Nano (2)

D. J. Lipomi, M. A. Kats, P. Kim, S. H. Kang, J. Aizenberg, F. Capasso, and G. M. Whitesides, “Fabrication and replication of arrays of single- or multicomponent nanostructures by replica molding and mechanical sectioning,” ACS Nano 4, 4017–4026 (2010).
[CrossRef] [PubMed]

E. J. Smythe, M. D. Dickey, G. M. Whitesides, and F. Capasso, “A technique to transfer metallic nanoscale patterns to small and non-planar surfaces,” ACS Nano 3, 59–65 (2009).
[CrossRef] [PubMed]

Adv. Mater. (Weinheim, Ger.) (1)

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Weinheim, Ger.) 21, 3504–3509 (2009).
[CrossRef]

Angew. Chem., Int. Ed. (1)

Y. Xia and G. M. Whitesides, “Soft lithography,” Angew. Chem., Int. Ed. 37, 550–575 (1998).
[CrossRef]

Ann. Phys. (2)

J. Zenneck, “Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie,” Ann. Phys. 23, 846–866 (1907).
[CrossRef]

A. Sommerfeld, “Über die Ausbreitung der Wellen in der drahtlosen Telegraphie,” Ann. Phys. 28, 665–736 (1909).
[CrossRef]

Ann. Phys. (Leipzig) (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. (Leipzig) 330, 377–445 (1908).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

G. Wysocki, R. F. Curl, F. K. Tittel, R. Maulini, J. M. Bulliard, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications,” Appl. Phys. B 81, 769–777 (2005).
[CrossRef]

G. Wysocki, R. Lewicki, R. F. Curl, F. K. Tittel, L. Diehl, F. Capasso, M. Troccoli, G. Hofler, D. Bour, S. Corzine, R. Maulini, M. Giovannini, and J. Faist, “Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing,” Appl. Phys. B 92, 305–311 (2008).
[CrossRef]

Appl. Phys. Lett. (22)

A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008).
[CrossRef]

A. W. M. Lee, Q. Qin, S. Kumar, B. S. Williams, Qing Hu, and J. L. Reno, “Real-time terahertz imaging over a standoff distance (>25 meters),” Appl. Phys. Lett. 89, 141125 (2006).
[CrossRef]

S. Kumar, Q. Hu, and J. L. Reno, “186 K operation of terahertz quantum-cascade lasers based on a diagonal design,” Appl. Phys. Lett. 94, 131105 (2009).
[CrossRef]

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, “External cavity quantum-cascade laser tunable from 8.2to10.4 μm using a gain element with a heterogeneous cascade,” Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6to11.4 μm,” Appl. Phys. Lett. 95, 061103 (2009).
[CrossRef]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

Y. Bai, S. Slivken, S. R. Darvish, A. Haddadi, B. Gokden, and M. Razeghi, “High power broad area quantum cascade lasers,” Appl. Phys. Lett. 95, 221104 (2009).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95, 141113 (2009).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670–2672 (1997).
[CrossRef]

D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85, 6323–6325 (2004).
[CrossRef]

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (λ≈7.4 μm) quantum cascade laser amplifier for high-power single-mode emission and improved beam quality,” Appl. Phys. Lett. 80, 4103–4105 (2002).
[CrossRef]

L. Nähle, J. Semmel, W. Kaiser, S. Höfling, and A. Forchel, “Tapered quantum cascade lasers,” Appl. Phys. Lett. 91, 181122 (2007).
[CrossRef]

Y. Bai, S. R. Darvish, S. Slivken, P. Sung, J. Nguyen, A. Evans, W. Zhang, and M. Razeghi, “Electrically pumped photonic crystal distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 91, 141123 (2007).
[CrossRef]

D. Hofstetter, J. Faist, M. Beck, and U. Oesterle, “Surface-emitting 10.1 μm quantum-cascade distributed feedback lasers,” Appl. Phys. Lett. 75, 3769–3771 (1999).
[CrossRef]

W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, “Surface-emitting distributed feedback quantum-cascade lasers,” Appl. Phys. Lett. 77, 2086–2088 (2000).
[CrossRef]

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, “Single-mode surface-emitting quantum-cascade lasers,” Appl. Phys. Lett. 86, 211101 (2005).
[CrossRef]

E. Mujagić, L. K. Hoffmann, S. Schartner, M. Nobile, W. Schrenk, M. P. Semtsiv, M. Wienold, W. T. Masselink, and G. Strasser, “Low divergence single-mode surface emitting quantum cascade ring lasers,” Appl. Phys. Lett. 93, 161101 (2008).
[CrossRef]

Q.-Y. Lu, W.-H. Guo, W. Zhang, L.-J. Wang, J.-Q. Liu, L.- Li, F.-Q. Liu, and Z.-G. Wang, “Room temperature operation of photonic-crystal distributed-feedback quantum cascade lasers with single longitudinal and lateral mode performance,” Appl. Phys. Lett. 96, 051112 (2010).
[CrossRef]

Z. Bomzon, V. Kleiner, and E. Hasman, “Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings,” Appl. Phys. Lett. 79, 1587–1589 (2001).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers with two-dimensional plasmonic collimators,” Appl. Phys. Lett. 93, 181101 (2008).
[CrossRef]

N. Yu, M. A. Kats, C. Pflugl, M. Geiser, Q. J. Wang, M. A. Belkin, F. Capasso, M. Fischer, A. Wittmann, J. Faist, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Multi-beam multi-wavelength semiconductor lasers,” Appl. Phys. Lett. 95, 161108 (2009).
[CrossRef]

N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009).
[CrossRef]

Electron. Lett. (2)

M. I. Amanti, M. Fischer, C. Walther, G. Scalari, and J. Faist, “Horn antennas for terahertz quantum cascade lasers,” Electron. Lett. 43, 573–574 (2007).
[CrossRef]

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “High-power terahertz quantum cascade lasers,” Electron. Lett. 42, 89–91 (2006).
[CrossRef]

IEEE J. Quantum Electron. (3)

R. H. Rediker, I. Melngailis, and A. Mooradian, “Lasers, their development, and applications at M.I.T. Lincoln Laboratory,” IEEE J. Quantum Electron. 20, 602–615 (1984).
[CrossRef]

A. Wittmann, A. Hugi, E. Gini, N. Hoyler, and J. Faist, “Heterogeneous high-performance quantum-cascade laser sources for broad-band tuning,” IEEE J. Quantum Electron. 44, 1083–1088 (2008).
[CrossRef]

I. Vurgaftman and J. R. Meyer, “Photonic-crystal distributed-feedback quantum cascade lasers,” IEEE J. Quantum Electron. 38, 592–602 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[CrossRef]

F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, and H. C. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
[CrossRef]

E. Cubukcu, N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, “Plasmonic laser antennas and related devices,” IEEE J. Sel. Top. Quantum Electron. 14, 1448–1461 (2008).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

C. Gmachl, J. Faist, J. N. Baillargeon, F. Capasso, C. Sirtori, D. L. Sivco, S. N. G. Chu, and A. Y. Cho, “Complex-coupled quantum cascade distributed-feedback laser,” IEEE Photonics Technol. Lett. 9, 1090–1092 (1997).
[CrossRef]

B. G. Lee, H. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0to9.8 μm,” IEEE Photonics Technol. Lett. 21, 914–916 (2009).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

P. H. Siegel and R. J. Dengler, “The dielectric-filled parabola: A new millimeter/submillimeter wavelength receiver/transmitter front end,” IEEE Trans. Antennas Propag. 39, 40–47 (1991).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

M. C. Gaidis, H. M. Pickett, C. D. Smith, S. C. Martin, R. P. Smith, and P. H. Siegel, “A 2.5-THz receiver front end for spaceborne applications,” IEEE Trans. Microwave Theory Tech. 48, 733–739 (2000).
[CrossRef]

IETE Tech. Rev. (1)

S. Mukherjee and Z. S. Shi, “State-of-the-art IV–VI semiconductor light-emitting devices in mid-infrared opto-electronic applications,” IETE Tech. Rev. 26, 236–246 (2009).
[CrossRef]

J. Appl. Phys. (4)

S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
[CrossRef]

B. Wang, L. Liu, and S. He, “Propagation loss of terahertz surface plasmon polaritons on a periodically structured Ag surface,” J. Appl. Phys. 104, 103531 (2008).
[CrossRef]

P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, E. H. Linfield, and D. A. Ritchie, “Drude conductivity of highly doped GaAs at terahertz frequencies,” J. Appl. Phys. 87, 2382–2385 (2000).
[CrossRef]

W. Walukiewicz, L. Lagowski, L. Jastrzebski, M. Lichtensteiger, and H. C. Gatos, “Electron mobility and free-carrier absorption in GaAs: determination of the compensation ratio,” J. Appl. Phys. 50, 899–908 (1979).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. A, Pure Appl. Opt. (1)

F. J. García-Vidal, L. Martín-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7, S97–S101 (2005).
[CrossRef]

Laser Photon. Rev. (1)

I. P. Radko, V. S. Volkov, J. Beermann, A. B. Evlyukhin, T. Søndergaard, A. Boltasseva, and S. I. Bozhevolnyi, “Plasmonic metasurfaces for waveguiding and field enhancement,” Laser Photon. Rev. 3, 575–590 (2009).
[CrossRef]

Laser Photonics Rev. (1)

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photonics Rev. 1, 1–22 (2008).

Nano Lett. (3)

S. Palomba and L. Novotny, “Near-field imaging with a localized nonlinear light source,” Nano Lett. 9, 3801–3804 (2009).
[CrossRef] [PubMed]

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9, 1132–1138 (2009).
[CrossRef] [PubMed]

Q. Xu, R. M. Rioux, M. D. Dickey, and G. M Whitesies, “Nanoskiving: A new method to produce arrays of nanostructures,” Nano Lett. 41, 1566–1577 (2008).

Nanotechnology (1)

J. N. Farahani, H.-J. Eisler, D. W. Pohl, M. Pavius, P. Flückiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18, 125506–125600 (2007).
[CrossRef]

Nat. Photonics (5)

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007).
[CrossRef]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernández-Domínguez, L. Martín-Moreno, and F. J. García-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2, 175–179 (2008).
[CrossRef]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[CrossRef]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics 3, 46–49 (2009).
[CrossRef]

M. I. Amanti, M. Fischer, G. Scalari, M. Beck and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics 3, 586–590 (2009).
[CrossRef]

Nature (3)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature 457, 174–178 (2009).
[CrossRef] [PubMed]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef] [PubMed]

Nature Phys. (1)

F. Lopez-Tejeira, Sergio G. Rodrigo, L. Martin-Moreno, F. J. Garcia-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nature Phys. 3, 324–328 (2007).
[CrossRef]

Opt. Express (10)

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16, 19447–19461 (2008).
[CrossRef] [PubMed]

M. Navarro-Cía, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17, 18184–18195 (2009).
[CrossRef] [PubMed]

J. Beermann, I. P. Radko, A. Boltasseva, and S. I. Bozhevolnyi, “Localized field enhancements in fractal shaped periodic metal nanostructures,” Opt. Express 15, 15234–15241 (2007).
[CrossRef] [PubMed]

Y. A. Akimov, W. S. Koh, and K. Ostrikov, “Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes,” Opt. Express 17, 10195–10205 (2009).
[CrossRef] [PubMed]

N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Bowtie plasmonic quantum cascade laser antenna,” Opt. Express 15, 13272–13281 (2007).
[CrossRef] [PubMed]

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode,” Opt. Express 13, 3331–3339 (2005).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon polaritons,” Opt. Express 14, 9467–9476 (2006).
[CrossRef] [PubMed]

S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16, 2676–2684 (2008).
[CrossRef] [PubMed]

J. A. Fan, M. A. Belkin, and F. Capasso, “Surface emitting terahertz quantum cascade laser with a double-metal waveguide,” Opt. Express 14, 11672–11680 (2006).
[CrossRef] [PubMed]

S. Kumar, B. S. Williams, Q. Qin, A. W. M. Lee, and Q. Hu, “Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides,” Opt. Express 15, 114–128 (2007).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. (1)

R. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115–125 (1936).
[CrossRef]

Phys. Rev. B (3)

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Imaging and focusing properties of plasmonic metamaterial devices,” Phys. Rev. B 76, 205424 (2007).
[CrossRef]

J. Q. Lu and A. A. Maradudin, “Channel plasmons,” Phys. Rev. B 42, 11159–11165 (1990).
[CrossRef]

I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
[CrossRef]

Phys. Rev. Lett. (5)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[CrossRef] [PubMed]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77, 2670–2673 (1996).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008).
[CrossRef] [PubMed]

J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef] [PubMed]

Physica E (1)

D. Hofstetter, J. Faist, M. Beck, A. Müller, and U. Oesterle, “Edge- and surface-emitting 10.1 μm quantum cascade distributed feedback lasers,” Physica E 7, 25–28 (2000).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (2)

M. B. Pushkarsky, I. G. Dunayevskiy, M. Prasanna, A. G. Tsekoun, R. Go, and C. K. N. Patel, “High-sensitivity detection of TNT,” Proc. Natl. Acad. Sci. U.S.A. 103, 19630–19634 (2006).
[CrossRef] [PubMed]

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. U.S.A. 103, 10846–10849 (2006).
[CrossRef] [PubMed]

Proc. SPIE (1)

M. Razeghi, “High-power high-wall plug efficiency mid-infrared quantum cascade lasers based on InP∕GaInAs∕InAlAs material system,” Proc. SPIE 7230, 723011 (2009).
[CrossRef]

Rep. Prog. Phys. (1)

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64, 1533–1601 (2001).
[CrossRef]

Sci. Am. (1)

H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 56–63 (2007).
[CrossRef] [PubMed]

Science (6)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374–1377 (2003).
[CrossRef] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[CrossRef] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Sov. Phys. Semicond. (1)

R. F. Kazarinov and R. A. Suris, “Amplification of electromagnetic waves in a semiconductor superlattice,” Sov. Phys. Semicond. 5, 707–709 (1971).

Other (7)

J. Faist, G. Scalari, C. Walther, and M. Fischer, “Progress in long wavelength terahertz quantum cascade lasers,” presented at the 2007 Materials Research Society (MRS) Spring Meeting, San Francisco, California, April 9–13, 2007, paper CC7.2.

J. A. Kong, Electromagnetic Wave Theory (EMW Publishing, 2000).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, 2007).

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5) 35–40 (2004).
[CrossRef]

N. Yu, Q. J. Wang, M. A. Kats, J. A. Fan, S. P. Khanna, L. Li, A. G. Davies, E. H. Linfield, and F. Capasso, “Designer spoof-surface-plasmon structures collimate terahertz laser beams,” Nature Mater. doc. ID:10.1038/nmat2822 (posted 8 August 2010, in press).

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (6th ed.) (Oxford University Press, 2007).

H. C. Liu and F. Capasso, Intersubband Transitions in Quantum Wells: Physics and Device Applications I (Academic, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (23)

Fig. 1
Fig. 1

Left: Energy diagram of a quantum cascade laser emitting at λ o = 7.5 μ m . The energy levels and the corresponding probability distributions obtained from solving Schrödinger’s equation are shown. The energy wells and barriers are made of GaInAs and AlInAs, respectively. Right: Transmission electron micrograph of a portion of the layer structure of an exemplary QCL. The dark and light layers correspond to the barriers and wells, respectively.

Fig. 2
Fig. 2

Waveguide designs. (a) Dielectric waveguide for mid-IR QCLs. (b) Double-metal waveguide for THz QCLs. (c) Single plasmon waveguide for THz QCLs. The confinement of the laser mode is based on surface waves bound to the top metallization and on the quasi-metallic confinement provided by a thin, heavily doped semiconductor buried contact layer placed below the active core. Schematics of laser waveguide modes are shown in red.

Fig. 3
Fig. 3

Left: By texturing a metal or a metallic semiconductor surface with subwavelength structures such as a 1D array of grooves, one can engineer the dispersion of SPs. Right: Schematic dispersion diagram for spoof SPs on a corrugated surface made from a perfect metal. The asymptote of the curve, ω ( β ) , the in-plane wavevector, β, and the out-of-plane wavevector, κ, can be tailored by changing the geometry of the grooves.

Fig. 4
Fig. 4

Left: Schematic of a 1D collimated laser. It comprises a QCL and a metallic aperture-grating structure defined on the facet. Right: Cross sections of the device. The grooves are sculpted directly into the laser facet using focused ion beam (FIB) milling, followed by conformal coatings of an insulating layer and an optically thick metal layer. FIB milling is used to finally open the slit aperture on the active core.

Fig. 5
Fig. 5

(a) Simulated intensity distribution ( | E | 2 ) of an original unpatterned QCL emitting at λ o = 9.9 μ m . The simulation plane is perpendicular to the laser materials layers and along the symmetry plane of the waveguide ridge. (b) Simulated intensity distribution of the QCL patterned with a plasmonic collimator. (c) Calculated far-field intensity distribution in the vertical direction for the device shown in (b); inset: zoom-in view of the central lobe. (d) Simulated electric-field distribution (|E|) around the slit and the first seven grating grooves. (e) Simulated electric-field distribution of a QCL with only the slit aperture.

Fig. 6
Fig. 6

Left: Simulation results showing the relation between far-field divergence angle and 1 N , the inverse of the number of grating grooves. Right: Simulation results showing the relation between peak intensity of the far-field and N 2 .

Fig. 7
Fig. 7

(a) and (b) SEM images of the facet of a λ o = 9.9 μ m QCL before and after patterning a 1D plasmonic collimator. (c) and (d) Measured 2D far-field intensity distributions corresponding to (a) and (b), respectively. (e) Vertical line scans of (c) (black dotted curve) and (d) (red solid curve) along the arrows. (f) The black dotted curve and red solid curve are light output versus drive current (LI) characteristics of the unpatterned and patterned devices, respectively. Inset: spectrum of the collimated device taken at I = 1.8 A .

Fig. 8
Fig. 8

Left and right: Simulated and measured vertical far-field intensity profiles of devices with 1D collimators containing N grating grooves.

Fig. 9
Fig. 9

Schematic of a QCL integrated with a 2D plasmonic collimator.

Fig. 10
Fig. 10

Simulated FWHM SP spreading angle and power throughput of the device with the 2D plasmonic collimator as a function of the lateral aperture size w 1 .

Fig. 11
Fig. 11

(a) SEM image showing the facet of an unpatterned λ o = 8.06 μ m buried heterostructure QCL. (b) Measured emission pattern of the device in (a). (c) SEM image of the device with a 2D plasmonic collimator. Inset is zoom-in view. (d) Measured emission pattern of the device in (c).

Fig. 12
Fig. 12

Left: LI characteristics for the device with a 2D plasmonic collimator. Right: Divergence angles in the vertical and lateral directions as a function of the lateral aperture size w 1 .

Fig. 13
Fig. 13

Left: SEM image of a λ o = 8.06 μ m QCL patterned with two plasmonic gratings. The grating closer to the aperture contains 11 grooves and has a 7.8 - μ m periodicity; the other grating contains 25 grooves and has a 6 - μ m periodicity. The latter has larger lateral dimensions to account for the lateral spreading of SPs. Right: Measured (left half) and simulated (right half) far-field emission patterns of the device.

Fig. 14
Fig. 14

(a) SEM image of a dual-wavelength QCL patterned with a demultiplexer. (b) Measured (left half) and simulated (right half) far-field of the λ o = 9.3 μ m component of the laser emission. (c) Measured (left half) and simulated (right half) far-field of the λ o = 10.5 μ m component of the laser emission.

Fig. 15
Fig. 15

(a) SEM images of a QCL integrated with a linear polarizer. The orientation of the slit aperture and the grating grooves is 45° with respect to the vertical direction. (b) Measured emission pattern of the device in (a). (c) Measured device output as a function of the rotation angle of the wire-grid polarizer. The red solid curve is experimental data and the black dotted curve is calculation assuming a 45° linearly polarized light.

Fig. 16
Fig. 16

(a) SEM image of a QCL capable of producing circularly polarized emissions. (b) Calculated peak intensity of the beam created by one grating versus the distance between the aperture and the first grating groove d. Laser wavelength is assumed to be λ o = 9.9 μ m . (c) Measured emission pattern of the device in (a). (d) Measured optical power of the central spot in (c) while a wire-grid polarizer was rotated in front of the detector. The red solid curve is experimental data and the black dotted curve is a fitting assuming coherent superposition of a circularly polarized component and a linearly polarized component.

Fig. 17
Fig. 17

(a) SEM image of a λ o = 100 THz QCL with second-order grating grooves directly sculpted into the GaAs facet. The grating has groove width and depth of 18 μ m and 14 μ m , respectively, and has periodicity of 88 μ m . The center-to-center distance between the laser aperture and the nearest groove is 58 μ m . (b) Simulated electric-field distribution (|E|) of the device. (c) The red solid curve and black dotted curve are measured and calculated vertical far-field of the device, respectively. Insets show calculated vertical far-field of the original (solid curve) and the collimated (dotted curve) devices in the half space. (c) LIV characteristics and temperature performances of the device before (black dotted curves) and after (red solid curves) defining the collimator.

Fig. 18
Fig. 18

(a) Schematic of a THz QCL integrated with a metasurface collimator. (b) Cross-section of the design for a λ o = 94 μ m device. The width of the bottom and top of the grooves, and groove depth are labeled as b, t, and d, respectively. The periodicity of the spoof SP grooves is 8 μ m . (c) The black curve is the dispersion diagram of SPs on a planar semiconductor/air interface, which is very close to the light line. The red curves are the dispersion diagrams corresponding to the different sections of the spoof SP structures. The horizontal dotted line indicates the laser frequency. (d) 1/e decay length of the spoof SP electric field (|E|) normal to the interface into the air as a function of d.

Fig. 19
Fig. 19

(a) Simulated electric-field distribution (|E|) of the device with a metasurface collimator. (b) SEM image of a device fabricated according to the design in Fig. 18. (c) and (d) Measured and simulated emission patterns of the device. (e) Vertical line-scans of (c) (red solid curve) and (d) (black dotted curve) along θ x = 0 ° . (f) LIV characteristics of the device. The black, blue, and red curves are for the unpatterned device, the device with only the second-order grating and the device with the metasurface collimator, respectively. Inset: spectrum of the collimated device measured at I = 2.5 A .

Fig. 20
Fig. 20

(a) Schematic of a THz QCL patterned with a metasurface collimator consisting entirely of spoof SP grooves. (b) Cross-section of the design for a λ o = 100 μ m device. The periodicity of the spoof SP grooves is 8 μ m . (c) Simulated electric-field distribution (|E|) of the device. (d) Zoom-in view of (c) showing the confined SPs on the device facet.

Fig. 21
Fig. 21

(a) SEM image of a λ o = 100 μ m QCL fabricated according to the design in Fig. 20. (b) and (c) Measured and simulated emission profiles of the device. (d) Line-scans of (b) (red solid curve) and (c) (black dotted curve) along θ x = 0 ° . (e) LIV characteristics of the device. The black, blue, and red curves are for the unpatterned device, the device with only the deep spoof SP grooves and the device with the complete structure, respectively.

Fig. 22
Fig. 22

(a) Simulated near-field distribution ( log e ( | E | max ( | E | ) ) ) of the device shown in Fig. 21. The near-field is monitored on a plane 1 μ m above the device facet. (b) Simulated far-field corresponding to (a). (c) Simulated near-field distribution of another device with a narrower metasurface pattern. The pattern is 400 μ m wide in (a) but only 150 μ m wide in (c), which is equal to the width of the laser waveguide. (d) Simulated far-field corresponding to (c).

Fig. 23
Fig. 23

Simulated near-field intensity distributions ( log 10 ( | E | 2 max ( | E | 2 ) ) ) on device facets sculpted with spoof SP grooves with different depth: 5, 12, and 16 μ m for (a), (b), and (c), respectively. The three structures have the same groove width of 4 μ m (measured along the vertical direction), periodicity of 8 μ m , and length of 350 μ m (measured along the lateral direction). The near-field is monitored on a plane 5 μ m above the device facet. Laser wavelength is λ o = 100 μ m .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

β ( ω ) = k o ϵ d ϵ m ( ω ) ϵ d + ϵ m ( ω ) ,
ω sp = ω p 1 + ϵ d ,
ω ( β ) = π c 2 h ,
η = i η o tan ( k o h ) ,
η wg = L C = η o a h ,
2 π + 2 d k sp = ( 2 m + 1 ) π

Metrics