Abstract

In Er3+:YAG crystal, dependence of the competition between different upconversion (UC) mechanisms for the population of P322 on the exciting wavelength has been observed. An approximate method has been proposed for quantitative analysis of different UC-mechanism contributions by utilizing the excitation spectra of P322 and G922. The sensitive dependence of the dominant UC mechanism and the fluorescence dynamic behaviors on exciting wavelength observed in the experiment could be well reproduced by this simple and effective method.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Auzel, “Upconversion processes in coupled ion systems,” J. Lumin. 45, 341–345 (1990).
    [CrossRef]
  2. T. Sandrock, H. Scheife, E. Heumann, and G. Huber, “High-power continuous-wave upconversion fiber laser at room temperature,” Opt. Lett. 22, 808–810 (1997).
    [CrossRef] [PubMed]
  3. L. C. Courrol, E. P. Maldonado, L. Gomes, N. D. Vieira Jr., I. M. Ranieri, and S. P. Morato, “Diode pumping Nd-laser efficiency limitations due to up-conversion processes in Nd:YLF and Nd:GLF,” Opt. Mater. 14, 81–90 (2000).
    [CrossRef]
  4. K. Z. Zheng, L. L. Wang, D. S. Zhang, D. Zhao, and W. P. Qing, “Power switched multiphoton upconversion emissions of Er3+ in Yb3+∕Er3+ codoped β-NaYF4 microcrystals induced by 980 nm excitation,” Opt. Express 18, 2934–2939 (2010).
    [CrossRef] [PubMed]
  5. D. R. Gamelin and H. U. Güdel, “Design of luminescent inorganic materials: new photophysical processes studied by optical spectroscopy,” Acc. Chem. Res. 33, 235–242 (2000).
    [CrossRef] [PubMed]
  6. H. Xu and Z. Jiang, “Ultraviolet and violet upconversion luminescence in Er3+-doped yttrium aluminum garnet crystals,” Phys. Rev. B 66, 035103-1–035103-5 (2002).
    [CrossRef]
  7. S. Georgescu, V. Lupei, A. Petraru, C. Hapenciuc, C. Florea, C. Naud, and C. Porte, “Excited-state-absorption in low concentrated Er: YAG crystals for pulsed and cw pumping,” J. Lumin. 93, 281–292 (2001).
    [CrossRef]
  8. A. Lupei, V. Lupei, C. Gheorghe, and A. Ikesue, “Excited states dynamics of Er3+ in Sc2O3 ceramic,” J. Lumin. 128, 918–920 (2008).
    [CrossRef]
  9. R. K. Jia, W. S. Yang, Y. B. Bai, and T. J. Lin, “Upconversion photoluminescence of ZrO2:Er3+ nanocrystals synthesized by using butadinol as high boiling point solvent,” Opt. Mater. 28, 246–249 (2006).
    [CrossRef]
  10. O. S. Wenger, D. R. Gamelin, H. U. Güdel, A. V. Butashin, and A. A. Kaminskii, “Site-selective optical spectroscopy and upconversion mechanisms of the laser material BaLu2F8:Er3+,” Phys. Rev. B 60, 5312–5320 (1999).
    [CrossRef]
  11. J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hils, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B 48, 15561–15573 (1993).
    [CrossRef]
  12. S. Du, J. X. Xu, X. R. Dong, J. Zhang, Z. L. Fu, and Z. W. Dai, “Sensitivity of upconversion mechanisms to excitation laser wavelength in Er3+-doped YAG,” J. Lumin. 130, 872–876 (2010).
    [CrossRef]

2010 (2)

S. Du, J. X. Xu, X. R. Dong, J. Zhang, Z. L. Fu, and Z. W. Dai, “Sensitivity of upconversion mechanisms to excitation laser wavelength in Er3+-doped YAG,” J. Lumin. 130, 872–876 (2010).
[CrossRef]

K. Z. Zheng, L. L. Wang, D. S. Zhang, D. Zhao, and W. P. Qing, “Power switched multiphoton upconversion emissions of Er3+ in Yb3+∕Er3+ codoped β-NaYF4 microcrystals induced by 980 nm excitation,” Opt. Express 18, 2934–2939 (2010).
[CrossRef] [PubMed]

2008 (1)

A. Lupei, V. Lupei, C. Gheorghe, and A. Ikesue, “Excited states dynamics of Er3+ in Sc2O3 ceramic,” J. Lumin. 128, 918–920 (2008).
[CrossRef]

2006 (1)

R. K. Jia, W. S. Yang, Y. B. Bai, and T. J. Lin, “Upconversion photoluminescence of ZrO2:Er3+ nanocrystals synthesized by using butadinol as high boiling point solvent,” Opt. Mater. 28, 246–249 (2006).
[CrossRef]

2002 (1)

H. Xu and Z. Jiang, “Ultraviolet and violet upconversion luminescence in Er3+-doped yttrium aluminum garnet crystals,” Phys. Rev. B 66, 035103-1–035103-5 (2002).
[CrossRef]

2001 (1)

S. Georgescu, V. Lupei, A. Petraru, C. Hapenciuc, C. Florea, C. Naud, and C. Porte, “Excited-state-absorption in low concentrated Er: YAG crystals for pulsed and cw pumping,” J. Lumin. 93, 281–292 (2001).
[CrossRef]

2000 (2)

D. R. Gamelin and H. U. Güdel, “Design of luminescent inorganic materials: new photophysical processes studied by optical spectroscopy,” Acc. Chem. Res. 33, 235–242 (2000).
[CrossRef] [PubMed]

L. C. Courrol, E. P. Maldonado, L. Gomes, N. D. Vieira Jr., I. M. Ranieri, and S. P. Morato, “Diode pumping Nd-laser efficiency limitations due to up-conversion processes in Nd:YLF and Nd:GLF,” Opt. Mater. 14, 81–90 (2000).
[CrossRef]

1999 (1)

O. S. Wenger, D. R. Gamelin, H. U. Güdel, A. V. Butashin, and A. A. Kaminskii, “Site-selective optical spectroscopy and upconversion mechanisms of the laser material BaLu2F8:Er3+,” Phys. Rev. B 60, 5312–5320 (1999).
[CrossRef]

1997 (1)

1993 (1)

J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hils, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B 48, 15561–15573 (1993).
[CrossRef]

1990 (1)

F. Auzel, “Upconversion processes in coupled ion systems,” J. Lumin. 45, 341–345 (1990).
[CrossRef]

Allik, T. H.

J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hils, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B 48, 15561–15573 (1993).
[CrossRef]

Auzel, F.

F. Auzel, “Upconversion processes in coupled ion systems,” J. Lumin. 45, 341–345 (1990).
[CrossRef]

Bai, Y. B.

R. K. Jia, W. S. Yang, Y. B. Bai, and T. J. Lin, “Upconversion photoluminescence of ZrO2:Er3+ nanocrystals synthesized by using butadinol as high boiling point solvent,” Opt. Mater. 28, 246–249 (2006).
[CrossRef]

Butashin, A. V.

O. S. Wenger, D. R. Gamelin, H. U. Güdel, A. V. Butashin, and A. A. Kaminskii, “Site-selective optical spectroscopy and upconversion mechanisms of the laser material BaLu2F8:Er3+,” Phys. Rev. B 60, 5312–5320 (1999).
[CrossRef]

Courrol, L. C.

L. C. Courrol, E. P. Maldonado, L. Gomes, N. D. Vieira Jr., I. M. Ranieri, and S. P. Morato, “Diode pumping Nd-laser efficiency limitations due to up-conversion processes in Nd:YLF and Nd:GLF,” Opt. Mater. 14, 81–90 (2000).
[CrossRef]

Dai, Z. W.

S. Du, J. X. Xu, X. R. Dong, J. Zhang, Z. L. Fu, and Z. W. Dai, “Sensitivity of upconversion mechanisms to excitation laser wavelength in Er3+-doped YAG,” J. Lumin. 130, 872–876 (2010).
[CrossRef]

Dong, X. R.

S. Du, J. X. Xu, X. R. Dong, J. Zhang, Z. L. Fu, and Z. W. Dai, “Sensitivity of upconversion mechanisms to excitation laser wavelength in Er3+-doped YAG,” J. Lumin. 130, 872–876 (2010).
[CrossRef]

Du, S.

S. Du, J. X. Xu, X. R. Dong, J. Zhang, Z. L. Fu, and Z. W. Dai, “Sensitivity of upconversion mechanisms to excitation laser wavelength in Er3+-doped YAG,” J. Lumin. 130, 872–876 (2010).
[CrossRef]

Florea, C.

S. Georgescu, V. Lupei, A. Petraru, C. Hapenciuc, C. Florea, C. Naud, and C. Porte, “Excited-state-absorption in low concentrated Er: YAG crystals for pulsed and cw pumping,” J. Lumin. 93, 281–292 (2001).
[CrossRef]

Fu, Z. L.

S. Du, J. X. Xu, X. R. Dong, J. Zhang, Z. L. Fu, and Z. W. Dai, “Sensitivity of upconversion mechanisms to excitation laser wavelength in Er3+-doped YAG,” J. Lumin. 130, 872–876 (2010).
[CrossRef]

Gamelin, D. R.

D. R. Gamelin and H. U. Güdel, “Design of luminescent inorganic materials: new photophysical processes studied by optical spectroscopy,” Acc. Chem. Res. 33, 235–242 (2000).
[CrossRef] [PubMed]

O. S. Wenger, D. R. Gamelin, H. U. Güdel, A. V. Butashin, and A. A. Kaminskii, “Site-selective optical spectroscopy and upconversion mechanisms of the laser material BaLu2F8:Er3+,” Phys. Rev. B 60, 5312–5320 (1999).
[CrossRef]

Georgescu, S.

S. Georgescu, V. Lupei, A. Petraru, C. Hapenciuc, C. Florea, C. Naud, and C. Porte, “Excited-state-absorption in low concentrated Er: YAG crystals for pulsed and cw pumping,” J. Lumin. 93, 281–292 (2001).
[CrossRef]

Gheorghe, C.

A. Lupei, V. Lupei, C. Gheorghe, and A. Ikesue, “Excited states dynamics of Er3+ in Sc2O3 ceramic,” J. Lumin. 128, 918–920 (2008).
[CrossRef]

Gomes, L.

L. C. Courrol, E. P. Maldonado, L. Gomes, N. D. Vieira Jr., I. M. Ranieri, and S. P. Morato, “Diode pumping Nd-laser efficiency limitations due to up-conversion processes in Nd:YLF and Nd:GLF,” Opt. Mater. 14, 81–90 (2000).
[CrossRef]

Gruber, J. B.

J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hils, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B 48, 15561–15573 (1993).
[CrossRef]

Güdel, H. U.

D. R. Gamelin and H. U. Güdel, “Design of luminescent inorganic materials: new photophysical processes studied by optical spectroscopy,” Acc. Chem. Res. 33, 235–242 (2000).
[CrossRef] [PubMed]

O. S. Wenger, D. R. Gamelin, H. U. Güdel, A. V. Butashin, and A. A. Kaminskii, “Site-selective optical spectroscopy and upconversion mechanisms of the laser material BaLu2F8:Er3+,” Phys. Rev. B 60, 5312–5320 (1999).
[CrossRef]

Hapenciuc, C.

S. Georgescu, V. Lupei, A. Petraru, C. Hapenciuc, C. Florea, C. Naud, and C. Porte, “Excited-state-absorption in low concentrated Er: YAG crystals for pulsed and cw pumping,” J. Lumin. 93, 281–292 (2001).
[CrossRef]

Heumann, E.

Hils, M. E.

J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hils, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B 48, 15561–15573 (1993).
[CrossRef]

Huber, G.

Ikesue, A.

A. Lupei, V. Lupei, C. Gheorghe, and A. Ikesue, “Excited states dynamics of Er3+ in Sc2O3 ceramic,” J. Lumin. 128, 918–920 (2008).
[CrossRef]

Jia, R. K.

R. K. Jia, W. S. Yang, Y. B. Bai, and T. J. Lin, “Upconversion photoluminescence of ZrO2:Er3+ nanocrystals synthesized by using butadinol as high boiling point solvent,” Opt. Mater. 28, 246–249 (2006).
[CrossRef]

Jiang, Z.

H. Xu and Z. Jiang, “Ultraviolet and violet upconversion luminescence in Er3+-doped yttrium aluminum garnet crystals,” Phys. Rev. B 66, 035103-1–035103-5 (2002).
[CrossRef]

Kaminskii, A. A.

O. S. Wenger, D. R. Gamelin, H. U. Güdel, A. V. Butashin, and A. A. Kaminskii, “Site-selective optical spectroscopy and upconversion mechanisms of the laser material BaLu2F8:Er3+,” Phys. Rev. B 60, 5312–5320 (1999).
[CrossRef]

Lin, T. J.

R. K. Jia, W. S. Yang, Y. B. Bai, and T. J. Lin, “Upconversion photoluminescence of ZrO2:Er3+ nanocrystals synthesized by using butadinol as high boiling point solvent,” Opt. Mater. 28, 246–249 (2006).
[CrossRef]

Lupei, A.

A. Lupei, V. Lupei, C. Gheorghe, and A. Ikesue, “Excited states dynamics of Er3+ in Sc2O3 ceramic,” J. Lumin. 128, 918–920 (2008).
[CrossRef]

Lupei, V.

A. Lupei, V. Lupei, C. Gheorghe, and A. Ikesue, “Excited states dynamics of Er3+ in Sc2O3 ceramic,” J. Lumin. 128, 918–920 (2008).
[CrossRef]

S. Georgescu, V. Lupei, A. Petraru, C. Hapenciuc, C. Florea, C. Naud, and C. Porte, “Excited-state-absorption in low concentrated Er: YAG crystals for pulsed and cw pumping,” J. Lumin. 93, 281–292 (2001).
[CrossRef]

Maldonado, E. P.

L. C. Courrol, E. P. Maldonado, L. Gomes, N. D. Vieira Jr., I. M. Ranieri, and S. P. Morato, “Diode pumping Nd-laser efficiency limitations due to up-conversion processes in Nd:YLF and Nd:GLF,” Opt. Mater. 14, 81–90 (2000).
[CrossRef]

Morato, S. P.

L. C. Courrol, E. P. Maldonado, L. Gomes, N. D. Vieira Jr., I. M. Ranieri, and S. P. Morato, “Diode pumping Nd-laser efficiency limitations due to up-conversion processes in Nd:YLF and Nd:GLF,” Opt. Mater. 14, 81–90 (2000).
[CrossRef]

Morrison, C. A.

J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hils, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B 48, 15561–15573 (1993).
[CrossRef]

Naud, C.

S. Georgescu, V. Lupei, A. Petraru, C. Hapenciuc, C. Florea, C. Naud, and C. Porte, “Excited-state-absorption in low concentrated Er: YAG crystals for pulsed and cw pumping,” J. Lumin. 93, 281–292 (2001).
[CrossRef]

Petraru, A.

S. Georgescu, V. Lupei, A. Petraru, C. Hapenciuc, C. Florea, C. Naud, and C. Porte, “Excited-state-absorption in low concentrated Er: YAG crystals for pulsed and cw pumping,” J. Lumin. 93, 281–292 (2001).
[CrossRef]

Porte, C.

S. Georgescu, V. Lupei, A. Petraru, C. Hapenciuc, C. Florea, C. Naud, and C. Porte, “Excited-state-absorption in low concentrated Er: YAG crystals for pulsed and cw pumping,” J. Lumin. 93, 281–292 (2001).
[CrossRef]

Qing, W. P.

Quagliano, J. R.

J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hils, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B 48, 15561–15573 (1993).
[CrossRef]

Ranieri, I. M.

L. C. Courrol, E. P. Maldonado, L. Gomes, N. D. Vieira Jr., I. M. Ranieri, and S. P. Morato, “Diode pumping Nd-laser efficiency limitations due to up-conversion processes in Nd:YLF and Nd:GLF,” Opt. Mater. 14, 81–90 (2000).
[CrossRef]

Reid, M. F.

J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hils, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B 48, 15561–15573 (1993).
[CrossRef]

Richardson, F. S.

J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hils, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B 48, 15561–15573 (1993).
[CrossRef]

Sandrock, T.

Scheife, H.

Seltzer, M. D.

J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hils, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B 48, 15561–15573 (1993).
[CrossRef]

Stevens, S. B.

J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hils, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B 48, 15561–15573 (1993).
[CrossRef]

Vieira, N. D.

L. C. Courrol, E. P. Maldonado, L. Gomes, N. D. Vieira Jr., I. M. Ranieri, and S. P. Morato, “Diode pumping Nd-laser efficiency limitations due to up-conversion processes in Nd:YLF and Nd:GLF,” Opt. Mater. 14, 81–90 (2000).
[CrossRef]

Wang, L. L.

Wenger, O. S.

O. S. Wenger, D. R. Gamelin, H. U. Güdel, A. V. Butashin, and A. A. Kaminskii, “Site-selective optical spectroscopy and upconversion mechanisms of the laser material BaLu2F8:Er3+,” Phys. Rev. B 60, 5312–5320 (1999).
[CrossRef]

Xu, H.

H. Xu and Z. Jiang, “Ultraviolet and violet upconversion luminescence in Er3+-doped yttrium aluminum garnet crystals,” Phys. Rev. B 66, 035103-1–035103-5 (2002).
[CrossRef]

Xu, J. X.

S. Du, J. X. Xu, X. R. Dong, J. Zhang, Z. L. Fu, and Z. W. Dai, “Sensitivity of upconversion mechanisms to excitation laser wavelength in Er3+-doped YAG,” J. Lumin. 130, 872–876 (2010).
[CrossRef]

Yang, W. S.

R. K. Jia, W. S. Yang, Y. B. Bai, and T. J. Lin, “Upconversion photoluminescence of ZrO2:Er3+ nanocrystals synthesized by using butadinol as high boiling point solvent,” Opt. Mater. 28, 246–249 (2006).
[CrossRef]

Zhang, D. S.

Zhang, J.

S. Du, J. X. Xu, X. R. Dong, J. Zhang, Z. L. Fu, and Z. W. Dai, “Sensitivity of upconversion mechanisms to excitation laser wavelength in Er3+-doped YAG,” J. Lumin. 130, 872–876 (2010).
[CrossRef]

Zhao, D.

Zheng, K. Z.

Acc. Chem. Res. (1)

D. R. Gamelin and H. U. Güdel, “Design of luminescent inorganic materials: new photophysical processes studied by optical spectroscopy,” Acc. Chem. Res. 33, 235–242 (2000).
[CrossRef] [PubMed]

J. Lumin. (4)

F. Auzel, “Upconversion processes in coupled ion systems,” J. Lumin. 45, 341–345 (1990).
[CrossRef]

S. Georgescu, V. Lupei, A. Petraru, C. Hapenciuc, C. Florea, C. Naud, and C. Porte, “Excited-state-absorption in low concentrated Er: YAG crystals for pulsed and cw pumping,” J. Lumin. 93, 281–292 (2001).
[CrossRef]

A. Lupei, V. Lupei, C. Gheorghe, and A. Ikesue, “Excited states dynamics of Er3+ in Sc2O3 ceramic,” J. Lumin. 128, 918–920 (2008).
[CrossRef]

S. Du, J. X. Xu, X. R. Dong, J. Zhang, Z. L. Fu, and Z. W. Dai, “Sensitivity of upconversion mechanisms to excitation laser wavelength in Er3+-doped YAG,” J. Lumin. 130, 872–876 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (2)

L. C. Courrol, E. P. Maldonado, L. Gomes, N. D. Vieira Jr., I. M. Ranieri, and S. P. Morato, “Diode pumping Nd-laser efficiency limitations due to up-conversion processes in Nd:YLF and Nd:GLF,” Opt. Mater. 14, 81–90 (2000).
[CrossRef]

R. K. Jia, W. S. Yang, Y. B. Bai, and T. J. Lin, “Upconversion photoluminescence of ZrO2:Er3+ nanocrystals synthesized by using butadinol as high boiling point solvent,” Opt. Mater. 28, 246–249 (2006).
[CrossRef]

Phys. Rev. B (3)

O. S. Wenger, D. R. Gamelin, H. U. Güdel, A. V. Butashin, and A. A. Kaminskii, “Site-selective optical spectroscopy and upconversion mechanisms of the laser material BaLu2F8:Er3+,” Phys. Rev. B 60, 5312–5320 (1999).
[CrossRef]

J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hils, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B 48, 15561–15573 (1993).
[CrossRef]

H. Xu and Z. Jiang, “Ultraviolet and violet upconversion luminescence in Er3+-doped yttrium aluminum garnet crystals,” Phys. Rev. B 66, 035103-1–035103-5 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Energy level scheme of Er 3 + in YAG and related transition processes.

Fig. 2
Fig. 2

Excitation spectra at 416.6 and 405.2 nm . The inset is the excitation spectrum at 846.5 nm .

Fig. 3
Fig. 3

Decay profiles at 405.2 nm from P 3 2 2 under resonant excitations of A through F.

Fig. 4
Fig. 4

Fluorescence dynamics variations at 405.2 nm under excitations around the GSA peaks A and B. The order of the listed exciting wavelengths accords with that of the curves.

Fig. 5
Fig. 5

Excitation spectra characterizing the joint contributions of (a) ESA and ETU , (b) the ETU contribution , and (c) the ESA contribution to 405.2 nm emission from P 3 2 2 .

Fig. 6
Fig. 6

Simulations of the experimental 405.2 nm decay curves under C and D resonant excitations. The inset shows the normalized experimental decay curves under A and E resonant excitations.

Fig. 7
Fig. 7

Decay profile simulations for 405.2 nm emission under excitations around the GSA peak B. The inset shows the miniatures of Fig. 4b.

Metrics