Abstract

The influence of the nonlocal effect on the optical properties of terahertz waves propagating along a metallic nanowire has been investigated, taking into account the effects of the composed materials, metal wire radii, and radiation frequencies. The results manifest that the nonlocal effect has significant influence on the propagation properties of terahertz nanowire surface waves. The contour results show that as metal wire radii increase, the phase velocity increases, and the attenuation losses decrease. On condition that the metallic nanowire radius is small (tens of nanometers), the attenuation losses of the surface waves decrease with the increasing of frequency. The numerical results are very useful for the development of nanoplasmonic devices in the fields of terahertz spectroscopy, biological sensors, and detectors.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nature Mater. 1, 26–33 (2002).
    [CrossRef]
  2. X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6, 126–130 (2010).
    [CrossRef]
  3. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
    [CrossRef] [PubMed]
  4. H. Li, J. C. Cao, and J. T. Lü, “Monte Carlo simulation of carrier transport and output characteristics of terahertz quantum cascade lasers,” J. Appl. Phys. 103, 103113 (2008).
    [CrossRef]
  5. J. T. Lü and J. C. Cao, “Monte Carlo simulation of hot phonon effects in resonant-phonon-assisted terahertz quantum-cascade lasers,” Appl. Phys. Lett. 88, 061119 (2006).
    [CrossRef]
  6. J. C. Cao, “Interband impact ionization and nonlinear absorption of terahertz radiations in semiconductor heterostructures,” Phys. Rev. Lett. 91, 237401 (2003).
    [CrossRef] [PubMed]
  7. A. R. Wright, J. C. Cao, and C. Zhang, “Enhanced optical conductivity of bilayer grapheme nanoribbons in the terahertz regime,” Phys. Rev. Lett. 103, 207401 (2009).
    [CrossRef]
  8. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguide,” J. Appl. Phys. 88, 4449–4451 (2000).
    [CrossRef]
  9. J. Q. Zhang and D. Grischkowsky, “Adiabatic compression of parallel-plate metal waveguides for sensitivity enhancement of waveguide THz time-domain spectroscopy,” Appl. Phys. Lett. 86, 061109 (2005).
    [CrossRef]
  10. X. Y. He, “Numerical analysis of the propagation properties of subwavelength semiconductor slit in the terahertz region,” Opt. Express 17, 15359–15371 (2009).
    [CrossRef] [PubMed]
  11. R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express 17, 14839–14850 (2009).
    [CrossRef] [PubMed]
  12. H. Zhan, R. Mendis, and D. M. Mittleman, “Superfocusing terahertz waves below λ/250 using plasmonic parallel-plate waveguides,” Opt. Express 18, 9643–9650 (2010).
    [CrossRef] [PubMed]
  13. X. Y. He, “Comparison of the waveguide properties of gap surface plasmon in the terahertz region and visible spectra,” J. Opt. A, Pure Appl. Opt. 11, 045708 (2009).
    [CrossRef]
  14. K. L. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
    [CrossRef] [PubMed]
  15. K. L. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96, 157401 (2006).
    [CrossRef] [PubMed]
  16. J. A. Deibel, K. L. Wang, M. D. Escarra, and D. M. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14, 279–290 (2006).
    [CrossRef] [PubMed]
  17. H. Cao and A. Nahata, “Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves,” Opt. Express 13, 7028–7034 (2005).
    [CrossRef] [PubMed]
  18. L. F. Shen, X. D. Chen, Y. Zhang, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77, 075408 (2008).
    [CrossRef]
  19. S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
    [CrossRef] [PubMed]
  20. Q. Cao and J. Jahns, “Azimuthally polarized surface plasmons as effective terahertz waveguides,” Opt. Express 13, 511–518 (2005).
    [CrossRef] [PubMed]
  21. X. Y. He, J. C. Cao, and S. L. Feng, “Simulation of the propagation properties of metal wires terahertz waveguides,” Chin. Phys. Lett. 23, 2066–2069 (2006).
    [CrossRef]
  22. Y. B. Ji, E. S. Lee, J. S. Jang, and T. I. Jeon, “Enhancement of the detection of THz Sommerfeld wave using a conical wire waveguide,” Opt. Express 16, 271–278 (2008).
    [CrossRef] [PubMed]
  23. X. Y. He, “Investigation of terahertz Sommerfeld wave propagation along conical metal wire,” J. Opt. Soc. Am. B 26, A23–A28 (2009).
    [CrossRef]
  24. V. Astley, R. Mendis, and D. M. Mittleman, “Characterization of terahertz field confinement at the end of a tapered metal wire waveguide,” Appl. Phys. Lett. 95, 031104 (2009).
    [CrossRef]
  25. M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95, 233506 (2009).
    [CrossRef]
  26. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
    [CrossRef] [PubMed]
  27. R. Adam, L. Chusseau, T. Grosjean, A. Penarier, J. Guillet, and D. Charraut, “Near-field wire-based passive probe antenna for the selective detection of the longitudinal electric field at terahertz frequencies,” J. Appl. Phys. 106, 073107 (2009).
    [CrossRef]
  28. D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
    [CrossRef]
  29. R. Gordon, “Reflection of cylindrical surface waves,” Opt. Express 17, 18621–18629 (2009).
    [CrossRef]
  30. S. J. Al-Bader and H. A. Jamid, “Diffraction of surface plasmon modes on abruptly terminated metallic nanowires,” Phys. Rev. B 76, 235410 (2007).
    [CrossRef]
  31. A. J. Huber, F. KeilmannF. J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008).
    [CrossRef] [PubMed]
  32. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
    [CrossRef] [PubMed]
  33. R. Ruppin, “Effect of non-locality on nanofocusing of surface plasmon field intensity in a conical tip,” Phys. Lett. A 340, 299–302 (2005).
    [CrossRef]
  34. G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys. 21, 1119–1128 (1950).
    [CrossRef]
  35. M. J. King and J. C. Wiltse, “Surface-wave propagation on coated or uncoated metal wires at millimeter wavelengths,” IRE Trans. Antennas Propag. 10, 246–254 (1962).
    [CrossRef]
  36. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24, 4493–4499 (1985).
    [CrossRef] [PubMed]

2010

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6, 126–130 (2010).
[CrossRef]

H. Zhan, R. Mendis, and D. M. Mittleman, “Superfocusing terahertz waves below λ/250 using plasmonic parallel-plate waveguides,” Opt. Express 18, 9643–9650 (2010).
[CrossRef] [PubMed]

2009

X. Y. He, “Comparison of the waveguide properties of gap surface plasmon in the terahertz region and visible spectra,” J. Opt. A, Pure Appl. Opt. 11, 045708 (2009).
[CrossRef]

X. Y. He, “Numerical analysis of the propagation properties of subwavelength semiconductor slit in the terahertz region,” Opt. Express 17, 15359–15371 (2009).
[CrossRef] [PubMed]

R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express 17, 14839–14850 (2009).
[CrossRef] [PubMed]

A. R. Wright, J. C. Cao, and C. Zhang, “Enhanced optical conductivity of bilayer grapheme nanoribbons in the terahertz regime,” Phys. Rev. Lett. 103, 207401 (2009).
[CrossRef]

X. Y. He, “Investigation of terahertz Sommerfeld wave propagation along conical metal wire,” J. Opt. Soc. Am. B 26, A23–A28 (2009).
[CrossRef]

V. Astley, R. Mendis, and D. M. Mittleman, “Characterization of terahertz field confinement at the end of a tapered metal wire waveguide,” Appl. Phys. Lett. 95, 031104 (2009).
[CrossRef]

M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95, 233506 (2009).
[CrossRef]

R. Adam, L. Chusseau, T. Grosjean, A. Penarier, J. Guillet, and D. Charraut, “Near-field wire-based passive probe antenna for the selective detection of the longitudinal electric field at terahertz frequencies,” J. Appl. Phys. 106, 073107 (2009).
[CrossRef]

R. Gordon, “Reflection of cylindrical surface waves,” Opt. Express 17, 18621–18629 (2009).
[CrossRef]

2008

A. J. Huber, F. KeilmannF. J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008).
[CrossRef] [PubMed]

Y. B. Ji, E. S. Lee, J. S. Jang, and T. I. Jeon, “Enhancement of the detection of THz Sommerfeld wave using a conical wire waveguide,” Opt. Express 16, 271–278 (2008).
[CrossRef] [PubMed]

H. Li, J. C. Cao, and J. T. Lü, “Monte Carlo simulation of carrier transport and output characteristics of terahertz quantum cascade lasers,” J. Appl. Phys. 103, 103113 (2008).
[CrossRef]

L. F. Shen, X. D. Chen, Y. Zhang, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77, 075408 (2008).
[CrossRef]

2007

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

S. J. Al-Bader and H. A. Jamid, “Diffraction of surface plasmon modes on abruptly terminated metallic nanowires,” Phys. Rev. B 76, 235410 (2007).
[CrossRef]

2006

X. Y. He, J. C. Cao, and S. L. Feng, “Simulation of the propagation properties of metal wires terahertz waveguides,” Chin. Phys. Lett. 23, 2066–2069 (2006).
[CrossRef]

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

K. L. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96, 157401 (2006).
[CrossRef] [PubMed]

J. A. Deibel, K. L. Wang, M. D. Escarra, and D. M. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14, 279–290 (2006).
[CrossRef] [PubMed]

J. T. Lü and J. C. Cao, “Monte Carlo simulation of hot phonon effects in resonant-phonon-assisted terahertz quantum-cascade lasers,” Appl. Phys. Lett. 88, 061119 (2006).
[CrossRef]

2005

J. Q. Zhang and D. Grischkowsky, “Adiabatic compression of parallel-plate metal waveguides for sensitivity enhancement of waveguide THz time-domain spectroscopy,” Appl. Phys. Lett. 86, 061109 (2005).
[CrossRef]

H. Cao and A. Nahata, “Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves,” Opt. Express 13, 7028–7034 (2005).
[CrossRef] [PubMed]

Q. Cao and J. Jahns, “Azimuthally polarized surface plasmons as effective terahertz waveguides,” Opt. Express 13, 511–518 (2005).
[CrossRef] [PubMed]

R. Ruppin, “Effect of non-locality on nanofocusing of surface plasmon field intensity in a conical tip,” Phys. Lett. A 340, 299–302 (2005).
[CrossRef]

2004

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

K. L. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[CrossRef] [PubMed]

2003

J. C. Cao, “Interband impact ionization and nonlinear absorption of terahertz radiations in semiconductor heterostructures,” Phys. Rev. Lett. 91, 237401 (2003).
[CrossRef] [PubMed]

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[CrossRef]

2002

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef] [PubMed]

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nature Mater. 1, 26–33 (2002).
[CrossRef]

2000

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguide,” J. Appl. Phys. 88, 4449–4451 (2000).
[CrossRef]

1985

1962

M. J. King and J. C. Wiltse, “Surface-wave propagation on coated or uncoated metal wires at millimeter wavelengths,” IRE Trans. Antennas Propag. 10, 246–254 (1962).
[CrossRef]

1950

G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys. 21, 1119–1128 (1950).
[CrossRef]

Adam, R.

R. Adam, L. Chusseau, T. Grosjean, A. Penarier, J. Guillet, and D. Charraut, “Near-field wire-based passive probe antenna for the selective detection of the longitudinal electric field at terahertz frequencies,” J. Appl. Phys. 106, 073107 (2009).
[CrossRef]

Agarwal, K.

L. F. Shen, X. D. Chen, Y. Zhang, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77, 075408 (2008).
[CrossRef]

Aizpurua, J.

A. J. Huber, F. KeilmannF. J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008).
[CrossRef] [PubMed]

Al-Bader, S. J.

S. J. Al-Bader and H. A. Jamid, “Diffraction of surface plasmon modes on abruptly terminated metallic nanowires,” Phys. Rev. B 76, 235410 (2007).
[CrossRef]

Alexander, R. W.

Andrews, S. R.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Astley, V.

V. Astley, R. Mendis, and D. M. Mittleman, “Characterization of terahertz field confinement at the end of a tapered metal wire waveguide,” Appl. Phys. Lett. 95, 031104 (2009).
[CrossRef]

Basov, D. N.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[CrossRef]

Beere, H. E.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef] [PubMed]

Bell, R. J.

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef] [PubMed]

Belyanin, A. A.

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6, 126–130 (2010).
[CrossRef]

Cao, H.

Cao, J. C.

A. R. Wright, J. C. Cao, and C. Zhang, “Enhanced optical conductivity of bilayer grapheme nanoribbons in the terahertz regime,” Phys. Rev. Lett. 103, 207401 (2009).
[CrossRef]

H. Li, J. C. Cao, and J. T. Lü, “Monte Carlo simulation of carrier transport and output characteristics of terahertz quantum cascade lasers,” J. Appl. Phys. 103, 103113 (2008).
[CrossRef]

J. T. Lü and J. C. Cao, “Monte Carlo simulation of hot phonon effects in resonant-phonon-assisted terahertz quantum-cascade lasers,” Appl. Phys. Lett. 88, 061119 (2006).
[CrossRef]

X. Y. He, J. C. Cao, and S. L. Feng, “Simulation of the propagation properties of metal wires terahertz waveguides,” Chin. Phys. Lett. 23, 2066–2069 (2006).
[CrossRef]

J. C. Cao, “Interband impact ionization and nonlinear absorption of terahertz radiations in semiconductor heterostructures,” Phys. Rev. Lett. 91, 237401 (2003).
[CrossRef] [PubMed]

Cao, Q.

Charraut, D.

R. Adam, L. Chusseau, T. Grosjean, A. Penarier, J. Guillet, and D. Charraut, “Near-field wire-based passive probe antenna for the selective detection of the longitudinal electric field at terahertz frequencies,” J. Appl. Phys. 106, 073107 (2009).
[CrossRef]

Chen, X. D.

L. F. Shen, X. D. Chen, Y. Zhang, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77, 075408 (2008).
[CrossRef]

Chusseau, L.

R. Adam, L. Chusseau, T. Grosjean, A. Penarier, J. Guillet, and D. Charraut, “Near-field wire-based passive probe antenna for the selective detection of the longitudinal electric field at terahertz frequencies,” J. Appl. Phys. 106, 073107 (2009).
[CrossRef]

Crooker, S. A.

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6, 126–130 (2010).
[CrossRef]

Davies, A. G.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef] [PubMed]

Deibel, J. A.

Escarra, M. D.

Fang, N.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[CrossRef]

Feng, S. L.

X. Y. He, J. C. Cao, and S. L. Feng, “Simulation of the propagation properties of metal wires terahertz waveguides,” Chin. Phys. Lett. 23, 2066–2069 (2006).
[CrossRef]

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nature Mater. 1, 26–33 (2002).
[CrossRef]

García-Vidal, F. J.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Gordon, R.

Goubau, G.

G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys. 21, 1119–1128 (1950).
[CrossRef]

Grischkowsky, D.

J. Q. Zhang and D. Grischkowsky, “Adiabatic compression of parallel-plate metal waveguides for sensitivity enhancement of waveguide THz time-domain spectroscopy,” Appl. Phys. Lett. 86, 061109 (2005).
[CrossRef]

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguide,” J. Appl. Phys. 88, 4449–4451 (2000).
[CrossRef]

Grosjean, T.

R. Adam, L. Chusseau, T. Grosjean, A. Penarier, J. Guillet, and D. Charraut, “Near-field wire-based passive probe antenna for the selective detection of the longitudinal electric field at terahertz frequencies,” J. Appl. Phys. 106, 073107 (2009).
[CrossRef]

Guillet, J.

R. Adam, L. Chusseau, T. Grosjean, A. Penarier, J. Guillet, and D. Charraut, “Near-field wire-based passive probe antenna for the selective detection of the longitudinal electric field at terahertz frequencies,” J. Appl. Phys. 106, 073107 (2009).
[CrossRef]

He, X. Y.

X. Y. He, “Investigation of terahertz Sommerfeld wave propagation along conical metal wire,” J. Opt. Soc. Am. B 26, A23–A28 (2009).
[CrossRef]

X. Y. He, “Numerical analysis of the propagation properties of subwavelength semiconductor slit in the terahertz region,” Opt. Express 17, 15359–15371 (2009).
[CrossRef] [PubMed]

X. Y. He, “Comparison of the waveguide properties of gap surface plasmon in the terahertz region and visible spectra,” J. Opt. A, Pure Appl. Opt. 11, 045708 (2009).
[CrossRef]

X. Y. He, J. C. Cao, and S. L. Feng, “Simulation of the propagation properties of metal wires terahertz waveguides,” Chin. Phys. Lett. 23, 2066–2069 (2006).
[CrossRef]

Hillenbrand, R.

A. J. Huber, F. KeilmannF. J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008).
[CrossRef] [PubMed]

Huber, A. J.

A. J. Huber, F. KeilmannF. J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008).
[CrossRef] [PubMed]

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef] [PubMed]

Jahns, J.

Jamid, H. A.

S. J. Al-Bader and H. A. Jamid, “Diffraction of surface plasmon modes on abruptly terminated metallic nanowires,” Phys. Rev. B 76, 235410 (2007).
[CrossRef]

Jang, J. S.

Jeon, T. I.

Ji, Y. B.

Keilmann, F.

A. J. Huber, F. KeilmannF. J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008).
[CrossRef] [PubMed]

King, M. J.

M. J. King and J. C. Wiltse, “Surface-wave propagation on coated or uncoated metal wires at millimeter wavelengths,” IRE Trans. Antennas Propag. 10, 246–254 (1962).
[CrossRef]

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef] [PubMed]

Kono, J.

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6, 126–130 (2010).
[CrossRef]

Lee, E. S.

Li, H.

H. Li, J. C. Cao, and J. T. Lü, “Monte Carlo simulation of carrier transport and output characteristics of terahertz quantum cascade lasers,” J. Appl. Phys. 103, 103113 (2008).
[CrossRef]

Linfield, E. H.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef] [PubMed]

Long, L. L.

Lü, J. T.

H. Li, J. C. Cao, and J. T. Lü, “Monte Carlo simulation of carrier transport and output characteristics of terahertz quantum cascade lasers,” J. Appl. Phys. 103, 103113 (2008).
[CrossRef]

J. T. Lü and J. C. Cao, “Monte Carlo simulation of hot phonon effects in resonant-phonon-assisted terahertz quantum-cascade lasers,” Appl. Phys. Lett. 88, 061119 (2006).
[CrossRef]

Maier, S. A.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Martin-Moreno, L.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Mbonye, M.

M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95, 233506 (2009).
[CrossRef]

Mendis, R.

H. Zhan, R. Mendis, and D. M. Mittleman, “Superfocusing terahertz waves below λ/250 using plasmonic parallel-plate waveguides,” Opt. Express 18, 9643–9650 (2010).
[CrossRef] [PubMed]

R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express 17, 14839–14850 (2009).
[CrossRef] [PubMed]

M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95, 233506 (2009).
[CrossRef]

V. Astley, R. Mendis, and D. M. Mittleman, “Characterization of terahertz field confinement at the end of a tapered metal wire waveguide,” Appl. Phys. Lett. 95, 031104 (2009).
[CrossRef]

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguide,” J. Appl. Phys. 88, 4449–4451 (2000).
[CrossRef]

Mittleman, D. M.

H. Zhan, R. Mendis, and D. M. Mittleman, “Superfocusing terahertz waves below λ/250 using plasmonic parallel-plate waveguides,” Opt. Express 18, 9643–9650 (2010).
[CrossRef] [PubMed]

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6, 126–130 (2010).
[CrossRef]

R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express 17, 14839–14850 (2009).
[CrossRef] [PubMed]

V. Astley, R. Mendis, and D. M. Mittleman, “Characterization of terahertz field confinement at the end of a tapered metal wire waveguide,” Appl. Phys. Lett. 95, 031104 (2009).
[CrossRef]

M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95, 233506 (2009).
[CrossRef]

K. L. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96, 157401 (2006).
[CrossRef] [PubMed]

J. A. Deibel, K. L. Wang, M. D. Escarra, and D. M. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14, 279–290 (2006).
[CrossRef] [PubMed]

K. L. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[CrossRef] [PubMed]

Nahata, A.

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

Ordal, M. A.

Padilla, W. J.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[CrossRef]

Penarier, A.

R. Adam, L. Chusseau, T. Grosjean, A. Penarier, J. Guillet, and D. Charraut, “Near-field wire-based passive probe antenna for the selective detection of the longitudinal electric field at terahertz frequencies,” J. Appl. Phys. 106, 073107 (2009).
[CrossRef]

Querry, M. R.

Ritchie, D. A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef] [PubMed]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef] [PubMed]

Ruppin, R.

R. Ruppin, “Effect of non-locality on nanofocusing of surface plasmon field intensity in a conical tip,” Phys. Lett. A 340, 299–302 (2005).
[CrossRef]

Schultz, S.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[CrossRef]

Shen, L. F.

L. F. Shen, X. D. Chen, Y. Zhang, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77, 075408 (2008).
[CrossRef]

Smith, D. R.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[CrossRef]

Stockman, M. I.

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

Sun, C.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[CrossRef]

Tredicucci, A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef] [PubMed]

Wang, K. L.

K. L. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96, 157401 (2006).
[CrossRef] [PubMed]

J. A. Deibel, K. L. Wang, M. D. Escarra, and D. M. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14, 279–290 (2006).
[CrossRef] [PubMed]

K. L. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[CrossRef] [PubMed]

Wang, X.

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6, 126–130 (2010).
[CrossRef]

Wiltse, J. C.

M. J. King and J. C. Wiltse, “Surface-wave propagation on coated or uncoated metal wires at millimeter wavelengths,” IRE Trans. Antennas Propag. 10, 246–254 (1962).
[CrossRef]

Wittborn, F. J.

A. J. Huber, F. KeilmannF. J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008).
[CrossRef] [PubMed]

Wright, A. R.

A. R. Wright, J. C. Cao, and C. Zhang, “Enhanced optical conductivity of bilayer grapheme nanoribbons in the terahertz regime,” Phys. Rev. Lett. 103, 207401 (2009).
[CrossRef]

Wu, D.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[CrossRef]

Zhan, H.

Zhang, C.

A. R. Wright, J. C. Cao, and C. Zhang, “Enhanced optical conductivity of bilayer grapheme nanoribbons in the terahertz regime,” Phys. Rev. Lett. 103, 207401 (2009).
[CrossRef]

Zhang, J. Q.

J. Q. Zhang and D. Grischkowsky, “Adiabatic compression of parallel-plate metal waveguides for sensitivity enhancement of waveguide THz time-domain spectroscopy,” Appl. Phys. Lett. 86, 061109 (2005).
[CrossRef]

Zhang, X.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[CrossRef]

Zhang, X. C.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nature Mater. 1, 26–33 (2002).
[CrossRef]

Zhang, Y.

L. F. Shen, X. D. Chen, Y. Zhang, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77, 075408 (2008).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[CrossRef]

V. Astley, R. Mendis, and D. M. Mittleman, “Characterization of terahertz field confinement at the end of a tapered metal wire waveguide,” Appl. Phys. Lett. 95, 031104 (2009).
[CrossRef]

M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95, 233506 (2009).
[CrossRef]

J. Q. Zhang and D. Grischkowsky, “Adiabatic compression of parallel-plate metal waveguides for sensitivity enhancement of waveguide THz time-domain spectroscopy,” Appl. Phys. Lett. 86, 061109 (2005).
[CrossRef]

J. T. Lü and J. C. Cao, “Monte Carlo simulation of hot phonon effects in resonant-phonon-assisted terahertz quantum-cascade lasers,” Appl. Phys. Lett. 88, 061119 (2006).
[CrossRef]

Chin. Phys. Lett.

X. Y. He, J. C. Cao, and S. L. Feng, “Simulation of the propagation properties of metal wires terahertz waveguides,” Chin. Phys. Lett. 23, 2066–2069 (2006).
[CrossRef]

IRE Trans. Antennas Propag.

M. J. King and J. C. Wiltse, “Surface-wave propagation on coated or uncoated metal wires at millimeter wavelengths,” IRE Trans. Antennas Propag. 10, 246–254 (1962).
[CrossRef]

J. Appl. Phys.

G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys. 21, 1119–1128 (1950).
[CrossRef]

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguide,” J. Appl. Phys. 88, 4449–4451 (2000).
[CrossRef]

R. Adam, L. Chusseau, T. Grosjean, A. Penarier, J. Guillet, and D. Charraut, “Near-field wire-based passive probe antenna for the selective detection of the longitudinal electric field at terahertz frequencies,” J. Appl. Phys. 106, 073107 (2009).
[CrossRef]

H. Li, J. C. Cao, and J. T. Lü, “Monte Carlo simulation of carrier transport and output characteristics of terahertz quantum cascade lasers,” J. Appl. Phys. 103, 103113 (2008).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

X. Y. He, “Comparison of the waveguide properties of gap surface plasmon in the terahertz region and visible spectra,” J. Opt. A, Pure Appl. Opt. 11, 045708 (2009).
[CrossRef]

J. Opt. Soc. Am. B

Nano Lett.

A. J. Huber, F. KeilmannF. J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008).
[CrossRef] [PubMed]

Nat. Phys.

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6, 126–130 (2010).
[CrossRef]

Nature

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002).
[CrossRef] [PubMed]

K. L. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[CrossRef] [PubMed]

Nature Mater.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nature Mater. 1, 26–33 (2002).
[CrossRef]

Opt. Express

Phys. Lett. A

R. Ruppin, “Effect of non-locality on nanofocusing of surface plasmon field intensity in a conical tip,” Phys. Lett. A 340, 299–302 (2005).
[CrossRef]

Phys. Rev. B

S. J. Al-Bader and H. A. Jamid, “Diffraction of surface plasmon modes on abruptly terminated metallic nanowires,” Phys. Rev. B 76, 235410 (2007).
[CrossRef]

L. F. Shen, X. D. Chen, Y. Zhang, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77, 075408 (2008).
[CrossRef]

Phys. Rev. Lett.

S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

K. L. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96, 157401 (2006).
[CrossRef] [PubMed]

J. C. Cao, “Interband impact ionization and nonlinear absorption of terahertz radiations in semiconductor heterostructures,” Phys. Rev. Lett. 91, 237401 (2003).
[CrossRef] [PubMed]

A. R. Wright, J. C. Cao, and C. Zhang, “Enhanced optical conductivity of bilayer grapheme nanoribbons in the terahertz regime,” Phys. Rev. Lett. 103, 207401 (2009).
[CrossRef]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[CrossRef] [PubMed]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Group velocity and attenuation losses of the terahertz modes versus the metal wire radii. The solid, dashed, and dotted lines are for the cases of nonlocal, simple nonlocal, and local, respectively. Cu nanowire has been adopted; the radiation frequency is 1.0 THz. The insets in (a) show the schematic of cylindrical metal wire with the radius of a; terahertz waves propagate along z direction.

Fig. 2
Fig. 2

Group velocity and attenuation losses of the SPP modes versus the metal wire radii for different metals, taking into account the nonlocal effect. Cu nanowire has been adopted; the radiation frequency is 1.0 THz.

Fig. 3
Fig. 3

(a), (b) Group velocity and attenuation losses versus frequencies for different metal wire radii considering the nonlocal effects. Cu nanowire has been adopted. The insets in (a) and (b) show the group velocity and attenuation losses contour for radiation frequency and radius.

Fig. 4
Fig. 4

(a) Magnetic component of terahertz SPP modes versus radial distance inside and outside metal wire, taking into account the local and nonlocal effects at different frequencies. (b) The magnetic component contour for radiation frequency and radius. Cu nanowire has been adopted; the metal wire radius is 100.0 nm.

Fig. 5
Fig. 5

(a) Reflection amplitude and (b) reflection phase for the surface waves reflecting at a terminated Cu nanowire for the results of local and nonlocal effects; the radiation frequencies are 1.0, 2.0, and 3.0 THz.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

E r = j A h γ Z 1 ( γ r ) e j ( ω t h z ) ,
E z = A Z 0 ( γ r ) e j ( ω t h z ) ,
H φ = j A κ 2 ω μ γ Z 1 ( γ r ) e j ( ω t h z ) ,
κ m = ( ω μ c σ c ) 1 / 2 e j π / 4 ,
κ a = ω ( ε μ ) 1 / 2 ,
λ d ε d H 0 ( λ d R ) H 1 ( λ d R ) λ m ε m J 0 ( λ m R ) J 1 ( λ m R ) = 0.
n eff ( R ) = 1 k 0 R 2 ε d ε m [ ln 4 ε m ε d γ ] ,
( ε m ε d ) ε m ε d h 2 λ 3 J 0 ( λ 3 R ) J 1 ( λ 3 R ) + λ d ε d H 0 ( λ d R ) H 1 ( λ d R ) λ m ε m J 0 ( λ m R ) J 1 ( λ m R ) = 0 ,
( ε m ε d ) ε m ε d h 2 λ 3 1 λ 3 R 2 Γ ( 2 ) Γ ( 1 ) + λ d ε d λ d ln ( 2 λ d R ) Γ ( 1 ) 2 Γ ( 2 ) Γ ( 1 ) λ m ε m 1 λ m R = 0.
( ε m ε d ) ε m ε d h 2 λ 3 1 λ 3 R + 1 2 λ d ε d λ d   ln ( 2 λ d R ) λ m ε m 1 λ m R = 0 ,
ε ( ω ) = ( ε ω p 2 ω 2 + ω τ 2 ) + i ω τ ω p 2 ω ( ω 2 + ω τ 2 ) ,
r = 1.0 G 1.0 + G ,
G = 0 2 β ε d k k 0 2 k 2 [ A 1 ( k ) + A 2 ( k ) ] 2 d k I 1 ( γ m a ) 2 I 0 ( γ m a ) I 2 ( γ m a ) ε m I 1 ( γ m a ) 2 K 1 ( γ d a ) 2 K 0 ( γ d a ) I 2 ( γ d a ) ε d K 1 ( γ d a ) 2 ,
A 1 ( k ) = γ m I 2 ( λ m a ) J 1 ( k a ) + k I 1 ( λ m a ) J 2 ( k a ) I 1 ( λ m a ) ε m ( k 2 + λ m 2 ) ,
A 2 ( k ) = λ d K 2 ( λ d a ) J 1 ( k a ) k K 1 ( λ d a ) J 2 ( k a ) K 1 ( λ d a ) ε d ( k 2 + λ d 2 ) .

Metrics