Abstract

We present what we believe to be a novel high-efficiency photonic crystal polarization beam splitter that consists of a polarizing photonic crystal slab embedded in a two-dimensional self-collimating square lattice photonic crystal of air holes in silicon. The polarizing photonic crystal slab with the same lattice constant as the self-collimating photonic crystal background exhibits not only high reflection for transverse electric (TE) and high transmission for transverse magnetic (TM) polarization, but also high extinction ratios for both two-polarization output channels. Moreover, high-efficiency common antireflection structures for both TE and TM polarizations are applied at the input and output ends of the photonic crystal polarization beam splitter, thereby enabling one to achieve a highly efficient photonic crystal polarization beam splitter. It is shown that the primary transmissions exceeding 94.04% for TE and 92.39% for TM polarization output channels are achieved through the proposed photonic crystal polarization beam splitter.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).
  4. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
    [CrossRef]
  5. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Negative refraction by photonic crystals,” Nature 423, 604–605 (2003).
    [CrossRef] [PubMed]
  6. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
    [CrossRef]
  7. J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002).
    [CrossRef]
  8. S. Kim, G. P. Nordin, J. Cai, and J. Jiang, “Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure,” Opt. Lett. 28, 2384–2386 (2003).
    [CrossRef] [PubMed]
  9. X. Y. Ao and S. L. He, “Polarization beam splitters based on a two-dimensional photonic crystal of negative refraction,” Opt. Lett. 30, 2152–2154 (2005).
    [CrossRef] [PubMed]
  10. E. Schonbrun, Q. Wu, W. Park, T. Yamashita, and C. J. Summers, “Polarization beam splitter based on a photonic crystal heterostructure,” Opt. Lett. 31, 3104–3106 (2006).
    [CrossRef] [PubMed]
  11. V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdré, M. V. Kotlyar, L. O’Faolin, and T. F. Krauss, “Self-collimating photonic crystal polarization beam splitter,” Opt. Lett. 32, 530–532 (2007).
    [CrossRef] [PubMed]
  12. S.-G. Lee, J.-s. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Reflection minimization at two-dimensional photonic crystal interfaces,” Opt. Express 16, 4270–4277 (2008).
    [CrossRef] [PubMed]
  13. J.-M. Park, S.-G. Lee, H. Y. Park, and J.-E. Kim, “Efficient beaming of self-collimated light from photonic crystals,” Opt. Express 16, 20354–20367 (2008).
    [CrossRef] [PubMed]
  14. S.-G. Lee, M. Yi, J. Ahn, J.-E. Kim, and H. Y. Park, “Optimization of photonic crystal interfaces for high efficient coupling of terahertz waves,” in International Conference on Infrared and Millimeter Waves/THz Electronics (IRMMW-THz 2008) (IEEE, 2008), pp. 1–2.
    [CrossRef]
  15. J.-M. Park, S.-G. Lee, H. Y. Park, J.-E. Kim, and M.-H. Lee, “High-efficiency antireflection structures for terahertz self-collimating photonic crystals,” J. Opt. Soc. Am. B 26, 1967–1974 (2009).
    [CrossRef]
  16. T.-T. Kim, S.-G. Lee, M.-W. Kim, H. Y. Park, and J.-E. Kim, “Experimental demonstration of reflection minimization at two-dimensional photonic crystal interfaces via antireflection structures,” Appl. Phys. Lett. 95, 011119 (2009).
    [CrossRef]
  17. J.-M. Park, S.-G. Lee, H.-R. Park, and M.-H. Lee, “Self-collimating photonic crystal antireflection structure for both TE and TM polarizations,” Opt. Express 18, 13083–13093 (2010).
    [CrossRef] [PubMed]
  18. K. S. Yee, “Numerical solution of initial boundary problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).
  19. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
    [CrossRef]
  20. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
    [CrossRef] [PubMed]
  21. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [CrossRef] [PubMed]
  22. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999), pp. 63–74.
  23. F. J. Lawrence, L. C. Botten, K. B. Dossou, and C. Martijn de Sterke, “Antireflection coatings for two-dimensional photonic crystals using a rigorous impedance definition,” Appl. Phys. Lett. 93, 121114 (2008).
    [CrossRef]
  24. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
    [CrossRef] [PubMed]
  25. S. Adachi, “Model dielectric constants of Si and Ge,” Phys. Rev. B 38, 12966–12976 (1988).
    [CrossRef]

2010 (2)

J.-M. Park, S.-G. Lee, H.-R. Park, and M.-H. Lee, “Self-collimating photonic crystal antireflection structure for both TE and TM polarizations,” Opt. Express 18, 13083–13093 (2010).
[CrossRef] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef] [PubMed]

2009 (2)

J.-M. Park, S.-G. Lee, H. Y. Park, J.-E. Kim, and M.-H. Lee, “High-efficiency antireflection structures for terahertz self-collimating photonic crystals,” J. Opt. Soc. Am. B 26, 1967–1974 (2009).
[CrossRef]

T.-T. Kim, S.-G. Lee, M.-W. Kim, H. Y. Park, and J.-E. Kim, “Experimental demonstration of reflection minimization at two-dimensional photonic crystal interfaces via antireflection structures,” Appl. Phys. Lett. 95, 011119 (2009).
[CrossRef]

2008 (3)

2007 (1)

2006 (1)

2005 (1)

2003 (2)

2002 (1)

J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002).
[CrossRef]

2001 (1)

1999 (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

1998 (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

1994 (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

1990 (1)

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[CrossRef] [PubMed]

1988 (1)

S. Adachi, “Model dielectric constants of Si and Ge,” Phys. Rev. B 38, 12966–12976 (1988).
[CrossRef]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

1966 (1)

K. S. Yee, “Numerical solution of initial boundary problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).

Adachi, S.

S. Adachi, “Model dielectric constants of Si and Ge,” Phys. Rev. B 38, 12966–12976 (1988).
[CrossRef]

Ahn, J.

S.-G. Lee, M. Yi, J. Ahn, J.-E. Kim, and H. Y. Park, “Optimization of photonic crystal interfaces for high efficient coupling of terahertz waves,” in International Conference on Infrared and Millimeter Waves/THz Electronics (IRMMW-THz 2008) (IEEE, 2008), pp. 1–2.
[CrossRef]

Ao, X. Y.

Aydin, K.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Negative refraction by photonic crystals,” Nature 423, 604–605 (2003).
[CrossRef] [PubMed]

Berenger, J. P.

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999), pp. 63–74.

Botten, L. C.

F. J. Lawrence, L. C. Botten, K. B. Dossou, and C. Martijn de Sterke, “Antireflection coatings for two-dimensional photonic crystals using a rigorous impedance definition,” Appl. Phys. Lett. 93, 121114 (2008).
[CrossRef]

Brenner, P.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef] [PubMed]

Cai, J.

Chan, C. T.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[CrossRef] [PubMed]

Choi, J. -s.

Cubukcu, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Negative refraction by photonic crystals,” Nature 423, 604–605 (2003).
[CrossRef] [PubMed]

Dossou, K. B.

F. J. Lawrence, L. C. Botten, K. B. Dossou, and C. Martijn de Sterke, “Antireflection coatings for two-dimensional photonic crystals using a rigorous impedance definition,” Appl. Phys. Lett. 93, 121114 (2008).
[CrossRef]

Dunbar, L. A.

Ergin, T.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef] [PubMed]

Foteinopoulou, S.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Negative refraction by photonic crystals,” Nature 423, 604–605 (2003).
[CrossRef] [PubMed]

He, S. L.

Ho, K. M.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[CrossRef] [PubMed]

Houdré, R.

Jiang, J.

Joannopoulos, J. D.

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[CrossRef] [PubMed]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Johnson, S. G.

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Kee, C. -S.

Kim, J. -E.

J.-M. Park, S.-G. Lee, H. Y. Park, J.-E. Kim, and M.-H. Lee, “High-efficiency antireflection structures for terahertz self-collimating photonic crystals,” J. Opt. Soc. Am. B 26, 1967–1974 (2009).
[CrossRef]

T.-T. Kim, S.-G. Lee, M.-W. Kim, H. Y. Park, and J.-E. Kim, “Experimental demonstration of reflection minimization at two-dimensional photonic crystal interfaces via antireflection structures,” Appl. Phys. Lett. 95, 011119 (2009).
[CrossRef]

J.-M. Park, S.-G. Lee, H. Y. Park, and J.-E. Kim, “Efficient beaming of self-collimated light from photonic crystals,” Opt. Express 16, 20354–20367 (2008).
[CrossRef] [PubMed]

S.-G. Lee, J.-s. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Reflection minimization at two-dimensional photonic crystal interfaces,” Opt. Express 16, 4270–4277 (2008).
[CrossRef] [PubMed]

S.-G. Lee, M. Yi, J. Ahn, J.-E. Kim, and H. Y. Park, “Optimization of photonic crystal interfaces for high efficient coupling of terahertz waves,” in International Conference on Infrared and Millimeter Waves/THz Electronics (IRMMW-THz 2008) (IEEE, 2008), pp. 1–2.
[CrossRef]

Kim, M. -W.

T.-T. Kim, S.-G. Lee, M.-W. Kim, H. Y. Park, and J.-E. Kim, “Experimental demonstration of reflection minimization at two-dimensional photonic crystal interfaces via antireflection structures,” Appl. Phys. Lett. 95, 011119 (2009).
[CrossRef]

Kim, S.

Kim, T. -T.

T.-T. Kim, S.-G. Lee, M.-W. Kim, H. Y. Park, and J.-E. Kim, “Experimental demonstration of reflection minimization at two-dimensional photonic crystal interfaces via antireflection structures,” Appl. Phys. Lett. 95, 011119 (2009).
[CrossRef]

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Kotlyar, M. V.

Krauss, T. F.

Lawrence, F. J.

F. J. Lawrence, L. C. Botten, K. B. Dossou, and C. Martijn de Sterke, “Antireflection coatings for two-dimensional photonic crystals using a rigorous impedance definition,” Appl. Phys. Lett. 93, 121114 (2008).
[CrossRef]

Le Thomas, N.

Lee, M. -H.

Lee, S. -G.

Loncar, M.

J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002).
[CrossRef]

Martijn de Sterke, C.

F. J. Lawrence, L. C. Botten, K. B. Dossou, and C. Martijn de Sterke, “Antireflection coatings for two-dimensional photonic crystals using a rigorous impedance definition,” Appl. Phys. Lett. 93, 121114 (2008).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).

Nordin, G. P.

Notomi, M.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

O’Faolin, L.

Ozbay, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Negative refraction by photonic crystals,” Nature 423, 604–605 (2003).
[CrossRef] [PubMed]

Park, H. -R.

Park, H. Y.

T.-T. Kim, S.-G. Lee, M.-W. Kim, H. Y. Park, and J.-E. Kim, “Experimental demonstration of reflection minimization at two-dimensional photonic crystal interfaces via antireflection structures,” Appl. Phys. Lett. 95, 011119 (2009).
[CrossRef]

J.-M. Park, S.-G. Lee, H. Y. Park, J.-E. Kim, and M.-H. Lee, “High-efficiency antireflection structures for terahertz self-collimating photonic crystals,” J. Opt. Soc. Am. B 26, 1967–1974 (2009).
[CrossRef]

J.-M. Park, S.-G. Lee, H. Y. Park, and J.-E. Kim, “Efficient beaming of self-collimated light from photonic crystals,” Opt. Express 16, 20354–20367 (2008).
[CrossRef] [PubMed]

S.-G. Lee, J.-s. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Reflection minimization at two-dimensional photonic crystal interfaces,” Opt. Express 16, 4270–4277 (2008).
[CrossRef] [PubMed]

S.-G. Lee, M. Yi, J. Ahn, J.-E. Kim, and H. Y. Park, “Optimization of photonic crystal interfaces for high efficient coupling of terahertz waves,” in International Conference on Infrared and Millimeter Waves/THz Electronics (IRMMW-THz 2008) (IEEE, 2008), pp. 1–2.
[CrossRef]

Park, J. -M.

Park, W.

Pendry, J. B.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef] [PubMed]

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Scherer, A.

J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002).
[CrossRef]

Schonbrun, E.

Soukoulis, C. M.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Negative refraction by photonic crystals,” Nature 423, 604–605 (2003).
[CrossRef] [PubMed]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[CrossRef] [PubMed]

Stenger, N.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef] [PubMed]

Summers, C. J.

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

Wegener, M.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef] [PubMed]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).

Witzens, J.

J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999), pp. 63–74.

Wu, Q.

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Yamashita, T.

Yee, K. S.

K. S. Yee, “Numerical solution of initial boundary problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).

Yi, M.

S.-G. Lee, M. Yi, J. Ahn, J.-E. Kim, and H. Y. Park, “Optimization of photonic crystal interfaces for high efficient coupling of terahertz waves,” in International Conference on Infrared and Millimeter Waves/THz Electronics (IRMMW-THz 2008) (IEEE, 2008), pp. 1–2.
[CrossRef]

Zabelin, V.

Appl. Phys. Lett. (3)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[CrossRef]

T.-T. Kim, S.-G. Lee, M.-W. Kim, H. Y. Park, and J.-E. Kim, “Experimental demonstration of reflection minimization at two-dimensional photonic crystal interfaces via antireflection structures,” Appl. Phys. Lett. 95, 011119 (2009).
[CrossRef]

F. J. Lawrence, L. C. Botten, K. B. Dossou, and C. Martijn de Sterke, “Antireflection coatings for two-dimensional photonic crystals using a rigorous impedance definition,” Appl. Phys. Lett. 93, 121114 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

K. S. Yee, “Numerical solution of initial boundary problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).

J. Comput. Phys. (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Negative refraction by photonic crystals,” Nature 423, 604–605 (2003).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. B (2)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998).
[CrossRef]

S. Adachi, “Model dielectric constants of Si and Ge,” Phys. Rev. B 38, 12966–12976 (1988).
[CrossRef]

Phys. Rev. Lett. (3)

E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990).
[CrossRef] [PubMed]

Science (1)

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef] [PubMed]

Other (3)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999), pp. 63–74.

S.-G. Lee, M. Yi, J. Ahn, J.-E. Kim, and H. Y. Park, “Optimization of photonic crystal interfaces for high efficient coupling of terahertz waves,” in International Conference on Infrared and Millimeter Waves/THz Electronics (IRMMW-THz 2008) (IEEE, 2008), pp. 1–2.
[CrossRef]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematics of the ARC structure: (a) In the 1D case, the ARC parameters are the refractive index n 2 and the thickness h of ARC structure. (b) In the 2D PhC case, the ARC parameters are the radius of air holes r a r c and the distance d a r c between the ARC (enclosed by the dark green rectangle) and the 2D semi-infinite PhC. For the 2D PhC case of (b), schematics of the r i j are modified properly: r 123 is the reflection coefficient of the ARC embedded in Si. r 34 is that of the semi-infinite 2D SC PhC when the light is incident on it from the Si. In (a) and (b), the thick and thin red arrows indicate the incident and reflected beams, respectively.

Fig. 2
Fig. 2

(a) PBG maps and SC frequencies within the second photonic band for TE and TM polarizations and the corresponding reflectances as functions of the air hole radius. The light pink (cyan) areas enclosed by the pink (cyan) solid line denote the PBG frequencies for TE (TM) polarization. (b) The red (blue) EFC is for the SC frequency of 0.275 ( 2 π c / a ) at r s c = 0.34 a for TE (TM) polarization, and the green EFC is for the frequency of 0.275 ( 2 π c / a ) at r p o l = 0.41 a for TM polarization, where the green EFC lies within the PBG area for TE polarization. The gray dashed line indicates the interface between a SC PhC of r s c = 0.34 a and an embedded PhC slab of r p o l = 0.41 a , and the red, blue, and green solid (dashed) arrows indicate the corresponding group velocities (momentum components parallel to the interface in the Γ M direction) of light. Here 2D square lattice SC PhCs of air holes in Si with the refractive index of n = 3.518 are considered.

Fig. 3
Fig. 3

(a) Values of ARC parameters and reflectances without and with the designed ARCs applied. (b) Geometry of a PBS composed of a polarizing PhC slab of four lines with the air hole radius r p o l = 0.41 a embedded in a SC PhC square tile of 40 × 40   unit cells with the radius of air holes r s c = 0.34 a , where the designed ARCs are applied at the input and output ends of the SC PhC tile. The red (blue) solid arrows indicate the incident and transmitted beams for TE (TM) polarization, where the refraction in the PhC slab of four lines is also indicated.

Fig. 4
Fig. 4

Time-averaged (a) power transmissions and (b) extinction ratios as functions of the number of polarizing layers with the radius of air holes r p o l = 0.41 a for TE and TM polarization output channels of the PBS based on a finite SC PhC square tile of 40 × 40   unit cells with the radius of air holes r s c = 0.34 a without any ARC. In (a), the cross-talk TM (TE) transmission spectra in the TE (TM) polarization output channel are also shown, as indicated by the red (blue) lines with symbols, and the operating frequency is the SC frequency ω s c = 0.275 ( 2 π c / a ) .

Fig. 5
Fig. 5

Reflectance maps as functions of the parameters d a r c and r a r c for (a) TE and (b) TM polarizations, where r s c = 0.34 a and ω s c = 0.275 ( 2 π c / a ) . Here, the dark green solid circles indicate reflectances at the above-two common ARC parameters for both TE and TM polarizations.

Fig. 6
Fig. 6

Optical (a) magnetic and (b) electric field amplitude distributions for a high-efficiency SC-PhC-based PBS with the designed ARCs applied, which correspond to the cases for TE and TM polarizations, respectively. As shown in Fig. 3b, the SC-PhC-based PBS is composed of four lines with r p o l = 0.41 a embedded in a SC PhC square tile of 40 × 40   unit cells with r s c = 0.34 a , and the condition of simulation parameters is as follows: r p o l = 0.41 a , N p o l = 4 , r s c = 0.34 a , ω s c = 0.275 ( 2 π c / a ) , r a r c = 0.223 a , and d a r c = 0.939 a .

Fig. 7
Fig. 7

Time-averaged power backreflection spectra of lights for the PBSs based on three finite SC PhC square tiles consisting of 36 × 36 , 38 × 38 , and 40 × 40   unit cells for (a) TE and (b) TM polarizations for the case without any ARC, and for (c) TE and (d) TM polarizations for the case with the designed ARCs applied.

Fig. 8
Fig. 8

Time-averaged power transmission spectra of lights for the PBSs based on three finite SC PhC square tiles consisting of 36 × 36 , 38 × 38 , and 40 × 40   unit cells for (a) TE and (b) TM polarization output channels for the case without any ARC, and for (c) TE and (d) TM polarization output channels for the case with the designed ARCs applied. Here the cross-talk TE (TM) transmission spectra in the TM (TE) polarization output channel are also shown.

Tables (2)

Tables Icon

Table 1 Minimum–Maximum (Mean) Backreflected Powers (in Percent) in the Frequency Range from 0.270 ( 2 π c / a ) to 0.280 ( 2 π c / a )

Tables Icon

Table 2 Minimum–Maximum (Mean) Transmitted Powers (in Percent) and Extinction Ratios (in Decibels) in the Frequency Range from 0.270 ( 2 π c / a ) to 0.280 ( 2 π c / a )

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

r = r 12 + r 23 e 2 i β 1 + r 12 r 23 e 2 i β ,
| r 12 | = | r 23 | ,
e i ( 2 β + δ 23 δ 12 ) = 1 ,

Metrics