Abstract

We present a theoretical and numerical analysis of a subwavelength plasmon-dielectric system that incorporates a periodic metal grating deposited on a dielectric waveguide and supports transmission enhancement of slow light at infrared wavelength for the s polarization. We find that a Fano resonance mechanism to produce this novel phenomenon is based on the interaction of the discrete waveguide-plasmon hybridization modes with the incident photon continuum, which is different from the popular cases with surface plasmonic modes excited by p polarized incident light. The further analysis of the Fano effect indicates that group velocity of slow light and transparent efficiency can be controlled in a large range by the coupling strength, and a more than 20-fold transmission enhancement corresponding to the group velocity of 0.005c is obtained as compared to the case without the dielectric waveguide substrate.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription