Abstract

We numerically investigate the optical field enhancement in metallic microstructures on the surface of polar dielectrics due to the excitation of surface phonon polaritons (SPhPs). The optical field enhancement at the edge of the microstructures is attributed to the contribution of two components: the resonant coupling of the conventional optical antenna and the excitation of SPhPs. By simulation, we found the amplitude of the local field enhancement is up to 106 times. The dependence of field enhancement on incident polarizations and angles is also investigated. The achieved strong field enhancement combined with easy fabrication can potentially lead to promising applications in optical bio-sensing such as surface-enhanced infrared absorption spectroscopy.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
    [CrossRef] [PubMed]
  2. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
    [CrossRef]
  3. A. Hartstein, J. R. Kirtley, and J. C. Tsang, “Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers,” Phys. Rev. Lett. 45, 201–204 (1980).
    [CrossRef]
  4. S. Kawata, Near-field Optics and Surface Plasmon Polaritons (Springer, 2001).
    [CrossRef]
  5. K. Kneipp, M. Moskovits, and H. Kneipp, Surface-enhanced Raman Scattering Physics and Applications (Springer, 2006).
    [CrossRef]
  6. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  7. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef] [PubMed]
  8. R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light–matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
    [CrossRef] [PubMed]
  9. C. Rockstuhl, M. G. Salt, and H. P. Herzig, “Analysis of the phonon-polariton response of silicon carbide microparticles and nanoparticles by use of the boundary element method,” J. Opt. Soc. Am. B 22, 481–487 (2005).
    [CrossRef]
  10. N. Ocelic and R. Hillenbrand, “Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation,” Nature Mater. 3, 606–609 (2004).
    [CrossRef]
  11. M. S. Anderson, “Surface enhanced infrared absorption by coupling phonon and plasmon resonance,” Appl. Phys. Lett. 87, 144102–144103 (2005).
    [CrossRef]
  12. P. B. Catrysse and S. Fan, “Near-complete transmission through subwavelength hole arrays in phonon-polaritonic thin films,” Phys. Rev. B 75, 075422–075425 (2007).
    [CrossRef]
  13. H. Hogstrom, S. Valizadeh, and C. G. Ribbing, “Optical excitation of surface phonon polaritons in silicon carbide by a hole array fabricated by a focused ion beam,” Opt. Mater. 30, 328–333 (2007).
    [CrossRef]
  14. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  15. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94, 4632–4642 (2003).
    [CrossRef]
  16. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).
    [CrossRef] [PubMed]
  17. R. F. Aroca, D. J. Ross, and C. Domingo, “Surface-enhanced infrared spectroscopy,” Appl. Spectrosc. 58, 324A–338A (2004).
    [CrossRef] [PubMed]
  18. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
    [CrossRef]
  19. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
    [CrossRef] [PubMed]

2007 (2)

P. B. Catrysse and S. Fan, “Near-complete transmission through subwavelength hole arrays in phonon-polaritonic thin films,” Phys. Rev. B 75, 075422–075425 (2007).
[CrossRef]

H. Hogstrom, S. Valizadeh, and C. G. Ribbing, “Optical excitation of surface phonon polaritons in silicon carbide by a hole array fabricated by a focused ion beam,” Opt. Mater. 30, 328–333 (2007).
[CrossRef]

2005 (4)

M. S. Anderson, “Surface enhanced infrared absorption by coupling phonon and plasmon resonance,” Appl. Phys. Lett. 87, 144102–144103 (2005).
[CrossRef]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

C. Rockstuhl, M. G. Salt, and H. P. Herzig, “Analysis of the phonon-polariton response of silicon carbide microparticles and nanoparticles by use of the boundary element method,” J. Opt. Soc. Am. B 22, 481–487 (2005).
[CrossRef]

2004 (3)

R. F. Aroca, D. J. Ross, and C. Domingo, “Surface-enhanced infrared spectroscopy,” Appl. Spectrosc. 58, 324A–338A (2004).
[CrossRef] [PubMed]

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).
[CrossRef] [PubMed]

N. Ocelic and R. Hillenbrand, “Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation,” Nature Mater. 3, 606–609 (2004).
[CrossRef]

2003 (2)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94, 4632–4642 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

2002 (1)

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light–matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[CrossRef] [PubMed]

1997 (2)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

1980 (1)

A. Hartstein, J. R. Kirtley, and J. C. Tsang, “Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers,” Phys. Rev. Lett. 45, 201–204 (1980).
[CrossRef]

Anderson, M. S.

M. S. Anderson, “Surface enhanced infrared absorption by coupling phonon and plasmon resonance,” Appl. Phys. Lett. 87, 144102–144103 (2005).
[CrossRef]

Aroca, R. F.

Aussenegg, F. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

Bachelot, R.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Bouhelier, A.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

Catrysse, P. B.

P. B. Catrysse and S. Fan, “Near-complete transmission through subwavelength hole arrays in phonon-polaritonic thin films,” Phys. Rev. B 75, 075422–075425 (2007).
[CrossRef]

Crozier, K. B.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94, 4632–4642 (2003).
[CrossRef]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Ditlbacher, H.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

Domingo, C.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

Fan, S.

P. B. Catrysse and S. Fan, “Near-complete transmission through subwavelength hole arrays in phonon-polaritonic thin films,” Phys. Rev. B 75, 075422–075425 (2007).
[CrossRef]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Hao, E.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).
[CrossRef] [PubMed]

Hartstein, A.

A. Hartstein, J. R. Kirtley, and J. C. Tsang, “Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers,” Phys. Rev. Lett. 45, 201–204 (1980).
[CrossRef]

Herzig, H. P.

Hillenbrand, R.

N. Ocelic and R. Hillenbrand, “Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation,” Nature Mater. 3, 606–609 (2004).
[CrossRef]

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light–matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[CrossRef] [PubMed]

Hofer, F.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

Hogstrom, H.

H. Hogstrom, S. Valizadeh, and C. G. Ribbing, “Optical excitation of surface phonon polaritons in silicon carbide by a hole array fabricated by a focused ion beam,” Opt. Mater. 30, 328–333 (2007).
[CrossRef]

Hohenau, A.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Kawata, S.

S. Kawata, Near-field Optics and Surface Plasmon Polaritons (Springer, 2001).
[CrossRef]

Keilmann, F.

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light–matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[CrossRef] [PubMed]

Kino, G. S.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94, 4632–4642 (2003).
[CrossRef]

Kirtley, J. R.

A. Hartstein, J. R. Kirtley, and J. C. Tsang, “Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers,” Phys. Rev. Lett. 45, 201–204 (1980).
[CrossRef]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

K. Kneipp, M. Moskovits, and H. Kneipp, Surface-enhanced Raman Scattering Physics and Applications (Springer, 2006).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

K. Kneipp, M. Moskovits, and H. Kneipp, Surface-enhanced Raman Scattering Physics and Applications (Springer, 2006).
[CrossRef]

Kostcheev, S.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

Kreibig, U.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

Krenn, J. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

Lerondel, G.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

Moskovits, M.

K. Kneipp, M. Moskovits, and H. Kneipp, Surface-enhanced Raman Scattering Physics and Applications (Springer, 2006).
[CrossRef]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

Ocelic, N.

N. Ocelic and R. Hillenbrand, “Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation,” Nature Mater. 3, 606–609 (2004).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Quate, C. F.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94, 4632–4642 (2003).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Ribbing, C. G.

H. Hogstrom, S. Valizadeh, and C. G. Ribbing, “Optical excitation of surface phonon polaritons in silicon carbide by a hole array fabricated by a focused ion beam,” Opt. Mater. 30, 328–333 (2007).
[CrossRef]

Rockstuhl, C.

Rogers, M.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

Ross, D. J.

Royer, P.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

Salt, M. G.

Schatz, G. C.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).
[CrossRef] [PubMed]

Sundaramurthy, A.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94, 4632–4642 (2003).
[CrossRef]

Taubner, T.

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light–matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[CrossRef] [PubMed]

Tsang, J. C.

A. Hartstein, J. R. Kirtley, and J. C. Tsang, “Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers,” Phys. Rev. Lett. 45, 201–204 (1980).
[CrossRef]

Valizadeh, S.

H. Hogstrom, S. Valizadeh, and C. G. Ribbing, “Optical excitation of surface phonon polaritons in silicon carbide by a hole array fabricated by a focused ion beam,” Opt. Mater. 30, 328–333 (2007).
[CrossRef]

Wagner, D.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Wiederrecht, G. P.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

M. S. Anderson, “Surface enhanced infrared absorption by coupling phonon and plasmon resonance,” Appl. Phys. Lett. 87, 144102–144103 (2005).
[CrossRef]

Appl. Spectrosc. (1)

J. Appl. Phys. (1)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94, 4632–4642 (2003).
[CrossRef]

J. Chem. Phys. (1)

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120, 357–366 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light–matter interaction at the nanometre scale,” Nature 418, 159–162 (2002).
[CrossRef] [PubMed]

Nature Mater. (1)

N. Ocelic and R. Hillenbrand, “Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation,” Nature Mater. 3, 606–609 (2004).
[CrossRef]

Opt. Mater. (1)

H. Hogstrom, S. Valizadeh, and C. G. Ribbing, “Optical excitation of surface phonon polaritons in silicon carbide by a hole array fabricated by a focused ion beam,” Opt. Mater. 30, 328–333 (2007).
[CrossRef]

Phys. Rev. B (1)

P. B. Catrysse and S. Fan, “Near-complete transmission through subwavelength hole arrays in phonon-polaritonic thin films,” Phys. Rev. B 75, 075422–075425 (2007).
[CrossRef]

Phys. Rev. Lett. (4)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

A. Hartstein, J. R. Kirtley, and J. C. Tsang, “Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers,” Phys. Rev. Lett. 45, 201–204 (1980).
[CrossRef]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[CrossRef] [PubMed]

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef] [PubMed]

Other (4)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

S. Kawata, Near-field Optics and Surface Plasmon Polaritons (Springer, 2001).
[CrossRef]

K. Kneipp, M. Moskovits, and H. Kneipp, Surface-enhanced Raman Scattering Physics and Applications (Springer, 2006).
[CrossRef]

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Calculated effective refractive index Re ( n SPhP ) , n SPhP = k SPhP k 0 , and SPhP propagation length L SPhP = ( 2 Im ( k SPhP ) ) 1 , as a function of wavelength.

Fig. 2
Fig. 2

Schematic diagram of the proposed SEIRA-active substrate based on SPhPs.

Fig. 3
Fig. 3

Comparison of local field enhancement for different microstructure dimensions.

Fig. 4
Fig. 4

(a) Intensity distribution of the square, monopole, and disk structures in xy plane and xz plane. The arrows in the xz plane plot indicate the direction of the incident light. (b) Field enhancement profile along x direction at the xy plane of the monopole structure.

Fig. 5
Fig. 5

Comparison of local field enhancement in monopole microstructures on different substrates.

Fig. 6
Fig. 6

Intensity distribution of the monopole structure with incident polarizations in xy plane and xz plane: (a) x polarization (long axis) and (b) y polarization (short axis). The arrow indicates the direction of electric field.

Fig. 7
Fig. 7

Comparison of local field enhancement in a monopole microstructure with different illumination angles: (a) along the monopole width and (b) along the monopole length. The incident light is polarized in x direction (long axis).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k SPhP ( ω ) = ω c ϵ 1 ( ω ) ϵ 2 ϵ 1 ( ω ) + ϵ 2 ,

Metrics