Abstract

We demonstrate a compact high-power ultraviolet multiwavelength femtosecond laser source, where both an oscillator and an amplifier are based on a diode-pumped ytterbium-doped single-polarization large-mode-area photonic-crystal fiber and multiple wavelengths are generated through cascaded frequency mixing in nonlinear crystals. Tunable ultraviolet pulses within the wavelength range from 257 to 263 nm have been produced with maximum average powers of 2.14 and 0.81 W for pulse widths of 410 and 120 fs, respectively, through fourth-harmonic generation in different lengths of β-barium borate crystal.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12, 233–244 (2006).
    [CrossRef]
  2. P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
    [CrossRef] [PubMed]
  3. J. C. Knight, “Photonic crystal fibers,” Nature 424, 847–851 (2003).
    [CrossRef] [PubMed]
  4. F. Röser, D. Schimpf, O. Schmidt, B. Ortaç, K. Rademaker, J. Limpert, and A. Tünnermann, “90 W average power 100 μJ energy femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 32, 2230–2232 (2007).
    [CrossRef] [PubMed]
  5. F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 32, 3495–3497 (2007).
    [CrossRef] [PubMed]
  6. T. Eidam, S. Hadrich, F. Roser, E. Seise, T. Gottschall, J. Rothhardt, T. Schreiber, J. Limpert, and A. Tunnermann, “A 325-W-average-power fiber CPA system delivering sub-400 fs pulses,” IEEE J. Sel. Top. Quantum Electron. 15, 187–190 (2009).
    [CrossRef]
  7. J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H. Fuchs, E. Kley, H. Zellmer, and A. Tünnermann, “High-power femtosecond Yb-doped fiber amplifier,” Opt. Express 10, 628–638 (2002).
    [PubMed]
  8. Y. Zaouter, D. N. Papadopoulos, M. Hanna, J. Boullet, L. Huang, C. Aguergaray, F. Druon, E. Mottay, P. Georges, and E. Cormier, “Stretcher-free high energy nonlinear amplification of femtosecond pulses in rod-type fibers,” Opt. Lett. 33, 107–109 (2008).
    [CrossRef] [PubMed]
  9. T. Schreiber, C. K. Nielsen, B. Ortac, J. Limpert, and A. Tünnermann, “Microjoule-level all-polarization-maintaining femtosecond fiber source,” Opt. Lett. 31, 574–576 (2006).
    [CrossRef] [PubMed]
  10. D. N. Papadopoulos, Y. Zaouter, M. Hanna, F. Druon, E. Mottay, E. Cormier, and P. Georges, “Generation of 63 fs 4.1 MW peak power pulses from a parabolic fiber amplifier operated beyond the gain bandwidth limit,” Opt. Lett. 32, 2520–2522 (2007).
    [CrossRef] [PubMed]
  11. J. Ringling, O. Kittelmann, F. Noack, G. Korn, and J. Squier, “Tunable femtosecond pulses in the near vacuum ultraviolet generated by frequency conversion of amplified Ti:sapphire laser pulses,” Opt. Lett. 18, 2035–2037 (1993).
    [CrossRef] [PubMed]
  12. P. Baum, S. Lochbrunner, and E. Riedle, “Tunable sub-10-fs ultraviolet pulses generated by achromatic frequency doubling,” Opt. Lett. 29, 1686–1688 (2004).
    [CrossRef] [PubMed]
  13. F. Rotermund and V. Petrov, “Generation of the fourth harmonic of a femtosecond Ti:sapphire laser,” Opt. Lett. 23, 1040–1042 (1998).
    [CrossRef]
  14. A. Nebel and R. Beigang, “External frequency conversion of cw mode-locked Ti:Al2O3 laser radiation,” Opt. Lett. 16, 1729–1731 (1991).
    [CrossRef] [PubMed]
  15. J. F. Zhu, W. J. Ling, Z. H. Wang, P. Wang, J. H. Sun, Z. Y. Wei, D. C. Zhang, X. W. Ma, and W. L. Zhan, “High-energy picosecond near-vacuum ultraviolet pulses generated by sum-frequency mixing of an amplified Ti:sapphire laser,” Appl. Opt. 46, 6228–6231 (2007).
    [CrossRef] [PubMed]
  16. V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, and R. Komatsu, “Frequency conversion of Ti:Sapphire-based femtosecond laser systems to the 200-nm spectral region using nonlinear optical crystals,” IEEE J. Sel. Top. Quantum Electron. 5, 1532–1542 (1999).
    [CrossRef]
  17. C. Schriever, S. Lochbrunner, P. Krok, and E. Riedle, “Tunable pulses from below 300 to 970 nm with durations down to 14 fs based on a 2 MHz ytterbium-doped fiber system,” Opt. Lett. 33, 192–194 (2008).
    [CrossRef] [PubMed]
  18. Y. J. Song, M. L. Hu, C. L. Wang, Z. Tian, Q. R. Xing, L. Chai, and C. Y. Wang, “Environmentally stable, high pulse energy Yb-doped large-mode-area photonic crystal fiber laser operating in the soliton-like regime,” IEEE Photon. Technol. Lett. 20, 1088–1090 (2008).
    [CrossRef]
  19. B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44–48 (2009).
    [CrossRef]
  20. A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, “Dependence of sum frequency field intensity on group velocity mismatches,” IEEE J. Quantum Electron. 29, 2928–2933 (1993).
    [CrossRef]
  21. A. Nebel and R. Beigang, “Tunable picosecond pulses below 200 nm by external frequency conversion of cw modelocked Ti:Al2O3 laser radiation,” Opt. Commun. 94, 369–372 (1992).
    [CrossRef]
  22. W. Zheng, W. Han, L. Qian, P. Yuan, G. Xie, H. Luo, H. Zhu, and D. Fan, “Second-harmonic generation of weak femtosecond pulses under the condition of vanishing group-velocity mismatch,” J. Opt. A, Pure Appl. Opt. 8, 939–946 (2006).
    [CrossRef]
  23. A. Fürbach, T. Le, C. Spielmann, and F. Krausz, “Generation of 8-fs pulses at 390 nm,” Appl. Phys. B 70, S37–S40 (2000).
    [CrossRef]

2009 (2)

T. Eidam, S. Hadrich, F. Roser, E. Seise, T. Gottschall, J. Rothhardt, T. Schreiber, J. Limpert, and A. Tunnermann, “A 325-W-average-power fiber CPA system delivering sub-400 fs pulses,” IEEE J. Sel. Top. Quantum Electron. 15, 187–190 (2009).
[CrossRef]

B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44–48 (2009).
[CrossRef]

2008 (3)

2007 (4)

2006 (3)

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12, 233–244 (2006).
[CrossRef]

W. Zheng, W. Han, L. Qian, P. Yuan, G. Xie, H. Luo, H. Zhu, and D. Fan, “Second-harmonic generation of weak femtosecond pulses under the condition of vanishing group-velocity mismatch,” J. Opt. A, Pure Appl. Opt. 8, 939–946 (2006).
[CrossRef]

T. Schreiber, C. K. Nielsen, B. Ortac, J. Limpert, and A. Tünnermann, “Microjoule-level all-polarization-maintaining femtosecond fiber source,” Opt. Lett. 31, 574–576 (2006).
[CrossRef] [PubMed]

2004 (1)

2003 (2)

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef] [PubMed]

J. C. Knight, “Photonic crystal fibers,” Nature 424, 847–851 (2003).
[CrossRef] [PubMed]

2002 (1)

2000 (1)

A. Fürbach, T. Le, C. Spielmann, and F. Krausz, “Generation of 8-fs pulses at 390 nm,” Appl. Phys. B 70, S37–S40 (2000).
[CrossRef]

1999 (1)

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, and R. Komatsu, “Frequency conversion of Ti:Sapphire-based femtosecond laser systems to the 200-nm spectral region using nonlinear optical crystals,” IEEE J. Sel. Top. Quantum Electron. 5, 1532–1542 (1999).
[CrossRef]

1998 (1)

1993 (2)

J. Ringling, O. Kittelmann, F. Noack, G. Korn, and J. Squier, “Tunable femtosecond pulses in the near vacuum ultraviolet generated by frequency conversion of amplified Ti:sapphire laser pulses,” Opt. Lett. 18, 2035–2037 (1993).
[CrossRef] [PubMed]

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, “Dependence of sum frequency field intensity on group velocity mismatches,” IEEE J. Quantum Electron. 29, 2928–2933 (1993).
[CrossRef]

1992 (1)

A. Nebel and R. Beigang, “Tunable picosecond pulses below 200 nm by external frequency conversion of cw modelocked Ti:Al2O3 laser radiation,” Opt. Commun. 94, 369–372 (1992).
[CrossRef]

1991 (1)

Aguergaray, C.

Baronavski, A. P.

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, “Dependence of sum frequency field intensity on group velocity mismatches,” IEEE J. Quantum Electron. 29, 2928–2933 (1993).
[CrossRef]

Baum, P.

Beigang, R.

A. Nebel and R. Beigang, “Tunable picosecond pulses below 200 nm by external frequency conversion of cw modelocked Ti:Al2O3 laser radiation,” Opt. Commun. 94, 369–372 (1992).
[CrossRef]

A. Nebel and R. Beigang, “External frequency conversion of cw mode-locked Ti:Al2O3 laser radiation,” Opt. Lett. 16, 1729–1731 (1991).
[CrossRef] [PubMed]

Boullet, J.

Chai, L.

B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44–48 (2009).
[CrossRef]

Y. J. Song, M. L. Hu, C. L. Wang, Z. Tian, Q. R. Xing, L. Chai, and C. Y. Wang, “Environmentally stable, high pulse energy Yb-doped large-mode-area photonic crystal fiber laser operating in the soliton-like regime,” IEEE Photon. Technol. Lett. 20, 1088–1090 (2008).
[CrossRef]

Clausnitzer, T.

Cormier, E.

Druon, F.

Eidam, T.

T. Eidam, S. Hadrich, F. Roser, E. Seise, T. Gottschall, J. Rothhardt, T. Schreiber, J. Limpert, and A. Tunnermann, “A 325-W-average-power fiber CPA system delivering sub-400 fs pulses,” IEEE J. Sel. Top. Quantum Electron. 15, 187–190 (2009).
[CrossRef]

F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 32, 3495–3497 (2007).
[CrossRef] [PubMed]

Fan, D.

W. Zheng, W. Han, L. Qian, P. Yuan, G. Xie, H. Luo, H. Zhu, and D. Fan, “Second-harmonic generation of weak femtosecond pulses under the condition of vanishing group-velocity mismatch,” J. Opt. A, Pure Appl. Opt. 8, 939–946 (2006).
[CrossRef]

Fang, X. H.

B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44–48 (2009).
[CrossRef]

Fuchs, H.

Fürbach, A.

A. Fürbach, T. Le, C. Spielmann, and F. Krausz, “Generation of 8-fs pulses at 390 nm,” Appl. Phys. B 70, S37–S40 (2000).
[CrossRef]

Georges, P.

Gottschall, T.

T. Eidam, S. Hadrich, F. Roser, E. Seise, T. Gottschall, J. Rothhardt, T. Schreiber, J. Limpert, and A. Tunnermann, “A 325-W-average-power fiber CPA system delivering sub-400 fs pulses,” IEEE J. Sel. Top. Quantum Electron. 15, 187–190 (2009).
[CrossRef]

Hadrich, S.

T. Eidam, S. Hadrich, F. Roser, E. Seise, T. Gottschall, J. Rothhardt, T. Schreiber, J. Limpert, and A. Tunnermann, “A 325-W-average-power fiber CPA system delivering sub-400 fs pulses,” IEEE J. Sel. Top. Quantum Electron. 15, 187–190 (2009).
[CrossRef]

Han, W.

W. Zheng, W. Han, L. Qian, P. Yuan, G. Xie, H. Luo, H. Zhu, and D. Fan, “Second-harmonic generation of weak femtosecond pulses under the condition of vanishing group-velocity mismatch,” J. Opt. A, Pure Appl. Opt. 8, 939–946 (2006).
[CrossRef]

Hanna, M.

Hu, M. L.

B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44–48 (2009).
[CrossRef]

Y. J. Song, M. L. Hu, C. L. Wang, Z. Tian, Q. R. Xing, L. Chai, and C. Y. Wang, “Environmentally stable, high pulse energy Yb-doped large-mode-area photonic crystal fiber laser operating in the soliton-like regime,” IEEE Photon. Technol. Lett. 20, 1088–1090 (2008).
[CrossRef]

Huang, L.

Kittelmann, O.

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, and R. Komatsu, “Frequency conversion of Ti:Sapphire-based femtosecond laser systems to the 200-nm spectral region using nonlinear optical crystals,” IEEE J. Sel. Top. Quantum Electron. 5, 1532–1542 (1999).
[CrossRef]

J. Ringling, O. Kittelmann, F. Noack, G. Korn, and J. Squier, “Tunable femtosecond pulses in the near vacuum ultraviolet generated by frequency conversion of amplified Ti:sapphire laser pulses,” Opt. Lett. 18, 2035–2037 (1993).
[CrossRef] [PubMed]

Kley, E.

Knight, J. C.

J. C. Knight, “Photonic crystal fibers,” Nature 424, 847–851 (2003).
[CrossRef] [PubMed]

Komatsu, R.

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, and R. Komatsu, “Frequency conversion of Ti:Sapphire-based femtosecond laser systems to the 200-nm spectral region using nonlinear optical crystals,” IEEE J. Sel. Top. Quantum Electron. 5, 1532–1542 (1999).
[CrossRef]

Korn, G.

Krausz, F.

A. Fürbach, T. Le, C. Spielmann, and F. Krausz, “Generation of 8-fs pulses at 390 nm,” Appl. Phys. B 70, S37–S40 (2000).
[CrossRef]

Krok, P.

Ladouceur, H. D.

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, “Dependence of sum frequency field intensity on group velocity mismatches,” IEEE J. Quantum Electron. 29, 2928–2933 (1993).
[CrossRef]

Le, T.

A. Fürbach, T. Le, C. Spielmann, and F. Krausz, “Generation of 8-fs pulses at 390 nm,” Appl. Phys. B 70, S37–S40 (2000).
[CrossRef]

Limpert, J.

Ling, W. J.

Liu, B. W.

B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44–48 (2009).
[CrossRef]

Lochbrunner, S.

Luo, H.

W. Zheng, W. Han, L. Qian, P. Yuan, G. Xie, H. Luo, H. Zhu, and D. Fan, “Second-harmonic generation of weak femtosecond pulses under the condition of vanishing group-velocity mismatch,” J. Opt. A, Pure Appl. Opt. 8, 939–946 (2006).
[CrossRef]

Ma, X. W.

Mottay, E.

Nebel, A.

A. Nebel and R. Beigang, “Tunable picosecond pulses below 200 nm by external frequency conversion of cw modelocked Ti:Al2O3 laser radiation,” Opt. Commun. 94, 369–372 (1992).
[CrossRef]

A. Nebel and R. Beigang, “External frequency conversion of cw mode-locked Ti:Al2O3 laser radiation,” Opt. Lett. 16, 1729–1731 (1991).
[CrossRef] [PubMed]

Nielsen, C. K.

Noack, F.

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, and R. Komatsu, “Frequency conversion of Ti:Sapphire-based femtosecond laser systems to the 200-nm spectral region using nonlinear optical crystals,” IEEE J. Sel. Top. Quantum Electron. 5, 1532–1542 (1999).
[CrossRef]

J. Ringling, O. Kittelmann, F. Noack, G. Korn, and J. Squier, “Tunable femtosecond pulses in the near vacuum ultraviolet generated by frequency conversion of amplified Ti:sapphire laser pulses,” Opt. Lett. 18, 2035–2037 (1993).
[CrossRef] [PubMed]

Ortac, B.

Ortaç, B.

Papadopoulos, D. N.

Petrov, V.

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, and R. Komatsu, “Frequency conversion of Ti:Sapphire-based femtosecond laser systems to the 200-nm spectral region using nonlinear optical crystals,” IEEE J. Sel. Top. Quantum Electron. 5, 1532–1542 (1999).
[CrossRef]

F. Rotermund and V. Petrov, “Generation of the fourth harmonic of a femtosecond Ti:sapphire laser,” Opt. Lett. 23, 1040–1042 (1998).
[CrossRef]

Qian, L.

W. Zheng, W. Han, L. Qian, P. Yuan, G. Xie, H. Luo, H. Zhu, and D. Fan, “Second-harmonic generation of weak femtosecond pulses under the condition of vanishing group-velocity mismatch,” J. Opt. A, Pure Appl. Opt. 8, 939–946 (2006).
[CrossRef]

Rademaker, K.

Riedle, E.

Ringling, J.

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, and R. Komatsu, “Frequency conversion of Ti:Sapphire-based femtosecond laser systems to the 200-nm spectral region using nonlinear optical crystals,” IEEE J. Sel. Top. Quantum Electron. 5, 1532–1542 (1999).
[CrossRef]

J. Ringling, O. Kittelmann, F. Noack, G. Korn, and J. Squier, “Tunable femtosecond pulses in the near vacuum ultraviolet generated by frequency conversion of amplified Ti:sapphire laser pulses,” Opt. Lett. 18, 2035–2037 (1993).
[CrossRef] [PubMed]

Roser, F.

T. Eidam, S. Hadrich, F. Roser, E. Seise, T. Gottschall, J. Rothhardt, T. Schreiber, J. Limpert, and A. Tunnermann, “A 325-W-average-power fiber CPA system delivering sub-400 fs pulses,” IEEE J. Sel. Top. Quantum Electron. 15, 187–190 (2009).
[CrossRef]

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12, 233–244 (2006).
[CrossRef]

Röser, F.

Rotermund, F.

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, and R. Komatsu, “Frequency conversion of Ti:Sapphire-based femtosecond laser systems to the 200-nm spectral region using nonlinear optical crystals,” IEEE J. Sel. Top. Quantum Electron. 5, 1532–1542 (1999).
[CrossRef]

F. Rotermund and V. Petrov, “Generation of the fourth harmonic of a femtosecond Ti:sapphire laser,” Opt. Lett. 23, 1040–1042 (1998).
[CrossRef]

Rothhardt, J.

T. Eidam, S. Hadrich, F. Roser, E. Seise, T. Gottschall, J. Rothhardt, T. Schreiber, J. Limpert, and A. Tunnermann, “A 325-W-average-power fiber CPA system delivering sub-400 fs pulses,” IEEE J. Sel. Top. Quantum Electron. 15, 187–190 (2009).
[CrossRef]

F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 32, 3495–3497 (2007).
[CrossRef] [PubMed]

Russell, P. St. J.

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef] [PubMed]

Schimpf, D.

Schimpf, D. N.

Schmidt, O.

Schreiber, T.

T. Eidam, S. Hadrich, F. Roser, E. Seise, T. Gottschall, J. Rothhardt, T. Schreiber, J. Limpert, and A. Tunnermann, “A 325-W-average-power fiber CPA system delivering sub-400 fs pulses,” IEEE J. Sel. Top. Quantum Electron. 15, 187–190 (2009).
[CrossRef]

T. Schreiber, C. K. Nielsen, B. Ortac, J. Limpert, and A. Tünnermann, “Microjoule-level all-polarization-maintaining femtosecond fiber source,” Opt. Lett. 31, 574–576 (2006).
[CrossRef] [PubMed]

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12, 233–244 (2006).
[CrossRef]

J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H. Fuchs, E. Kley, H. Zellmer, and A. Tünnermann, “High-power femtosecond Yb-doped fiber amplifier,” Opt. Express 10, 628–638 (2002).
[PubMed]

Schriever, C.

Seise, E.

T. Eidam, S. Hadrich, F. Roser, E. Seise, T. Gottschall, J. Rothhardt, T. Schreiber, J. Limpert, and A. Tunnermann, “A 325-W-average-power fiber CPA system delivering sub-400 fs pulses,” IEEE J. Sel. Top. Quantum Electron. 15, 187–190 (2009).
[CrossRef]

Shaw, J. K.

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, “Dependence of sum frequency field intensity on group velocity mismatches,” IEEE J. Quantum Electron. 29, 2928–2933 (1993).
[CrossRef]

Song, Y. J.

B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44–48 (2009).
[CrossRef]

Y. J. Song, M. L. Hu, C. L. Wang, Z. Tian, Q. R. Xing, L. Chai, and C. Y. Wang, “Environmentally stable, high pulse energy Yb-doped large-mode-area photonic crystal fiber laser operating in the soliton-like regime,” IEEE Photon. Technol. Lett. 20, 1088–1090 (2008).
[CrossRef]

Spielmann, C.

A. Fürbach, T. Le, C. Spielmann, and F. Krausz, “Generation of 8-fs pulses at 390 nm,” Appl. Phys. B 70, S37–S40 (2000).
[CrossRef]

Squier, J.

Sun, J. H.

Tian, Z.

Y. J. Song, M. L. Hu, C. L. Wang, Z. Tian, Q. R. Xing, L. Chai, and C. Y. Wang, “Environmentally stable, high pulse energy Yb-doped large-mode-area photonic crystal fiber laser operating in the soliton-like regime,” IEEE Photon. Technol. Lett. 20, 1088–1090 (2008).
[CrossRef]

Tunnermann, A.

T. Eidam, S. Hadrich, F. Roser, E. Seise, T. Gottschall, J. Rothhardt, T. Schreiber, J. Limpert, and A. Tunnermann, “A 325-W-average-power fiber CPA system delivering sub-400 fs pulses,” IEEE J. Sel. Top. Quantum Electron. 15, 187–190 (2009).
[CrossRef]

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12, 233–244 (2006).
[CrossRef]

Tünnermann, A.

Wang, C. L.

Y. J. Song, M. L. Hu, C. L. Wang, Z. Tian, Q. R. Xing, L. Chai, and C. Y. Wang, “Environmentally stable, high pulse energy Yb-doped large-mode-area photonic crystal fiber laser operating in the soliton-like regime,” IEEE Photon. Technol. Lett. 20, 1088–1090 (2008).
[CrossRef]

Wang, C. Y.

B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44–48 (2009).
[CrossRef]

Y. J. Song, M. L. Hu, C. L. Wang, Z. Tian, Q. R. Xing, L. Chai, and C. Y. Wang, “Environmentally stable, high pulse energy Yb-doped large-mode-area photonic crystal fiber laser operating in the soliton-like regime,” IEEE Photon. Technol. Lett. 20, 1088–1090 (2008).
[CrossRef]

Wang, P.

Wang, Z. H.

Wei, Z. Y.

Wu, Y. Z.

B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44–48 (2009).
[CrossRef]

Xie, G.

W. Zheng, W. Han, L. Qian, P. Yuan, G. Xie, H. Luo, H. Zhu, and D. Fan, “Second-harmonic generation of weak femtosecond pulses under the condition of vanishing group-velocity mismatch,” J. Opt. A, Pure Appl. Opt. 8, 939–946 (2006).
[CrossRef]

Xing, Q. R.

Y. J. Song, M. L. Hu, C. L. Wang, Z. Tian, Q. R. Xing, L. Chai, and C. Y. Wang, “Environmentally stable, high pulse energy Yb-doped large-mode-area photonic crystal fiber laser operating in the soliton-like regime,” IEEE Photon. Technol. Lett. 20, 1088–1090 (2008).
[CrossRef]

Yuan, P.

W. Zheng, W. Han, L. Qian, P. Yuan, G. Xie, H. Luo, H. Zhu, and D. Fan, “Second-harmonic generation of weak femtosecond pulses under the condition of vanishing group-velocity mismatch,” J. Opt. A, Pure Appl. Opt. 8, 939–946 (2006).
[CrossRef]

Zaouter, Y.

Zellmer, H.

Zhan, W. L.

Zhang, D. C.

Zheltikov, A. M.

B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44–48 (2009).
[CrossRef]

Zheng, W.

W. Zheng, W. Han, L. Qian, P. Yuan, G. Xie, H. Luo, H. Zhu, and D. Fan, “Second-harmonic generation of weak femtosecond pulses under the condition of vanishing group-velocity mismatch,” J. Opt. A, Pure Appl. Opt. 8, 939–946 (2006).
[CrossRef]

Zhu, H.

W. Zheng, W. Han, L. Qian, P. Yuan, G. Xie, H. Luo, H. Zhu, and D. Fan, “Second-harmonic generation of weak femtosecond pulses under the condition of vanishing group-velocity mismatch,” J. Opt. A, Pure Appl. Opt. 8, 939–946 (2006).
[CrossRef]

Zhu, J. F.

Zöllner, K.

Appl. Opt. (1)

Appl. Phys. B (1)

A. Fürbach, T. Le, C. Spielmann, and F. Krausz, “Generation of 8-fs pulses at 390 nm,” Appl. Phys. B 70, S37–S40 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. P. Baronavski, H. D. Ladouceur, and J. K. Shaw, “Dependence of sum frequency field intensity on group velocity mismatches,” IEEE J. Quantum Electron. 29, 2928–2933 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, and R. Komatsu, “Frequency conversion of Ti:Sapphire-based femtosecond laser systems to the 200-nm spectral region using nonlinear optical crystals,” IEEE J. Sel. Top. Quantum Electron. 5, 1532–1542 (1999).
[CrossRef]

J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, “High-power ultrafast fiber laser systems,” IEEE J. Sel. Top. Quantum Electron. 12, 233–244 (2006).
[CrossRef]

T. Eidam, S. Hadrich, F. Roser, E. Seise, T. Gottschall, J. Rothhardt, T. Schreiber, J. Limpert, and A. Tunnermann, “A 325-W-average-power fiber CPA system delivering sub-400 fs pulses,” IEEE J. Sel. Top. Quantum Electron. 15, 187–190 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. J. Song, M. L. Hu, C. L. Wang, Z. Tian, Q. R. Xing, L. Chai, and C. Y. Wang, “Environmentally stable, high pulse energy Yb-doped large-mode-area photonic crystal fiber laser operating in the soliton-like regime,” IEEE Photon. Technol. Lett. 20, 1088–1090 (2008).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

W. Zheng, W. Han, L. Qian, P. Yuan, G. Xie, H. Luo, H. Zhu, and D. Fan, “Second-harmonic generation of weak femtosecond pulses under the condition of vanishing group-velocity mismatch,” J. Opt. A, Pure Appl. Opt. 8, 939–946 (2006).
[CrossRef]

Laser Phys. Lett. (1)

B. W. Liu, M. L. Hu, X. H. Fang, Y. Z. Wu, Y. J. Song, L. Chai, C. Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44–48 (2009).
[CrossRef]

Nature (1)

J. C. Knight, “Photonic crystal fibers,” Nature 424, 847–851 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. Nebel and R. Beigang, “Tunable picosecond pulses below 200 nm by external frequency conversion of cw modelocked Ti:Al2O3 laser radiation,” Opt. Commun. 94, 369–372 (1992).
[CrossRef]

Opt. Express (1)

Opt. Lett. (10)

Y. Zaouter, D. N. Papadopoulos, M. Hanna, J. Boullet, L. Huang, C. Aguergaray, F. Druon, E. Mottay, P. Georges, and E. Cormier, “Stretcher-free high energy nonlinear amplification of femtosecond pulses in rod-type fibers,” Opt. Lett. 33, 107–109 (2008).
[CrossRef] [PubMed]

T. Schreiber, C. K. Nielsen, B. Ortac, J. Limpert, and A. Tünnermann, “Microjoule-level all-polarization-maintaining femtosecond fiber source,” Opt. Lett. 31, 574–576 (2006).
[CrossRef] [PubMed]

D. N. Papadopoulos, Y. Zaouter, M. Hanna, F. Druon, E. Mottay, E. Cormier, and P. Georges, “Generation of 63 fs 4.1 MW peak power pulses from a parabolic fiber amplifier operated beyond the gain bandwidth limit,” Opt. Lett. 32, 2520–2522 (2007).
[CrossRef] [PubMed]

J. Ringling, O. Kittelmann, F. Noack, G. Korn, and J. Squier, “Tunable femtosecond pulses in the near vacuum ultraviolet generated by frequency conversion of amplified Ti:sapphire laser pulses,” Opt. Lett. 18, 2035–2037 (1993).
[CrossRef] [PubMed]

P. Baum, S. Lochbrunner, and E. Riedle, “Tunable sub-10-fs ultraviolet pulses generated by achromatic frequency doubling,” Opt. Lett. 29, 1686–1688 (2004).
[CrossRef] [PubMed]

F. Rotermund and V. Petrov, “Generation of the fourth harmonic of a femtosecond Ti:sapphire laser,” Opt. Lett. 23, 1040–1042 (1998).
[CrossRef]

A. Nebel and R. Beigang, “External frequency conversion of cw mode-locked Ti:Al2O3 laser radiation,” Opt. Lett. 16, 1729–1731 (1991).
[CrossRef] [PubMed]

F. Röser, D. Schimpf, O. Schmidt, B. Ortaç, K. Rademaker, J. Limpert, and A. Tünnermann, “90 W average power 100 μJ energy femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 32, 2230–2232 (2007).
[CrossRef] [PubMed]

F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 32, 3495–3497 (2007).
[CrossRef] [PubMed]

C. Schriever, S. Lochbrunner, P. Krok, and E. Riedle, “Tunable pulses from below 300 to 970 nm with durations down to 14 fs based on a 2 MHz ytterbium-doped fiber system,” Opt. Lett. 33, 192–194 (2008).
[CrossRef] [PubMed]

Science (1)

P. St. J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Spectrum of the fundamental-wavelength laser output. The autocorrelation trace of output laser pulses is shown in the inset.

Fig. 2
Fig. 2

Experimental setup for the multi-wavelength femtosecond pulses generation from PCF amplifier: SHG, second-harmonic generation; SFM, sum-frequency mixing; FHG, fourth-harmonic generation; DFG, difference-frequency generation; λ / 2 , half-wave plate; L 1 L 6 , lenses; M 1 M 5 , mirrors.

Fig. 3
Fig. 3

Spectrum of the SH output of a 2 mm thick BBO crystal.

Fig. 4
Fig. 4

Average power of the SH measured as a function of the fiber-laser output power for 2 mm BBO (rectangles) and 3.5 mm LBO (triangles) crystals. The insets show the beam profiles of the SH from (a) BBO and (b) LBO crystals.

Fig. 5
Fig. 5

Average power of the TH as a function of the fundamental power. The spectrum of the TH is shown in the inset

Fig. 6
Fig. 6

Simulated temporal envelopes of the SH generated by 100 fs pump pulses with a central wavelength of 520 nm in a BBO crystal with a variable length: (1) 0.1, (2) 0.18, (3) 0.4, (4) 0.6, and (5) 0.8 mm.

Fig. 7
Fig. 7

Average power of UV pulses centered at 261 nm measured as a function of the fiber-laser output power for a 0.8 mm long BBO crystal. The spectra of the UV output measured for different orientations of the BBO crystal are shown in the inset: (1) θ = 50.2 ° , (2) θ = 49.7 ° , (3) θ = 49.4 ° , (4) θ = 49.1 ° , (5) θ = 48.6 ° , (6) θ = 48.5 ° .

Fig. 8
Fig. 8

Cross-correlation traces of the FH output of a BBO crystal with L c 0.8   mm (filled circles and solid line) and 0.18 mm (triangles and dashed line) pumped by the 520 nm SH output of the LMA-PCF laser.

Tables (1)

Tables Icon

Table 1 Parameters of SHG by a 1040 nm Pump in BBO and LBO

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A 1 z i 2 β 21 2 A 1 t 2 = i ω d eff n 1 c A 2 A 1   exp ( i Δ k z ) ,
A 2 z + ( 1 v g 1 1 v g 2 ) A 2 t i 2 β 22 2 A 2 t 2 = i ω d eff n 2 c A 1 2   exp ( i Δ k z ) .

Metrics