Abstract

Natural radiative lifetimes of 79 odd-parity highly excited levels of neutral samarium in the energy range from 18,985.70 to 34,189.56cm1 have been measured by time-resolved laser-induced fluorescence technique in an atomic beam produced by laser ablation. The lifetime results obtained in this paper are in the range from 8.3 to 786.6 ns. When these results are compared with the previous measurements, a good agreement is achieved. This work will be useful to extend the set of oscillator strengths available in Sm I.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Jaschek and M. Jaschek, The Behavior of Chemical Elements in Stars (Cambridge University Press, 1995).
    [CrossRef]
  2. R. G. Gratton and C. Sneden, “Abundances of neutron-capture elements in metal-poor stars,” Astron. Astrophys. 287, 927–946 (1994).
  3. A. McWilliam, G. W. Preston, C. Sneden, and L. Searle, “Spectroscopic analysis of 33 of the most metal poor stars,” Astron. J. 109, 2757–2799 (1995).
    [CrossRef]
  4. C. Sneden, A. McWilliam, G. W. Preston, J. J. Cowan, D. L. Burris, and B. J. Armosky, “The ultra-metal-poor, neutron-capture-rich giant star Cs 22892–052,” Astrophys. J. 467, 819–840 (1996).
    [CrossRef]
  5. J. E. Lawler, M. E. Wickliffe, E. A. Den Hartog, and C. Sneden, “Improved laboratory transition parameters for Eu II and application to the solar europium element and isotopic composition,” Astrophys. J. 563, 1075–1088 (2001).
    [CrossRef]
  6. E. A. Den Hartog, J. E. Lawler, C. Sneden, and J. J. Cowan, “Improved laboratory transition probabilities for Nd II and application to the neodymium abundances of the sun and three metal-poor stars,” Astrophys. J., Suppl. Ser. 148, 543–566 (2003).
    [CrossRef]
  7. J. E. Lawler, C. Sneden, J. J. Cowan, I. I. Ivans, and E. A. Den Hartog, “Improved laboratory transition probabilities for Ce II, application to the cerium abundances of the sun and five γ-process-rich, metal-poor stars, and rare earth lab data summary,” Astrophys. J., Suppl. Ser. 182, 51–79 (2009).
    [CrossRef]
  8. E. A. Den Hartog, K. P. Buettner, and J. E. Lawler, “Radiative lifetimes of neutral cerium,” J. Phys. B 42, 085006 (2009).
    [CrossRef]
  9. C. H. Corliss and W. R. Bozman, “Experimental transition probabilities for spectral lines of seventy elements: derived from the NBS Tables of spectral-line intensities,” NBS Monogr. 53, 365–369 (1962).
  10. E. Handrich, A. Steudel, R. Wallenstein, and H. Walther, “Level crossing experiments in the Tm I and Sm I spectra,” J. Phys. Colloq. 30, 18–23 (1969).
    [CrossRef]
  11. K. B. Blagoev, V. A. Komarovskii, and N. P. Penkin, “Lifetimes of excited states of the samarium atom,” Opt. Spectrosc. 42, 238–239 (1977).
  12. J. Marek and P. Münster, “Lifetime measurements of some levels of Sm I by use of dye laser excitation,” Astron. Astrophys. 62, 245–247 (1978).
  13. P. Hannaford and R. M. Lowe, “Radiative lifetimes of low-lying levels in Sm I,” J. Phys. B 18, 2365–2370 (1985).
    [CrossRef]
  14. P. Kulina and R. H. Rinkleff, “Tensor polarizabilities and lifetimes of levels of the configurations 4f66s6p and 4f55d6s2 in Samarium I,” Z. Phys. A 321, 15–21 (1985).
    [CrossRef]
  15. S. Rochester, C. J. Bowers, D. Budker, D. DeMille, and M. Zolotorev, “Measurement of lifetimes and tensor polarizabilities of odd-parity states of atomic samarium,” Phys. Rev. A 59, 3480–3494 (1999).
    [CrossRef]
  16. M. L. Shah, A. K. Pulhani, G. P. Gupta, and B. M. Suri, “Measurements of radiative lifetimes, branching fractions, and absolute transition probabilities in atomic samarium using laser-induced fluorescence,” J. Opt. Soc. Am. B 27, 423–431 (2010).
    [CrossRef]
  17. Z. Dai, Z. Jiang, H. Xu, Z. Zhang, S. Svanberg, É. Biémont, P. H. Lefèbvre, and P. Quinet, “Time-resolved laser-induced fluorescence measurements of Rydberg states in Lu I and comparison with theory,” J. Phys. B 36, 479–487 (2003).
    [CrossRef]
  18. U. Berzinsh, L. Caiyan, R. Zern, S. Svanberg, and É. Biémont, “Determination of radiative lifetimes of neutral sulfur by time-resolved vacuum-ultraviolet laser spectroscopy,” Phys. Rev. A 55, 1836–1841 (1997).
    [CrossRef]
  19. E. A. Den Hartog, M. T. Herd, J. E. Lawler, C. Sneden, J. J. Cowan, and T. C. Beers, “Improved laboratory transition probabilities for Pt I and application to the platinum abundances of BD+17°3248 and the sun,” Astrophys. J. 619, 639–655 (2005).
    [CrossRef]
  20. Z. Zhang, S. Svanberg, P. Quinet, P. Palmeri, and É. Biémont, “Time-resolved laser spectroscopy of multiply ionized atoms: natural radiative lifetimes in Ce IV,” Phys. Rev. Lett. 87, 273001 (2001).
    [CrossRef]
  21. Z. Zhang, Z. Li, H. Lundberg, K. Zhang, Z. Dai, Z. Jiang, and S. Svanberg, “Radiative properties of Eu II and Eu III obtained from lifetime and branching ratio measurements,” J. Phys. B 33, 521–526 (2000).
    [CrossRef]
  22. C. E. Theodosiou, “Lifetime of alkali-metal–atom Rydberg states,” Phys. Rev. A 30, 2881–2909 (1984).
    [CrossRef]
  23. R. Mayo, J. Campos, M. Ortiz, H. Xu, S. Svanberg, G. Malcheva, and K. Blagoev, “Radiative lifetimes of Zr III excited levels,” Eur. Phys. J. D 40, 169–173 (2006).
    [CrossRef]
  24. NIST Atomic Spectra Database, Version 3.0 http://physics.nist.gov/cgi-bin/ASD/energy1.pl.

2010 (1)

2009 (2)

J. E. Lawler, C. Sneden, J. J. Cowan, I. I. Ivans, and E. A. Den Hartog, “Improved laboratory transition probabilities for Ce II, application to the cerium abundances of the sun and five γ-process-rich, metal-poor stars, and rare earth lab data summary,” Astrophys. J., Suppl. Ser. 182, 51–79 (2009).
[CrossRef]

E. A. Den Hartog, K. P. Buettner, and J. E. Lawler, “Radiative lifetimes of neutral cerium,” J. Phys. B 42, 085006 (2009).
[CrossRef]

2006 (1)

R. Mayo, J. Campos, M. Ortiz, H. Xu, S. Svanberg, G. Malcheva, and K. Blagoev, “Radiative lifetimes of Zr III excited levels,” Eur. Phys. J. D 40, 169–173 (2006).
[CrossRef]

2005 (1)

E. A. Den Hartog, M. T. Herd, J. E. Lawler, C. Sneden, J. J. Cowan, and T. C. Beers, “Improved laboratory transition probabilities for Pt I and application to the platinum abundances of BD+17°3248 and the sun,” Astrophys. J. 619, 639–655 (2005).
[CrossRef]

2003 (2)

E. A. Den Hartog, J. E. Lawler, C. Sneden, and J. J. Cowan, “Improved laboratory transition probabilities for Nd II and application to the neodymium abundances of the sun and three metal-poor stars,” Astrophys. J., Suppl. Ser. 148, 543–566 (2003).
[CrossRef]

Z. Dai, Z. Jiang, H. Xu, Z. Zhang, S. Svanberg, É. Biémont, P. H. Lefèbvre, and P. Quinet, “Time-resolved laser-induced fluorescence measurements of Rydberg states in Lu I and comparison with theory,” J. Phys. B 36, 479–487 (2003).
[CrossRef]

2001 (2)

J. E. Lawler, M. E. Wickliffe, E. A. Den Hartog, and C. Sneden, “Improved laboratory transition parameters for Eu II and application to the solar europium element and isotopic composition,” Astrophys. J. 563, 1075–1088 (2001).
[CrossRef]

Z. Zhang, S. Svanberg, P. Quinet, P. Palmeri, and É. Biémont, “Time-resolved laser spectroscopy of multiply ionized atoms: natural radiative lifetimes in Ce IV,” Phys. Rev. Lett. 87, 273001 (2001).
[CrossRef]

2000 (1)

Z. Zhang, Z. Li, H. Lundberg, K. Zhang, Z. Dai, Z. Jiang, and S. Svanberg, “Radiative properties of Eu II and Eu III obtained from lifetime and branching ratio measurements,” J. Phys. B 33, 521–526 (2000).
[CrossRef]

1999 (1)

S. Rochester, C. J. Bowers, D. Budker, D. DeMille, and M. Zolotorev, “Measurement of lifetimes and tensor polarizabilities of odd-parity states of atomic samarium,” Phys. Rev. A 59, 3480–3494 (1999).
[CrossRef]

1997 (1)

U. Berzinsh, L. Caiyan, R. Zern, S. Svanberg, and É. Biémont, “Determination of radiative lifetimes of neutral sulfur by time-resolved vacuum-ultraviolet laser spectroscopy,” Phys. Rev. A 55, 1836–1841 (1997).
[CrossRef]

1996 (1)

C. Sneden, A. McWilliam, G. W. Preston, J. J. Cowan, D. L. Burris, and B. J. Armosky, “The ultra-metal-poor, neutron-capture-rich giant star Cs 22892–052,” Astrophys. J. 467, 819–840 (1996).
[CrossRef]

1995 (1)

A. McWilliam, G. W. Preston, C. Sneden, and L. Searle, “Spectroscopic analysis of 33 of the most metal poor stars,” Astron. J. 109, 2757–2799 (1995).
[CrossRef]

1994 (1)

R. G. Gratton and C. Sneden, “Abundances of neutron-capture elements in metal-poor stars,” Astron. Astrophys. 287, 927–946 (1994).

1985 (2)

P. Hannaford and R. M. Lowe, “Radiative lifetimes of low-lying levels in Sm I,” J. Phys. B 18, 2365–2370 (1985).
[CrossRef]

P. Kulina and R. H. Rinkleff, “Tensor polarizabilities and lifetimes of levels of the configurations 4f66s6p and 4f55d6s2 in Samarium I,” Z. Phys. A 321, 15–21 (1985).
[CrossRef]

1984 (1)

C. E. Theodosiou, “Lifetime of alkali-metal–atom Rydberg states,” Phys. Rev. A 30, 2881–2909 (1984).
[CrossRef]

1978 (1)

J. Marek and P. Münster, “Lifetime measurements of some levels of Sm I by use of dye laser excitation,” Astron. Astrophys. 62, 245–247 (1978).

1977 (1)

K. B. Blagoev, V. A. Komarovskii, and N. P. Penkin, “Lifetimes of excited states of the samarium atom,” Opt. Spectrosc. 42, 238–239 (1977).

1969 (1)

E. Handrich, A. Steudel, R. Wallenstein, and H. Walther, “Level crossing experiments in the Tm I and Sm I spectra,” J. Phys. Colloq. 30, 18–23 (1969).
[CrossRef]

1962 (1)

C. H. Corliss and W. R. Bozman, “Experimental transition probabilities for spectral lines of seventy elements: derived from the NBS Tables of spectral-line intensities,” NBS Monogr. 53, 365–369 (1962).

Armosky, B. J.

C. Sneden, A. McWilliam, G. W. Preston, J. J. Cowan, D. L. Burris, and B. J. Armosky, “The ultra-metal-poor, neutron-capture-rich giant star Cs 22892–052,” Astrophys. J. 467, 819–840 (1996).
[CrossRef]

Beers, T. C.

E. A. Den Hartog, M. T. Herd, J. E. Lawler, C. Sneden, J. J. Cowan, and T. C. Beers, “Improved laboratory transition probabilities for Pt I and application to the platinum abundances of BD+17°3248 and the sun,” Astrophys. J. 619, 639–655 (2005).
[CrossRef]

Berzinsh, U.

U. Berzinsh, L. Caiyan, R. Zern, S. Svanberg, and É. Biémont, “Determination of radiative lifetimes of neutral sulfur by time-resolved vacuum-ultraviolet laser spectroscopy,” Phys. Rev. A 55, 1836–1841 (1997).
[CrossRef]

Biémont, É.

Z. Dai, Z. Jiang, H. Xu, Z. Zhang, S. Svanberg, É. Biémont, P. H. Lefèbvre, and P. Quinet, “Time-resolved laser-induced fluorescence measurements of Rydberg states in Lu I and comparison with theory,” J. Phys. B 36, 479–487 (2003).
[CrossRef]

Z. Zhang, S. Svanberg, P. Quinet, P. Palmeri, and É. Biémont, “Time-resolved laser spectroscopy of multiply ionized atoms: natural radiative lifetimes in Ce IV,” Phys. Rev. Lett. 87, 273001 (2001).
[CrossRef]

U. Berzinsh, L. Caiyan, R. Zern, S. Svanberg, and É. Biémont, “Determination of radiative lifetimes of neutral sulfur by time-resolved vacuum-ultraviolet laser spectroscopy,” Phys. Rev. A 55, 1836–1841 (1997).
[CrossRef]

Blagoev, K.

R. Mayo, J. Campos, M. Ortiz, H. Xu, S. Svanberg, G. Malcheva, and K. Blagoev, “Radiative lifetimes of Zr III excited levels,” Eur. Phys. J. D 40, 169–173 (2006).
[CrossRef]

Blagoev, K. B.

K. B. Blagoev, V. A. Komarovskii, and N. P. Penkin, “Lifetimes of excited states of the samarium atom,” Opt. Spectrosc. 42, 238–239 (1977).

Bowers, C. J.

S. Rochester, C. J. Bowers, D. Budker, D. DeMille, and M. Zolotorev, “Measurement of lifetimes and tensor polarizabilities of odd-parity states of atomic samarium,” Phys. Rev. A 59, 3480–3494 (1999).
[CrossRef]

Bozman, W. R.

C. H. Corliss and W. R. Bozman, “Experimental transition probabilities for spectral lines of seventy elements: derived from the NBS Tables of spectral-line intensities,” NBS Monogr. 53, 365–369 (1962).

Budker, D.

S. Rochester, C. J. Bowers, D. Budker, D. DeMille, and M. Zolotorev, “Measurement of lifetimes and tensor polarizabilities of odd-parity states of atomic samarium,” Phys. Rev. A 59, 3480–3494 (1999).
[CrossRef]

Buettner, K. P.

E. A. Den Hartog, K. P. Buettner, and J. E. Lawler, “Radiative lifetimes of neutral cerium,” J. Phys. B 42, 085006 (2009).
[CrossRef]

Burris, D. L.

C. Sneden, A. McWilliam, G. W. Preston, J. J. Cowan, D. L. Burris, and B. J. Armosky, “The ultra-metal-poor, neutron-capture-rich giant star Cs 22892–052,” Astrophys. J. 467, 819–840 (1996).
[CrossRef]

Caiyan, L.

U. Berzinsh, L. Caiyan, R. Zern, S. Svanberg, and É. Biémont, “Determination of radiative lifetimes of neutral sulfur by time-resolved vacuum-ultraviolet laser spectroscopy,” Phys. Rev. A 55, 1836–1841 (1997).
[CrossRef]

Campos, J.

R. Mayo, J. Campos, M. Ortiz, H. Xu, S. Svanberg, G. Malcheva, and K. Blagoev, “Radiative lifetimes of Zr III excited levels,” Eur. Phys. J. D 40, 169–173 (2006).
[CrossRef]

Corliss, C. H.

C. H. Corliss and W. R. Bozman, “Experimental transition probabilities for spectral lines of seventy elements: derived from the NBS Tables of spectral-line intensities,” NBS Monogr. 53, 365–369 (1962).

Cowan, J. J.

J. E. Lawler, C. Sneden, J. J. Cowan, I. I. Ivans, and E. A. Den Hartog, “Improved laboratory transition probabilities for Ce II, application to the cerium abundances of the sun and five γ-process-rich, metal-poor stars, and rare earth lab data summary,” Astrophys. J., Suppl. Ser. 182, 51–79 (2009).
[CrossRef]

E. A. Den Hartog, M. T. Herd, J. E. Lawler, C. Sneden, J. J. Cowan, and T. C. Beers, “Improved laboratory transition probabilities for Pt I and application to the platinum abundances of BD+17°3248 and the sun,” Astrophys. J. 619, 639–655 (2005).
[CrossRef]

E. A. Den Hartog, J. E. Lawler, C. Sneden, and J. J. Cowan, “Improved laboratory transition probabilities for Nd II and application to the neodymium abundances of the sun and three metal-poor stars,” Astrophys. J., Suppl. Ser. 148, 543–566 (2003).
[CrossRef]

C. Sneden, A. McWilliam, G. W. Preston, J. J. Cowan, D. L. Burris, and B. J. Armosky, “The ultra-metal-poor, neutron-capture-rich giant star Cs 22892–052,” Astrophys. J. 467, 819–840 (1996).
[CrossRef]

Dai, Z.

Z. Dai, Z. Jiang, H. Xu, Z. Zhang, S. Svanberg, É. Biémont, P. H. Lefèbvre, and P. Quinet, “Time-resolved laser-induced fluorescence measurements of Rydberg states in Lu I and comparison with theory,” J. Phys. B 36, 479–487 (2003).
[CrossRef]

Z. Zhang, Z. Li, H. Lundberg, K. Zhang, Z. Dai, Z. Jiang, and S. Svanberg, “Radiative properties of Eu II and Eu III obtained from lifetime and branching ratio measurements,” J. Phys. B 33, 521–526 (2000).
[CrossRef]

DeMille, D.

S. Rochester, C. J. Bowers, D. Budker, D. DeMille, and M. Zolotorev, “Measurement of lifetimes and tensor polarizabilities of odd-parity states of atomic samarium,” Phys. Rev. A 59, 3480–3494 (1999).
[CrossRef]

Den Hartog, E. A.

J. E. Lawler, C. Sneden, J. J. Cowan, I. I. Ivans, and E. A. Den Hartog, “Improved laboratory transition probabilities for Ce II, application to the cerium abundances of the sun and five γ-process-rich, metal-poor stars, and rare earth lab data summary,” Astrophys. J., Suppl. Ser. 182, 51–79 (2009).
[CrossRef]

E. A. Den Hartog, K. P. Buettner, and J. E. Lawler, “Radiative lifetimes of neutral cerium,” J. Phys. B 42, 085006 (2009).
[CrossRef]

E. A. Den Hartog, M. T. Herd, J. E. Lawler, C. Sneden, J. J. Cowan, and T. C. Beers, “Improved laboratory transition probabilities for Pt I and application to the platinum abundances of BD+17°3248 and the sun,” Astrophys. J. 619, 639–655 (2005).
[CrossRef]

E. A. Den Hartog, J. E. Lawler, C. Sneden, and J. J. Cowan, “Improved laboratory transition probabilities for Nd II and application to the neodymium abundances of the sun and three metal-poor stars,” Astrophys. J., Suppl. Ser. 148, 543–566 (2003).
[CrossRef]

J. E. Lawler, M. E. Wickliffe, E. A. Den Hartog, and C. Sneden, “Improved laboratory transition parameters for Eu II and application to the solar europium element and isotopic composition,” Astrophys. J. 563, 1075–1088 (2001).
[CrossRef]

Gratton, R. G.

R. G. Gratton and C. Sneden, “Abundances of neutron-capture elements in metal-poor stars,” Astron. Astrophys. 287, 927–946 (1994).

Gupta, G. P.

Handrich, E.

E. Handrich, A. Steudel, R. Wallenstein, and H. Walther, “Level crossing experiments in the Tm I and Sm I spectra,” J. Phys. Colloq. 30, 18–23 (1969).
[CrossRef]

Hannaford, P.

P. Hannaford and R. M. Lowe, “Radiative lifetimes of low-lying levels in Sm I,” J. Phys. B 18, 2365–2370 (1985).
[CrossRef]

Herd, M. T.

E. A. Den Hartog, M. T. Herd, J. E. Lawler, C. Sneden, J. J. Cowan, and T. C. Beers, “Improved laboratory transition probabilities for Pt I and application to the platinum abundances of BD+17°3248 and the sun,” Astrophys. J. 619, 639–655 (2005).
[CrossRef]

Ivans, I. I.

J. E. Lawler, C. Sneden, J. J. Cowan, I. I. Ivans, and E. A. Den Hartog, “Improved laboratory transition probabilities for Ce II, application to the cerium abundances of the sun and five γ-process-rich, metal-poor stars, and rare earth lab data summary,” Astrophys. J., Suppl. Ser. 182, 51–79 (2009).
[CrossRef]

Jaschek, C.

C. Jaschek and M. Jaschek, The Behavior of Chemical Elements in Stars (Cambridge University Press, 1995).
[CrossRef]

Jaschek, M.

C. Jaschek and M. Jaschek, The Behavior of Chemical Elements in Stars (Cambridge University Press, 1995).
[CrossRef]

Jiang, Z.

Z. Dai, Z. Jiang, H. Xu, Z. Zhang, S. Svanberg, É. Biémont, P. H. Lefèbvre, and P. Quinet, “Time-resolved laser-induced fluorescence measurements of Rydberg states in Lu I and comparison with theory,” J. Phys. B 36, 479–487 (2003).
[CrossRef]

Z. Zhang, Z. Li, H. Lundberg, K. Zhang, Z. Dai, Z. Jiang, and S. Svanberg, “Radiative properties of Eu II and Eu III obtained from lifetime and branching ratio measurements,” J. Phys. B 33, 521–526 (2000).
[CrossRef]

Komarovskii, V. A.

K. B. Blagoev, V. A. Komarovskii, and N. P. Penkin, “Lifetimes of excited states of the samarium atom,” Opt. Spectrosc. 42, 238–239 (1977).

Kulina, P.

P. Kulina and R. H. Rinkleff, “Tensor polarizabilities and lifetimes of levels of the configurations 4f66s6p and 4f55d6s2 in Samarium I,” Z. Phys. A 321, 15–21 (1985).
[CrossRef]

Lawler, J. E.

E. A. Den Hartog, K. P. Buettner, and J. E. Lawler, “Radiative lifetimes of neutral cerium,” J. Phys. B 42, 085006 (2009).
[CrossRef]

J. E. Lawler, C. Sneden, J. J. Cowan, I. I. Ivans, and E. A. Den Hartog, “Improved laboratory transition probabilities for Ce II, application to the cerium abundances of the sun and five γ-process-rich, metal-poor stars, and rare earth lab data summary,” Astrophys. J., Suppl. Ser. 182, 51–79 (2009).
[CrossRef]

E. A. Den Hartog, M. T. Herd, J. E. Lawler, C. Sneden, J. J. Cowan, and T. C. Beers, “Improved laboratory transition probabilities for Pt I and application to the platinum abundances of BD+17°3248 and the sun,” Astrophys. J. 619, 639–655 (2005).
[CrossRef]

E. A. Den Hartog, J. E. Lawler, C. Sneden, and J. J. Cowan, “Improved laboratory transition probabilities for Nd II and application to the neodymium abundances of the sun and three metal-poor stars,” Astrophys. J., Suppl. Ser. 148, 543–566 (2003).
[CrossRef]

J. E. Lawler, M. E. Wickliffe, E. A. Den Hartog, and C. Sneden, “Improved laboratory transition parameters for Eu II and application to the solar europium element and isotopic composition,” Astrophys. J. 563, 1075–1088 (2001).
[CrossRef]

Lefèbvre, P. H.

Z. Dai, Z. Jiang, H. Xu, Z. Zhang, S. Svanberg, É. Biémont, P. H. Lefèbvre, and P. Quinet, “Time-resolved laser-induced fluorescence measurements of Rydberg states in Lu I and comparison with theory,” J. Phys. B 36, 479–487 (2003).
[CrossRef]

Li, Z.

Z. Zhang, Z. Li, H. Lundberg, K. Zhang, Z. Dai, Z. Jiang, and S. Svanberg, “Radiative properties of Eu II and Eu III obtained from lifetime and branching ratio measurements,” J. Phys. B 33, 521–526 (2000).
[CrossRef]

Lowe, R. M.

P. Hannaford and R. M. Lowe, “Radiative lifetimes of low-lying levels in Sm I,” J. Phys. B 18, 2365–2370 (1985).
[CrossRef]

Lundberg, H.

Z. Zhang, Z. Li, H. Lundberg, K. Zhang, Z. Dai, Z. Jiang, and S. Svanberg, “Radiative properties of Eu II and Eu III obtained from lifetime and branching ratio measurements,” J. Phys. B 33, 521–526 (2000).
[CrossRef]

Malcheva, G.

R. Mayo, J. Campos, M. Ortiz, H. Xu, S. Svanberg, G. Malcheva, and K. Blagoev, “Radiative lifetimes of Zr III excited levels,” Eur. Phys. J. D 40, 169–173 (2006).
[CrossRef]

Marek, J.

J. Marek and P. Münster, “Lifetime measurements of some levels of Sm I by use of dye laser excitation,” Astron. Astrophys. 62, 245–247 (1978).

Mayo, R.

R. Mayo, J. Campos, M. Ortiz, H. Xu, S. Svanberg, G. Malcheva, and K. Blagoev, “Radiative lifetimes of Zr III excited levels,” Eur. Phys. J. D 40, 169–173 (2006).
[CrossRef]

McWilliam, A.

C. Sneden, A. McWilliam, G. W. Preston, J. J. Cowan, D. L. Burris, and B. J. Armosky, “The ultra-metal-poor, neutron-capture-rich giant star Cs 22892–052,” Astrophys. J. 467, 819–840 (1996).
[CrossRef]

A. McWilliam, G. W. Preston, C. Sneden, and L. Searle, “Spectroscopic analysis of 33 of the most metal poor stars,” Astron. J. 109, 2757–2799 (1995).
[CrossRef]

Münster, P.

J. Marek and P. Münster, “Lifetime measurements of some levels of Sm I by use of dye laser excitation,” Astron. Astrophys. 62, 245–247 (1978).

Ortiz, M.

R. Mayo, J. Campos, M. Ortiz, H. Xu, S. Svanberg, G. Malcheva, and K. Blagoev, “Radiative lifetimes of Zr III excited levels,” Eur. Phys. J. D 40, 169–173 (2006).
[CrossRef]

Palmeri, P.

Z. Zhang, S. Svanberg, P. Quinet, P. Palmeri, and É. Biémont, “Time-resolved laser spectroscopy of multiply ionized atoms: natural radiative lifetimes in Ce IV,” Phys. Rev. Lett. 87, 273001 (2001).
[CrossRef]

Penkin, N. P.

K. B. Blagoev, V. A. Komarovskii, and N. P. Penkin, “Lifetimes of excited states of the samarium atom,” Opt. Spectrosc. 42, 238–239 (1977).

Preston, G. W.

C. Sneden, A. McWilliam, G. W. Preston, J. J. Cowan, D. L. Burris, and B. J. Armosky, “The ultra-metal-poor, neutron-capture-rich giant star Cs 22892–052,” Astrophys. J. 467, 819–840 (1996).
[CrossRef]

A. McWilliam, G. W. Preston, C. Sneden, and L. Searle, “Spectroscopic analysis of 33 of the most metal poor stars,” Astron. J. 109, 2757–2799 (1995).
[CrossRef]

Pulhani, A. K.

Quinet, P.

Z. Dai, Z. Jiang, H. Xu, Z. Zhang, S. Svanberg, É. Biémont, P. H. Lefèbvre, and P. Quinet, “Time-resolved laser-induced fluorescence measurements of Rydberg states in Lu I and comparison with theory,” J. Phys. B 36, 479–487 (2003).
[CrossRef]

Z. Zhang, S. Svanberg, P. Quinet, P. Palmeri, and É. Biémont, “Time-resolved laser spectroscopy of multiply ionized atoms: natural radiative lifetimes in Ce IV,” Phys. Rev. Lett. 87, 273001 (2001).
[CrossRef]

Rinkleff, R. H.

P. Kulina and R. H. Rinkleff, “Tensor polarizabilities and lifetimes of levels of the configurations 4f66s6p and 4f55d6s2 in Samarium I,” Z. Phys. A 321, 15–21 (1985).
[CrossRef]

Rochester, S.

S. Rochester, C. J. Bowers, D. Budker, D. DeMille, and M. Zolotorev, “Measurement of lifetimes and tensor polarizabilities of odd-parity states of atomic samarium,” Phys. Rev. A 59, 3480–3494 (1999).
[CrossRef]

Searle, L.

A. McWilliam, G. W. Preston, C. Sneden, and L. Searle, “Spectroscopic analysis of 33 of the most metal poor stars,” Astron. J. 109, 2757–2799 (1995).
[CrossRef]

Shah, M. L.

Sneden, C.

J. E. Lawler, C. Sneden, J. J. Cowan, I. I. Ivans, and E. A. Den Hartog, “Improved laboratory transition probabilities for Ce II, application to the cerium abundances of the sun and five γ-process-rich, metal-poor stars, and rare earth lab data summary,” Astrophys. J., Suppl. Ser. 182, 51–79 (2009).
[CrossRef]

E. A. Den Hartog, M. T. Herd, J. E. Lawler, C. Sneden, J. J. Cowan, and T. C. Beers, “Improved laboratory transition probabilities for Pt I and application to the platinum abundances of BD+17°3248 and the sun,” Astrophys. J. 619, 639–655 (2005).
[CrossRef]

E. A. Den Hartog, J. E. Lawler, C. Sneden, and J. J. Cowan, “Improved laboratory transition probabilities for Nd II and application to the neodymium abundances of the sun and three metal-poor stars,” Astrophys. J., Suppl. Ser. 148, 543–566 (2003).
[CrossRef]

J. E. Lawler, M. E. Wickliffe, E. A. Den Hartog, and C. Sneden, “Improved laboratory transition parameters for Eu II and application to the solar europium element and isotopic composition,” Astrophys. J. 563, 1075–1088 (2001).
[CrossRef]

C. Sneden, A. McWilliam, G. W. Preston, J. J. Cowan, D. L. Burris, and B. J. Armosky, “The ultra-metal-poor, neutron-capture-rich giant star Cs 22892–052,” Astrophys. J. 467, 819–840 (1996).
[CrossRef]

A. McWilliam, G. W. Preston, C. Sneden, and L. Searle, “Spectroscopic analysis of 33 of the most metal poor stars,” Astron. J. 109, 2757–2799 (1995).
[CrossRef]

R. G. Gratton and C. Sneden, “Abundances of neutron-capture elements in metal-poor stars,” Astron. Astrophys. 287, 927–946 (1994).

Steudel, A.

E. Handrich, A. Steudel, R. Wallenstein, and H. Walther, “Level crossing experiments in the Tm I and Sm I spectra,” J. Phys. Colloq. 30, 18–23 (1969).
[CrossRef]

Suri, B. M.

Svanberg, S.

R. Mayo, J. Campos, M. Ortiz, H. Xu, S. Svanberg, G. Malcheva, and K. Blagoev, “Radiative lifetimes of Zr III excited levels,” Eur. Phys. J. D 40, 169–173 (2006).
[CrossRef]

Z. Dai, Z. Jiang, H. Xu, Z. Zhang, S. Svanberg, É. Biémont, P. H. Lefèbvre, and P. Quinet, “Time-resolved laser-induced fluorescence measurements of Rydberg states in Lu I and comparison with theory,” J. Phys. B 36, 479–487 (2003).
[CrossRef]

Z. Zhang, S. Svanberg, P. Quinet, P. Palmeri, and É. Biémont, “Time-resolved laser spectroscopy of multiply ionized atoms: natural radiative lifetimes in Ce IV,” Phys. Rev. Lett. 87, 273001 (2001).
[CrossRef]

Z. Zhang, Z. Li, H. Lundberg, K. Zhang, Z. Dai, Z. Jiang, and S. Svanberg, “Radiative properties of Eu II and Eu III obtained from lifetime and branching ratio measurements,” J. Phys. B 33, 521–526 (2000).
[CrossRef]

U. Berzinsh, L. Caiyan, R. Zern, S. Svanberg, and É. Biémont, “Determination of radiative lifetimes of neutral sulfur by time-resolved vacuum-ultraviolet laser spectroscopy,” Phys. Rev. A 55, 1836–1841 (1997).
[CrossRef]

Theodosiou, C. E.

C. E. Theodosiou, “Lifetime of alkali-metal–atom Rydberg states,” Phys. Rev. A 30, 2881–2909 (1984).
[CrossRef]

Wallenstein, R.

E. Handrich, A. Steudel, R. Wallenstein, and H. Walther, “Level crossing experiments in the Tm I and Sm I spectra,” J. Phys. Colloq. 30, 18–23 (1969).
[CrossRef]

Walther, H.

E. Handrich, A. Steudel, R. Wallenstein, and H. Walther, “Level crossing experiments in the Tm I and Sm I spectra,” J. Phys. Colloq. 30, 18–23 (1969).
[CrossRef]

Wickliffe, M. E.

J. E. Lawler, M. E. Wickliffe, E. A. Den Hartog, and C. Sneden, “Improved laboratory transition parameters for Eu II and application to the solar europium element and isotopic composition,” Astrophys. J. 563, 1075–1088 (2001).
[CrossRef]

Xu, H.

R. Mayo, J. Campos, M. Ortiz, H. Xu, S. Svanberg, G. Malcheva, and K. Blagoev, “Radiative lifetimes of Zr III excited levels,” Eur. Phys. J. D 40, 169–173 (2006).
[CrossRef]

Z. Dai, Z. Jiang, H. Xu, Z. Zhang, S. Svanberg, É. Biémont, P. H. Lefèbvre, and P. Quinet, “Time-resolved laser-induced fluorescence measurements of Rydberg states in Lu I and comparison with theory,” J. Phys. B 36, 479–487 (2003).
[CrossRef]

Zern, R.

U. Berzinsh, L. Caiyan, R. Zern, S. Svanberg, and É. Biémont, “Determination of radiative lifetimes of neutral sulfur by time-resolved vacuum-ultraviolet laser spectroscopy,” Phys. Rev. A 55, 1836–1841 (1997).
[CrossRef]

Zhang, K.

Z. Zhang, Z. Li, H. Lundberg, K. Zhang, Z. Dai, Z. Jiang, and S. Svanberg, “Radiative properties of Eu II and Eu III obtained from lifetime and branching ratio measurements,” J. Phys. B 33, 521–526 (2000).
[CrossRef]

Zhang, Z.

Z. Dai, Z. Jiang, H. Xu, Z. Zhang, S. Svanberg, É. Biémont, P. H. Lefèbvre, and P. Quinet, “Time-resolved laser-induced fluorescence measurements of Rydberg states in Lu I and comparison with theory,” J. Phys. B 36, 479–487 (2003).
[CrossRef]

Z. Zhang, S. Svanberg, P. Quinet, P. Palmeri, and É. Biémont, “Time-resolved laser spectroscopy of multiply ionized atoms: natural radiative lifetimes in Ce IV,” Phys. Rev. Lett. 87, 273001 (2001).
[CrossRef]

Z. Zhang, Z. Li, H. Lundberg, K. Zhang, Z. Dai, Z. Jiang, and S. Svanberg, “Radiative properties of Eu II and Eu III obtained from lifetime and branching ratio measurements,” J. Phys. B 33, 521–526 (2000).
[CrossRef]

Zolotorev, M.

S. Rochester, C. J. Bowers, D. Budker, D. DeMille, and M. Zolotorev, “Measurement of lifetimes and tensor polarizabilities of odd-parity states of atomic samarium,” Phys. Rev. A 59, 3480–3494 (1999).
[CrossRef]

Astron. Astrophys. (2)

R. G. Gratton and C. Sneden, “Abundances of neutron-capture elements in metal-poor stars,” Astron. Astrophys. 287, 927–946 (1994).

J. Marek and P. Münster, “Lifetime measurements of some levels of Sm I by use of dye laser excitation,” Astron. Astrophys. 62, 245–247 (1978).

Astron. J. (1)

A. McWilliam, G. W. Preston, C. Sneden, and L. Searle, “Spectroscopic analysis of 33 of the most metal poor stars,” Astron. J. 109, 2757–2799 (1995).
[CrossRef]

Astrophys. J. (3)

C. Sneden, A. McWilliam, G. W. Preston, J. J. Cowan, D. L. Burris, and B. J. Armosky, “The ultra-metal-poor, neutron-capture-rich giant star Cs 22892–052,” Astrophys. J. 467, 819–840 (1996).
[CrossRef]

J. E. Lawler, M. E. Wickliffe, E. A. Den Hartog, and C. Sneden, “Improved laboratory transition parameters for Eu II and application to the solar europium element and isotopic composition,” Astrophys. J. 563, 1075–1088 (2001).
[CrossRef]

E. A. Den Hartog, M. T. Herd, J. E. Lawler, C. Sneden, J. J. Cowan, and T. C. Beers, “Improved laboratory transition probabilities for Pt I and application to the platinum abundances of BD+17°3248 and the sun,” Astrophys. J. 619, 639–655 (2005).
[CrossRef]

Astrophys. J., Suppl. Ser. (2)

E. A. Den Hartog, J. E. Lawler, C. Sneden, and J. J. Cowan, “Improved laboratory transition probabilities for Nd II and application to the neodymium abundances of the sun and three metal-poor stars,” Astrophys. J., Suppl. Ser. 148, 543–566 (2003).
[CrossRef]

J. E. Lawler, C. Sneden, J. J. Cowan, I. I. Ivans, and E. A. Den Hartog, “Improved laboratory transition probabilities for Ce II, application to the cerium abundances of the sun and five γ-process-rich, metal-poor stars, and rare earth lab data summary,” Astrophys. J., Suppl. Ser. 182, 51–79 (2009).
[CrossRef]

Eur. Phys. J. D (1)

R. Mayo, J. Campos, M. Ortiz, H. Xu, S. Svanberg, G. Malcheva, and K. Blagoev, “Radiative lifetimes of Zr III excited levels,” Eur. Phys. J. D 40, 169–173 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (4)

Z. Dai, Z. Jiang, H. Xu, Z. Zhang, S. Svanberg, É. Biémont, P. H. Lefèbvre, and P. Quinet, “Time-resolved laser-induced fluorescence measurements of Rydberg states in Lu I and comparison with theory,” J. Phys. B 36, 479–487 (2003).
[CrossRef]

P. Hannaford and R. M. Lowe, “Radiative lifetimes of low-lying levels in Sm I,” J. Phys. B 18, 2365–2370 (1985).
[CrossRef]

E. A. Den Hartog, K. P. Buettner, and J. E. Lawler, “Radiative lifetimes of neutral cerium,” J. Phys. B 42, 085006 (2009).
[CrossRef]

Z. Zhang, Z. Li, H. Lundberg, K. Zhang, Z. Dai, Z. Jiang, and S. Svanberg, “Radiative properties of Eu II and Eu III obtained from lifetime and branching ratio measurements,” J. Phys. B 33, 521–526 (2000).
[CrossRef]

J. Phys. Colloq. (1)

E. Handrich, A. Steudel, R. Wallenstein, and H. Walther, “Level crossing experiments in the Tm I and Sm I spectra,” J. Phys. Colloq. 30, 18–23 (1969).
[CrossRef]

NBS Monogr. (1)

C. H. Corliss and W. R. Bozman, “Experimental transition probabilities for spectral lines of seventy elements: derived from the NBS Tables of spectral-line intensities,” NBS Monogr. 53, 365–369 (1962).

Opt. Spectrosc. (1)

K. B. Blagoev, V. A. Komarovskii, and N. P. Penkin, “Lifetimes of excited states of the samarium atom,” Opt. Spectrosc. 42, 238–239 (1977).

Phys. Rev. A (3)

U. Berzinsh, L. Caiyan, R. Zern, S. Svanberg, and É. Biémont, “Determination of radiative lifetimes of neutral sulfur by time-resolved vacuum-ultraviolet laser spectroscopy,” Phys. Rev. A 55, 1836–1841 (1997).
[CrossRef]

S. Rochester, C. J. Bowers, D. Budker, D. DeMille, and M. Zolotorev, “Measurement of lifetimes and tensor polarizabilities of odd-parity states of atomic samarium,” Phys. Rev. A 59, 3480–3494 (1999).
[CrossRef]

C. E. Theodosiou, “Lifetime of alkali-metal–atom Rydberg states,” Phys. Rev. A 30, 2881–2909 (1984).
[CrossRef]

Phys. Rev. Lett. (1)

Z. Zhang, S. Svanberg, P. Quinet, P. Palmeri, and É. Biémont, “Time-resolved laser spectroscopy of multiply ionized atoms: natural radiative lifetimes in Ce IV,” Phys. Rev. Lett. 87, 273001 (2001).
[CrossRef]

Z. Phys. A (1)

P. Kulina and R. H. Rinkleff, “Tensor polarizabilities and lifetimes of levels of the configurations 4f66s6p and 4f55d6s2 in Samarium I,” Z. Phys. A 321, 15–21 (1985).
[CrossRef]

Other (2)

C. Jaschek and M. Jaschek, The Behavior of Chemical Elements in Stars (Cambridge University Press, 1995).
[CrossRef]

NIST Atomic Spectra Database, Version 3.0 http://physics.nist.gov/cgi-bin/ASD/energy1.pl.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup used for lifetime measurements.

Fig. 2
Fig. 2

Partial energy-level diagram of Sm atom and excitation schemes. The solid lines indicate the excitation pathway, and the dashed lines show the fluorescence channel. All energies are expressed in cm 1 .

Fig. 3
Fig. 3

Typical fluorescence decay curve of the 23 , 986.48 cm 1 level with an exponential fitting for lifetime evaluation.

Fig. 4
Fig. 4

Fluorescence decay curve of the 32 , 822.82 cm 1 level together with the fitted convolution curve between the laser pulse and an exponential with a decay constant of 21.6 ns.

Fig. 5
Fig. 5

Level diagram of the 18,985.70 and 30 , 619.60 cm 1 levels and excitation channels. The solid lines indicate the transition channel of 18 , 985.70 cm 1 , and the dashed lines show the transition channel of 30 , 619.60 cm 1 level. All energies are expressed in cm 1 .

Tables (1)

Tables Icon

Table 1 Measured Lifetimes for Odd-Parity Levels Sm I in Comparison with Previous Results; Excitation (Exc.) and Fluorescence (Obs.) Wavelengths Also Given

Metrics