Abstract

We report an experimental study of the nonlinear propagation of femtosecond pulses in solid-core photonic bandgap fibers. An extreme deceleration of the soliton self-frequency shift accompanied by a spectral compression is observed near the photonic bandgap edge. In practice, this extreme deceleration is equivalent to a suppression of the soliton self-frequency shift and so to a stabilization of the soliton frequency. The physical origin of this phenomenon is discussed with the help of numerical simulations. Finally, a simple model is proposed to identify the main physical mechanism responsible for the extreme deceleration of soliton self-frequency shift. In the case of our fiber design, it is mainly due to the strong third-order dispersion experienced by the soliton as it approaches the photonic bandgap edge.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29, 2369–2371 (2004).
    [CrossRef] [PubMed]
  2. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (<20 dB/km) around 1550 nm,” Opt. Express 13, 8452–8459 (2005).
    [CrossRef] [PubMed]
  3. G. Ren, P. Shum, L. Zhang, X. Yu, W. Tong, and Jie Luo, “Low-loss all-solid photonic bandgap fiber,” Opt. Lett. 32, 1023–1025 (2007).
    [CrossRef] [PubMed]
  4. P. S. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006).
    [CrossRef]
  5. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, and P. S. J. Russell, “Guidance properties of low-contrast photonic bandgap fibres,” Opt. Express 13, 2503–2511 (2005).
    [CrossRef] [PubMed]
  6. V. Pureur, A. Betourne, G. Bouwmans, L. Bigot, A. Kudlinski, K. Delplace, A. Le Rouge, Y. Quiquempois, and M. Douay, “Overview on solid core photonic bandgap fibers,” Fiber Integr. Opt. 28, 27–50 (2009).
    [CrossRef]
  7. V. Pureur and J. M. Dudley, “Nonlinear spectral broadening of femtosecond pulses in solid-core photonic bandgap fibers,” Opt. Lett. 35, 2813–2815 (2010).
    [CrossRef] [PubMed]
  8. B. W. Liu, M. L. Hu, X.H. Fang, Y.F. Li, L. Chai, J.Y. Li, W. Chen, and C.Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and Bragg fiber,” IEEE Photon. Technol. Lett. 20, 581–583 (2008).
    [CrossRef]
  9. V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).
    [CrossRef]
  10. A. Wang, A. George, and J. Knight, “Three-level neodymium fiber laser incorporating photonic bandgap fiber,” Opt. Lett. 31, 1388–1390 (2006).
    [CrossRef] [PubMed]
  11. A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngso, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150–1200 nm,” Opt. Express 17, 447–454 (2009).
    [CrossRef] [PubMed]
  12. A. Bétourné, A. Kudlinski, G. Bouwmans, O. Vanvincq, A. Mussot, and Y. Quiquempois, “Control of supercontinuum generation and soliton self-frequency shift in solid-core photonic bandgap fibers,” Opt. Lett. 34, 3083–3085 (2009).
    [CrossRef] [PubMed]
  13. B. Kibler, T. Martynkien, M. Szpulak, C. Finot, J. Fatome, J. Wojcik, W. Urbanczyk, and S. Wabnitz, “Nonlinear femtosecond pulse propagation in an all-solid photonic bandgap fiber,” Opt. Express 17, 10393–10398 (2009).
    [CrossRef] [PubMed]
  14. E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. S. M. Prokhorov, V. N. Serkin, M. F. Stel’makh, and A. A. Fomichev, “Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers,” JETP Lett. 41, 294–297 (1985).
  15. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
    [CrossRef] [PubMed]
  16. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
    [CrossRef] [PubMed]
  17. K. J. Blow, N. J. Doran, and D. Wood, “Suppression of the soliton self-frequency shift by bandwidth-limited amplification,” J. Opt. Soc. Am. B 5, 1301–1304 (1988).
    [CrossRef]
  18. A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, “Suppression and manipulation of the soliton self-frequency shift,” Opt. Lett. 14, 514–516 (1989).
    [CrossRef] [PubMed]
  19. D. Schadt and B. Jaskorzynska, “Suppression of the Raman self-frequency shift by cross-phase modulation,” J. Opt. Soc. Am. B 5, 2374–2379 (1988).
    [CrossRef]
  20. M. Ding and K. Kikuchi, “Analysis of soliton transmission in optical fibers with the soliton self-frequency shift being compensated by distributed frequency dependent gain,” Photon. Technol. Lett. 4, 497–500 (1992).
    [CrossRef]
  21. X. U. Wencheng, G. U. O. Qi, L. I. A. O. Changjun, and L. I. U. Songhao, “Suppression of Raman self-frequency shift of soliton propagation in single mode optical fiber,” Chin. Phys. Lett. 12, 113–115 (1995).
    [CrossRef]
  22. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
    [CrossRef] [PubMed]
  23. A. Bétourné, G. Bouwmans, Y. Quiquempois, M. Perrin, and M. Douay, “Improvements of solid-core photonic bandgap fibers by means of interstitial air holes,” Opt. Lett. 32, 1719–1721 (2007).
    [CrossRef] [PubMed]
  24. A. Bétourné, V. Pureur, G. Bouwmans, Y. Quiquempois, L. Bigot, M. Perrin, and M. Douay, “Solid photonic bandgap fiber assisted by an extra air-clad structure for low-loss operation around 1.5 μm,” Opt. Express 15, 316–324 (2007).
    [CrossRef] [PubMed]
  25. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  26. E. A. Golovchenko, E. M. Menyuk, A. M. Prokhorov, and V. N. Serkin, “Decay of optical solitons,” JETP Lett. 42, 87–91 (1985).
  27. Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. 23, 510–524 (1987).
    [CrossRef]
  28. P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
    [CrossRef]
  29. J. Laegsgaard, “Mode profile dispersion in the generalized nonlinear Schrödinger equation,” Opt. Express 15, 16110–16123 (2007).
    [CrossRef] [PubMed]
  30. J. C. Travers, M. H. Frosz, and J. M. Dudley, “Nonlinear fibre optics overview,” in Supercontinuum Generation in Optical Fibers, J.M.Dudley and J.R.Taylor, eds. (Cambridge University Press, 2010), Chap. 3.
    [CrossRef]
  31. A. C. Judge, S. A. Dekker, R. Pant, C. Martijn de Sterke, and B. J. Eggleton, “Soliton self-frequency shift performance in As2S3 waveguides,” Opt. Express 18, 14960–14968 (2010).
    [CrossRef] [PubMed]
  32. M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18, 14778–14787 (2010).
    [CrossRef] [PubMed]
  33. D. Hollenbeck and C. D. Cantrell, “Multiple-vibrationnal-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B 19, 2886–2892 (2002).
    [CrossRef]
  34. B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81, 337–342 (2005).
    [CrossRef]
  35. A. A. Voronin and A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33, 1723–1725 (2008).
    [CrossRef] [PubMed]
  36. A. C. Judge, O. Bang, B. J. Eggleton, B. T. Kuhlmey, E. C. Mgi, R. Pant, and C. Martijn de Sterke, “Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber,” J. Opt. Soc. Am. B 26, 2064–2071 (2009).
    [CrossRef]
  37. F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers,” Phys. Rev. E 70, 016615 (2004).
    [CrossRef]
  38. D. A. Sidorov-Biryukov, E. E. Serebryannikov, and A. M. Zheltikov, “Time-resolved coherent anti-Stokes Raman scattering with a femtosecond soliton output of a photonic crystal fiber,” Opt. Lett. 31, 2323–2325 (2006).
    [CrossRef] [PubMed]
  39. H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, and J. J. Larsen, “Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source,” Opt. Lett. 28, 1123–1125 (2003).
    [CrossRef] [PubMed]
  40. M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Ultrabroadband multiplex CARS microspectroscopy and imaging using a subnanosecond supercontinuum light source in the deep near infrared,” Opt. Lett. 33, 923–925 (2008).
    [CrossRef] [PubMed]

2010 (3)

2009 (5)

2008 (4)

M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Ultrabroadband multiplex CARS microspectroscopy and imaging using a subnanosecond supercontinuum light source in the deep near infrared,” Opt. Lett. 33, 923–925 (2008).
[CrossRef] [PubMed]

A. A. Voronin and A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33, 1723–1725 (2008).
[CrossRef] [PubMed]

B. W. Liu, M. L. Hu, X.H. Fang, Y.F. Li, L. Chai, J.Y. Li, W. Chen, and C.Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and Bragg fiber,” IEEE Photon. Technol. Lett. 20, 581–583 (2008).
[CrossRef]

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

2007 (4)

2006 (3)

2005 (3)

2004 (2)

F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers,” Phys. Rev. E 70, 016615 (2004).
[CrossRef]

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29, 2369–2371 (2004).
[CrossRef] [PubMed]

2003 (2)

2002 (1)

1995 (1)

X. U. Wencheng, G. U. O. Qi, L. I. A. O. Changjun, and L. I. U. Songhao, “Suppression of Raman self-frequency shift of soliton propagation in single mode optical fiber,” Chin. Phys. Lett. 12, 113–115 (1995).
[CrossRef]

1992 (1)

M. Ding and K. Kikuchi, “Analysis of soliton transmission in optical fibers with the soliton self-frequency shift being compensated by distributed frequency dependent gain,” Photon. Technol. Lett. 4, 497–500 (1992).
[CrossRef]

1989 (1)

1988 (2)

1987 (2)

Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. 23, 510–524 (1987).
[CrossRef]

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

1986 (2)

1985 (2)

E. A. Golovchenko, E. M. Menyuk, A. M. Prokhorov, and V. N. Serkin, “Decay of optical solitons,” JETP Lett. 42, 87–91 (1985).

E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. S. M. Prokhorov, V. N. Serkin, M. F. Stel’makh, and A. A. Fomichev, “Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers,” JETP Lett. 41, 294–297 (1985).

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Argyros, A.

Bang, O.

Beaud, P.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

Betourne, A.

V. Pureur, A. Betourne, G. Bouwmans, L. Bigot, A. Kudlinski, K. Delplace, A. Le Rouge, Y. Quiquempois, and M. Douay, “Overview on solid core photonic bandgap fibers,” Fiber Integr. Opt. 28, 27–50 (2009).
[CrossRef]

Bétourné, A.

Biancalana, F.

F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers,” Phys. Rev. E 70, 016615 (2004).
[CrossRef]

Bigot, L.

V. Pureur, A. Betourne, G. Bouwmans, L. Bigot, A. Kudlinski, K. Delplace, A. Le Rouge, Y. Quiquempois, and M. Douay, “Overview on solid core photonic bandgap fibers,” Fiber Integr. Opt. 28, 27–50 (2009).
[CrossRef]

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

A. Bétourné, V. Pureur, G. Bouwmans, Y. Quiquempois, L. Bigot, M. Perrin, and M. Douay, “Solid photonic bandgap fiber assisted by an extra air-clad structure for low-loss operation around 1.5 μm,” Opt. Express 15, 316–324 (2007).
[CrossRef] [PubMed]

G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (<20 dB/km) around 1550 nm,” Opt. Express 13, 8452–8459 (2005).
[CrossRef] [PubMed]

Bird, D. M.

Birks, T. A.

Blow, K. J.

Bouwmans, G.

Broeng, J.

Cantrell, C. D.

Chai, L.

B. W. Liu, M. L. Hu, X.H. Fang, Y.F. Li, L. Chai, J.Y. Li, W. Chen, and C.Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and Bragg fiber,” IEEE Photon. Technol. Lett. 20, 581–583 (2008).
[CrossRef]

Changjun, L. I. A. O.

X. U. Wencheng, G. U. O. Qi, L. I. A. O. Changjun, and L. I. U. Songhao, “Suppression of Raman self-frequency shift of soliton propagation in single mode optical fiber,” Chin. Phys. Lett. 12, 113–115 (1995).
[CrossRef]

Chen, W.

B. W. Liu, M. L. Hu, X.H. Fang, Y.F. Li, L. Chai, J.Y. Li, W. Chen, and C.Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and Bragg fiber,” IEEE Photon. Technol. Lett. 20, 581–583 (2008).
[CrossRef]

Coen, S.

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81, 337–342 (2005).
[CrossRef]

Cordeiro, C. M. B.

Couderc, V.

Dekker, S. A.

Delplace, K.

V. Pureur, A. Betourne, G. Bouwmans, L. Bigot, A. Kudlinski, K. Delplace, A. Le Rouge, Y. Quiquempois, and M. Douay, “Overview on solid core photonic bandgap fibers,” Fiber Integr. Opt. 28, 27–50 (2009).
[CrossRef]

Dianov, E. M.

E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. S. M. Prokhorov, V. N. Serkin, M. F. Stel’makh, and A. A. Fomichev, “Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers,” JETP Lett. 41, 294–297 (1985).

Ding, M.

M. Ding and K. Kikuchi, “Analysis of soliton transmission in optical fibers with the soliton self-frequency shift being compensated by distributed frequency dependent gain,” Photon. Technol. Lett. 4, 497–500 (1992).
[CrossRef]

Doran, N. J.

Douay, M.

Dudley, J. M.

V. Pureur and J. M. Dudley, “Nonlinear spectral broadening of femtosecond pulses in solid-core photonic bandgap fibers,” Opt. Lett. 35, 2813–2815 (2010).
[CrossRef] [PubMed]

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81, 337–342 (2005).
[CrossRef]

J. C. Travers, M. H. Frosz, and J. M. Dudley, “Nonlinear fibre optics overview,” in Supercontinuum Generation in Optical Fibers, J.M.Dudley and J.R.Taylor, eds. (Cambridge University Press, 2010), Chap. 3.
[CrossRef]

Eggleton, B. J.

Fang, X. H.

B. W. Liu, M. L. Hu, X.H. Fang, Y.F. Li, L. Chai, J.Y. Li, W. Chen, and C.Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and Bragg fiber,” IEEE Photon. Technol. Lett. 20, 581–583 (2008).
[CrossRef]

Fatome, J.

Finot, C.

Fomichev, A. A.

E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. S. M. Prokhorov, V. N. Serkin, M. F. Stel’makh, and A. A. Fomichev, “Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers,” JETP Lett. 41, 294–297 (1985).

Frosz, M. H.

M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18, 14778–14787 (2010).
[CrossRef] [PubMed]

J. C. Travers, M. H. Frosz, and J. M. Dudley, “Nonlinear fibre optics overview,” in Supercontinuum Generation in Optical Fibers, J.M.Dudley and J.R.Taylor, eds. (Cambridge University Press, 2010), Chap. 3.
[CrossRef]

George, A.

George, A. K.

Golovchenko, E. A.

E. A. Golovchenko, E. M. Menyuk, A. M. Prokhorov, and V. N. Serkin, “Decay of optical solitons,” JETP Lett. 42, 87–91 (1985).

Gomes, A. S. L.

Gordon, J. P.

Gouveia-Neto, A. S.

Hamaguchi, H.

Hasegawa, A.

Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. 23, 510–524 (1987).
[CrossRef]

Hedley, T. D.

Hilligsøe, K. M.

Hodel, W.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

Hollenbeck, D.

Hu, M. L.

B. W. Liu, M. L. Hu, X.H. Fang, Y.F. Li, L. Chai, J.Y. Li, W. Chen, and C.Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and Bragg fiber,” IEEE Photon. Technol. Lett. 20, 581–583 (2008).
[CrossRef]

Jaouen, Y.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

Jaskorzynska, B.

Judge, A. C.

Kano, H.

Karasik, A. Ya.

E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. S. M. Prokhorov, V. N. Serkin, M. F. Stel’makh, and A. A. Fomichev, “Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers,” JETP Lett. 41, 294–297 (1985).

Keiding, S. R.

Kibler, B.

B. Kibler, T. Martynkien, M. Szpulak, C. Finot, J. Fatome, J. Wojcik, W. Urbanczyk, and S. Wabnitz, “Nonlinear femtosecond pulse propagation in an all-solid photonic bandgap fiber,” Opt. Express 17, 10393–10398 (2009).
[CrossRef] [PubMed]

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81, 337–342 (2005).
[CrossRef]

Kikuchi, K.

M. Ding and K. Kikuchi, “Analysis of soliton transmission in optical fibers with the soliton self-frequency shift being compensated by distributed frequency dependent gain,” Photon. Technol. Lett. 4, 497–500 (1992).
[CrossRef]

Knight, J.

Knight, J. C.

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29, 2369–2371 (2004).
[CrossRef] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Kodama, Y.

Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. 23, 510–524 (1987).
[CrossRef]

Kudlinski, A.

A. Bétourné, A. Kudlinski, G. Bouwmans, O. Vanvincq, A. Mussot, and Y. Quiquempois, “Control of supercontinuum generation and soliton self-frequency shift in solid-core photonic bandgap fibers,” Opt. Lett. 34, 3083–3085 (2009).
[CrossRef] [PubMed]

V. Pureur, A. Betourne, G. Bouwmans, L. Bigot, A. Kudlinski, K. Delplace, A. Le Rouge, Y. Quiquempois, and M. Douay, “Overview on solid core photonic bandgap fibers,” Fiber Integr. Opt. 28, 27–50 (2009).
[CrossRef]

Kuhlmey, B. T.

Laegsgaard, J.

Larsen, J. J.

Le Rouge, A.

V. Pureur, A. Betourne, G. Bouwmans, L. Bigot, A. Kudlinski, K. Delplace, A. Le Rouge, Y. Quiquempois, and M. Douay, “Overview on solid core photonic bandgap fibers,” Fiber Integr. Opt. 28, 27–50 (2009).
[CrossRef]

Leon-Saval, S. G.

Leproux, P.

Li, J. Y.

B. W. Liu, M. L. Hu, X.H. Fang, Y.F. Li, L. Chai, J.Y. Li, W. Chen, and C.Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and Bragg fiber,” IEEE Photon. Technol. Lett. 20, 581–583 (2008).
[CrossRef]

Li, Y. F.

B. W. Liu, M. L. Hu, X.H. Fang, Y.F. Li, L. Chai, J.Y. Li, W. Chen, and C.Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and Bragg fiber,” IEEE Photon. Technol. Lett. 20, 581–583 (2008).
[CrossRef]

Liu, B. W.

B. W. Liu, M. L. Hu, X.H. Fang, Y.F. Li, L. Chai, J.Y. Li, W. Chen, and C.Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and Bragg fiber,” IEEE Photon. Technol. Lett. 20, 581–583 (2008).
[CrossRef]

Lopez, F.

Luan, F.

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29, 2369–2371 (2004).
[CrossRef] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Luo, Jie

Lyngso, J. K.

Mamyshev, P. V.

E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. S. M. Prokhorov, V. N. Serkin, M. F. Stel’makh, and A. A. Fomichev, “Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers,” JETP Lett. 41, 294–297 (1985).

Martijn de Sterke, C.

Martynkien, T.

Maruyama, H.

Menyuk, E. M.

E. A. Golovchenko, E. M. Menyuk, A. M. Prokhorov, and V. N. Serkin, “Decay of optical solitons,” JETP Lett. 42, 87–91 (1985).

Mgi, E. C.

Mitschke, F. M.

Mollenauer, L. F.

Mussot, A.

Okuno, M.

Olausson, C. B.

Pant, R.

Paulsen, H. N.

Pearce, G. J.

Perrin, M.

Prokhorov, A. M.

E. A. Golovchenko, E. M. Menyuk, A. M. Prokhorov, and V. N. Serkin, “Decay of optical solitons,” JETP Lett. 42, 87–91 (1985).

Prokhorov, A. S. M.

E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. S. M. Prokhorov, V. N. Serkin, M. F. Stel’makh, and A. A. Fomichev, “Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers,” JETP Lett. 41, 294–297 (1985).

Provino, L.

Pureur, V.

V. Pureur and J. M. Dudley, “Nonlinear spectral broadening of femtosecond pulses in solid-core photonic bandgap fibers,” Opt. Lett. 35, 2813–2815 (2010).
[CrossRef] [PubMed]

V. Pureur, A. Betourne, G. Bouwmans, L. Bigot, A. Kudlinski, K. Delplace, A. Le Rouge, Y. Quiquempois, and M. Douay, “Overview on solid core photonic bandgap fibers,” Fiber Integr. Opt. 28, 27–50 (2009).
[CrossRef]

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

A. Bétourné, V. Pureur, G. Bouwmans, Y. Quiquempois, L. Bigot, M. Perrin, and M. Douay, “Solid photonic bandgap fiber assisted by an extra air-clad structure for low-loss operation around 1.5 μm,” Opt. Express 15, 316–324 (2007).
[CrossRef] [PubMed]

Qi, G. U. O.

X. U. Wencheng, G. U. O. Qi, L. I. A. O. Changjun, and L. I. U. Songhao, “Suppression of Raman self-frequency shift of soliton propagation in single mode optical fiber,” Chin. Phys. Lett. 12, 113–115 (1995).
[CrossRef]

Quiquempois, Y.

Ren, G.

Russell, P. S. J.

Russell, P. St. J.

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29, 2369–2371 (2004).
[CrossRef] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Schadt, D.

Serebryannikov, E. E.

Serkin, V. N.

E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. S. M. Prokhorov, V. N. Serkin, M. F. Stel’makh, and A. A. Fomichev, “Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers,” JETP Lett. 41, 294–297 (1985).

E. A. Golovchenko, E. M. Menyuk, A. M. Prokhorov, and V. N. Serkin, “Decay of optical solitons,” JETP Lett. 42, 87–91 (1985).

Shirakawa, A.

Shum, P.

Sidorov-Biryukov, D. A.

Skryabin, D. V.

F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers,” Phys. Rev. E 70, 016615 (2004).
[CrossRef]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Songhao, L. I. U.

X. U. Wencheng, G. U. O. Qi, L. I. A. O. Changjun, and L. I. U. Songhao, “Suppression of Raman self-frequency shift of soliton propagation in single mode optical fiber,” Chin. Phys. Lett. 12, 113–115 (1995).
[CrossRef]

Stel’makh, M. F.

E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. S. M. Prokhorov, V. N. Serkin, M. F. Stel’makh, and A. A. Fomichev, “Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers,” JETP Lett. 41, 294–297 (1985).

Szpulak, M.

Taylor, J. R.

Thøgersen, J.

Tong, W.

Travers, J. C.

J. C. Travers, M. H. Frosz, and J. M. Dudley, “Nonlinear fibre optics overview,” in Supercontinuum Generation in Optical Fibers, J.M.Dudley and J.R.Taylor, eds. (Cambridge University Press, 2010), Chap. 3.
[CrossRef]

Ueda, K.

Urbanczyk, W.

Vanvincq, O.

Voronin, A. A.

Wabnitz, S.

Wang, A.

Wang, C. Y.

B. W. Liu, M. L. Hu, X.H. Fang, Y.F. Li, L. Chai, J.Y. Li, W. Chen, and C.Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and Bragg fiber,” IEEE Photon. Technol. Lett. 20, 581–583 (2008).
[CrossRef]

Weber, H. P.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

Wencheng, X. U.

X. U. Wencheng, G. U. O. Qi, L. I. A. O. Changjun, and L. I. U. Songhao, “Suppression of Raman self-frequency shift of soliton propagation in single mode optical fiber,” Chin. Phys. Lett. 12, 113–115 (1995).
[CrossRef]

Wojcik, J.

Wood, D.

Yu, X.

Yulin, A. V.

F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers,” Phys. Rev. E 70, 016615 (2004).
[CrossRef]

Zhang, L.

Zheltikov, A. M.

Zysset, B.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

Appl. Phys. B (1)

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81, 337–342 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008).
[CrossRef]

Chin. Phys. Lett. (1)

X. U. Wencheng, G. U. O. Qi, L. I. A. O. Changjun, and L. I. U. Songhao, “Suppression of Raman self-frequency shift of soliton propagation in single mode optical fiber,” Chin. Phys. Lett. 12, 113–115 (1995).
[CrossRef]

Fiber Integr. Opt. (1)

V. Pureur, A. Betourne, G. Bouwmans, L. Bigot, A. Kudlinski, K. Delplace, A. Le Rouge, Y. Quiquempois, and M. Douay, “Overview on solid core photonic bandgap fibers,” Fiber Integr. Opt. 28, 27–50 (2009).
[CrossRef]

IEEE J. Quantum Electron. (2)

Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. 23, 510–524 (1987).
[CrossRef]

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. W. Liu, M. L. Hu, X.H. Fang, Y.F. Li, L. Chai, J.Y. Li, W. Chen, and C.Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and Bragg fiber,” IEEE Photon. Technol. Lett. 20, 581–583 (2008).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (4)

JETP Lett. (2)

E. A. Golovchenko, E. M. Menyuk, A. M. Prokhorov, and V. N. Serkin, “Decay of optical solitons,” JETP Lett. 42, 87–91 (1985).

E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. S. M. Prokhorov, V. N. Serkin, M. F. Stel’makh, and A. A. Fomichev, “Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers,” JETP Lett. 41, 294–297 (1985).

Opt. Express (8)

M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18, 14778–14787 (2010).
[CrossRef] [PubMed]

A. C. Judge, S. A. Dekker, R. Pant, C. Martijn de Sterke, and B. J. Eggleton, “Soliton self-frequency shift performance in As2S3 waveguides,” Opt. Express 18, 14960–14968 (2010).
[CrossRef] [PubMed]

J. Laegsgaard, “Mode profile dispersion in the generalized nonlinear Schrödinger equation,” Opt. Express 15, 16110–16123 (2007).
[CrossRef] [PubMed]

A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngso, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150–1200 nm,” Opt. Express 17, 447–454 (2009).
[CrossRef] [PubMed]

B. Kibler, T. Martynkien, M. Szpulak, C. Finot, J. Fatome, J. Wojcik, W. Urbanczyk, and S. Wabnitz, “Nonlinear femtosecond pulse propagation in an all-solid photonic bandgap fiber,” Opt. Express 17, 10393–10398 (2009).
[CrossRef] [PubMed]

A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, and P. S. J. Russell, “Guidance properties of low-contrast photonic bandgap fibres,” Opt. Express 13, 2503–2511 (2005).
[CrossRef] [PubMed]

G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (<20 dB/km) around 1550 nm,” Opt. Express 13, 8452–8459 (2005).
[CrossRef] [PubMed]

A. Bétourné, V. Pureur, G. Bouwmans, Y. Quiquempois, L. Bigot, M. Perrin, and M. Douay, “Solid photonic bandgap fiber assisted by an extra air-clad structure for low-loss operation around 1.5 μm,” Opt. Express 15, 316–324 (2007).
[CrossRef] [PubMed]

Opt. Lett. (13)

A. Wang, A. George, and J. Knight, “Three-level neodymium fiber laser incorporating photonic bandgap fiber,” Opt. Lett. 31, 1388–1390 (2006).
[CrossRef] [PubMed]

D. A. Sidorov-Biryukov, E. E. Serebryannikov, and A. M. Zheltikov, “Time-resolved coherent anti-Stokes Raman scattering with a femtosecond soliton output of a photonic crystal fiber,” Opt. Lett. 31, 2323–2325 (2006).
[CrossRef] [PubMed]

H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, and J. J. Larsen, “Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source,” Opt. Lett. 28, 1123–1125 (2003).
[CrossRef] [PubMed]

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29, 2369–2371 (2004).
[CrossRef] [PubMed]

G. Ren, P. Shum, L. Zhang, X. Yu, W. Tong, and Jie Luo, “Low-loss all-solid photonic bandgap fiber,” Opt. Lett. 32, 1023–1025 (2007).
[CrossRef] [PubMed]

A. Bétourné, G. Bouwmans, Y. Quiquempois, M. Perrin, and M. Douay, “Improvements of solid-core photonic bandgap fibers by means of interstitial air holes,” Opt. Lett. 32, 1719–1721 (2007).
[CrossRef] [PubMed]

A. Bétourné, A. Kudlinski, G. Bouwmans, O. Vanvincq, A. Mussot, and Y. Quiquempois, “Control of supercontinuum generation and soliton self-frequency shift in solid-core photonic bandgap fibers,” Opt. Lett. 34, 3083–3085 (2009).
[CrossRef] [PubMed]

M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Ultrabroadband multiplex CARS microspectroscopy and imaging using a subnanosecond supercontinuum light source in the deep near infrared,” Opt. Lett. 33, 923–925 (2008).
[CrossRef] [PubMed]

A. A. Voronin and A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33, 1723–1725 (2008).
[CrossRef] [PubMed]

V. Pureur and J. M. Dudley, “Nonlinear spectral broadening of femtosecond pulses in solid-core photonic bandgap fibers,” Opt. Lett. 35, 2813–2815 (2010).
[CrossRef] [PubMed]

F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
[CrossRef] [PubMed]

J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
[CrossRef] [PubMed]

A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, “Suppression and manipulation of the soliton self-frequency shift,” Opt. Lett. 14, 514–516 (1989).
[CrossRef] [PubMed]

Photon. Technol. Lett. (1)

M. Ding and K. Kikuchi, “Analysis of soliton transmission in optical fibers with the soliton self-frequency shift being compensated by distributed frequency dependent gain,” Photon. Technol. Lett. 4, 497–500 (1992).
[CrossRef]

Phys. Rev. E (1)

F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers,” Phys. Rev. E 70, 016615 (2004).
[CrossRef]

Science (1)

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[CrossRef] [PubMed]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

J. C. Travers, M. H. Frosz, and J. M. Dudley, “Nonlinear fibre optics overview,” in Supercontinuum Generation in Optical Fibers, J.M.Dudley and J.R.Taylor, eds. (Cambridge University Press, 2010), Chap. 3.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) SEM picture of the fabricated solid-core PBG fiber. (b) Computed confinement losses. (c) Computed GVD (blue curve, left axis) and NL coefficient (gray curve, right axis) of the fabricated fiber. The full circles represent experimental values of the GVD measured with a low-coherence interferometry setup. The gray area depicts the region outside the first PBG transmission window.

Fig. 2
Fig. 2

(a) Evolution of the experimental output spectrum with fiber length (from 0.4 to 5 m) for 270 fs pump pulses at 1200 nm. (b) Left axis: measured spectral location of the first ejected soliton versus propagation distance (blue circles). Right axis: measured FWHM spectral width of the first ejected soliton S 1 as a function of propagation distance (red squares).

Fig. 3
Fig. 3

Numerical simulation of the propagation of a 270 fs Gaussian pulse with 25 kW peak power centered at 1200 nm with the modified GNLSE, showing fission of the initial pulse into four solitons labeled S 1 S 4 , and extreme deceleration of soliton S 1 SSFS near the PBG edge. All frequency-dependent parameters of the fiber are taken into account for the simulation.

Fig. 4
Fig. 4

Evolution of the soliton central wavelength (left axis) and of the spectral width (right axis) with the propagation distance calculated with all frequency-dependent parameters taken into account (solid black curves), by neglecting the β 2 frequency dependence only (dashed blue curves), and by neglecting the frequency dependence of the NL coefficient γ ¯ only (dotted red curves). Input pulses are hyperbolic secant pulses with a 21 fs FWHM duration and a 100 kW peak power.

Fig. 5
Fig. 5

Evolution of the soliton central wavelength calculated by integration of the modified GNLSE (dotted black curve), of Eq. (2) in the case of the Gordon model (solid blue curve), and of Eq. (7) in the case of the linear approximation of the Raman gain spectrum (dashed gray curve). The horizontal black line represents the wavelength for which the R ratio defined by Eq. (7) equals 1.

Fig. 6
Fig. 6

(a) Evolution of the ratio R calculated with Eq. (6) in the case of the realistic Raman gain spectrum (solid blue curve) and with Eq. (9) in the case of the linear approximation of the Raman gain spectrum (dashed gray curve). The black horizontal line represents R = 1 . (b) Evolution of the K parameter defined by Eq. (5) as a function of the soliton duration T.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

C ̃ ( z , ω ) z = i ( β ( ω ) β 0 β 1 ( ω ω 0 ) ) C ̃ ( z , ω ) α ( ω ) 2 C ̃ ( z , ω ) + i γ ¯ ( ω ) F ( C ( z , t ) R ( t t ) | C ( z , t ) | 2 d t ) ,
γ ¯ ( ω ) = n 2 ω n 0 c n eff ( ω ) A eff ( ω ) A eff ( ω 0 ) ,
d ω d z = f R | β 2 ( z ) | T ( z ) π 4 I ( z ) ,
I ( z ) = I ( h ̃ R ( Ω ) ) Ω 3 sinh 2 ( T ( z ) π Ω 2 ) d Ω ,
T ( z ) = γ ¯ ( 0 ) 2 | β 2 ( z ) | γ ¯ ( z ) 2 | β 2 ( 0 ) | T 0 ,
d 2 ω d z 2 = f R T ( z ) π I ( z ) 4 [ 2 β 2 ( z ) γ ¯ ( z ) ( 4 K ( z ) ) d γ ¯ d z ( 3 K ( z ) ) d β 2 d z ] ,
K ( z ) = 1 I ( z ) [ I ( h ̃ R ( Ω ) ) ( d I ( h ̃ R ) d Ω ) Ω Ω ] Ω 3 sinh 2 ( T ( z ) π Ω 2 ) d Ω .
R = ( 1 K ( z ) / 4 1 K ( z ) / 3 ) 8 β 2 3 γ ¯ d γ ¯ / d ω d β 2 / d ω ,
d ω d z = 8 T R | β 2 | 15 T ( z ) 4 .
d 2 ω d z 2 = 8 T R 15 T ( z ) 4 ( 8 β 2 ( z ) γ ¯ ( z ) d γ ¯ d z 3 d β 2 d z ) .
R lin = 8 β 2 3 γ ¯ d γ ¯ / d ω d β 2 / d ω .

Metrics