Y. M. Kang, A. Arbabi, and L. L. Goddard, “A microring resonator with an integrated Bragg grating: a compact replacement for a sampled grating distributed Bragg reflector,” Opt. Quantum Electron. 41, 689–697 (2010) (available online).

M. Hammer, “Chains of coupled square dielectric optical microcavities,” Opt. Quantum Electron. 40, 821–835 (2009).

[CrossRef]

M. Hammer, “Hybrid analytical/numerical coupled-mode modeling of guided wave devices,” J. Lightwave Technol. 25, 2287–2298 (2007).

[CrossRef]

F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15, 17273–17281 (2007).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Threshold reduction in a cyclic photonic molecule laser composed of identical microdisks with whispering-gallery modes,” Opt. Lett. 31, 921–923 (2006).

[CrossRef]

K. R. Hiremath, R. Stoffer, and M. Hammer, “Modeling of circular integrated optical microresonators by 2-D frequency-domain coupled mode theory,” Opt. Commun. 257, 277–297 (2006).

[CrossRef]

S. V. Boriskina, “Spectrally engineered photonic molecules as optical sensors with enhanced sensitivity: a proposal and numerical analysis,” J. Opt. Soc. Am. 23, 1565–1573 (2006).

[CrossRef]

J. Čtyroký, I. Richter, and M. Šiňor, “Dual resonance in a waveguide-coupled ring microresonator,” Opt. Quantum Electron. 38, 781–797 (2006).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Cold-cavity thresholds of microdisks with uniform and nonuniform gain: Quasi-3-D modeling with accurate 2-D analysis,” IEEE J. Sel. Top. Quantum Electron. 11, 1135–1142 (2005).

[CrossRef]

R. Stoffer, K. R. Hiremath, M. Hammer, L. Prkna, and J. Čtyroký, “Cylindrical integrated optical microresonators: Modeling by 3-D vectorial frequency domain coupled mode theory,” Opt. Commun. 256, 46–67 (2005).

[CrossRef]

K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, and J. Čtyroký, “Analytical approach to dielectric optical bent slab waveguides,” Opt. Quantum Electron. 37, 37–61 (2005).

[CrossRef]

M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).

[CrossRef]

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).

[CrossRef]

M. Hammer, “Quadridirectional eigenmode expansion scheme for 2-D modeling of wave propagation in integrated optics,” Opt. Commun. 235, 285–303 (2004).

[CrossRef]

L. Prkna, J. Čtyroký, and M. Hubálek, “Ring microresonator as a photonic structure with complex eigenfrequency,” Opt. Quantum Electron. 36, 259–269 (2004).

[CrossRef]

D. J. W. Klunder, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, B. Docter, H. J. W. M. Hoekstra, and A. Driessen, “Experimental and numerical study of SiON microresonators with air and polymer cladding,” J. Lightwave Technol. 21, 1099–1110 (2003).

[CrossRef]

D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, “Vertically and laterally waveguide-coupled cylindrical microresonators in Si3N4 on SiO2 technology,” Appl. Phys. B 73, 603–608 (2001).

A. Yariv, “Universal relations for coupling of optical power between miroresonators and dielectric waveguide,” Electron. Lett. 36, 321–322 (2000).

[CrossRef]

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).

[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, M. J. Khan, C. Manolatou, and H. A. Haus, “Theoretical analysis of channel drop tunneling processes,” Phys. Rev. B 59, 15882–15892 (1999).

[CrossRef]

M. J. Khan, C. Manolatou, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Mode-coupling analysis of multipole symmetric resonant add/drop filters,” IEEE J. Quantum Electron. 35, 1451–1460 (1999).

[CrossRef]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999).

[CrossRef]

D. R. Rowland and J. D. Love, “Evanescent wave coupling of whispering gallery modes of a dielectric cylinder,” IEE Proc.-J: Optoelectron. 140, 177–188 (1993).

[CrossRef]

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).

[CrossRef]

Y. M. Kang, A. Arbabi, and L. L. Goddard, “A microring resonator with an integrated Bragg grating: a compact replacement for a sampled grating distributed Bragg reflector,” Opt. Quantum Electron. 41, 689–697 (2010) (available online).

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Threshold reduction in a cyclic photonic molecule laser composed of identical microdisks with whispering-gallery modes,” Opt. Lett. 31, 921–923 (2006).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Cold-cavity thresholds of microdisks with uniform and nonuniform gain: Quasi-3-D modeling with accurate 2-D analysis,” IEEE J. Sel. Top. Quantum Electron. 11, 1135–1142 (2005).

[CrossRef]

S. V. Boriskina, “Spectrally engineered photonic molecules as optical sensors with enhanced sensitivity: a proposal and numerical analysis,” J. Opt. Soc. Am. 23, 1565–1573 (2006).

[CrossRef]

D. J. W. Klunder, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, B. Docter, H. J. W. M. Hoekstra, and A. Driessen, “Experimental and numerical study of SiON microresonators with air and polymer cladding,” J. Lightwave Technol. 21, 1099–1110 (2003).

[CrossRef]

D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, “Vertically and laterally waveguide-coupled cylindrical microresonators in Si3N4 on SiO2 technology,” Appl. Phys. B 73, 603–608 (2001).

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).

[CrossRef]

J. Čtyroký, I. Richter, and M. Šiňor, “Dual resonance in a waveguide-coupled ring microresonator,” Opt. Quantum Electron. 38, 781–797 (2006).

[CrossRef]

K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, and J. Čtyroký, “Analytical approach to dielectric optical bent slab waveguides,” Opt. Quantum Electron. 37, 37–61 (2005).

[CrossRef]

R. Stoffer, K. R. Hiremath, M. Hammer, L. Prkna, and J. Čtyroký, “Cylindrical integrated optical microresonators: Modeling by 3-D vectorial frequency domain coupled mode theory,” Opt. Commun. 256, 46–67 (2005).

[CrossRef]

L. Prkna, J. Čtyroký, and M. Hubálek, “Ring microresonator as a photonic structure with complex eigenfrequency,” Opt. Quantum Electron. 36, 259–269 (2004).

[CrossRef]

D. J. W. Klunder, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, B. Docter, H. J. W. M. Hoekstra, and A. Driessen, “Experimental and numerical study of SiON microresonators with air and polymer cladding,” J. Lightwave Technol. 21, 1099–1110 (2003).

[CrossRef]

D. J. W. Klunder, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, B. Docter, H. J. W. M. Hoekstra, and A. Driessen, “Experimental and numerical study of SiON microresonators with air and polymer cladding,” J. Lightwave Technol. 21, 1099–1110 (2003).

[CrossRef]

D. J. W. Klunder, M. L. M. Balistreri, F. C. Blom, H. J. W. M. Hoekstra, A. Driessen, L. Kuipers, and N. F. van Hulst, “Detailed analysis of the intracavity phenomena inside a cylindrical microresonator,” J. Lightwave Technol. 20, 519–529 (2002).

[CrossRef]

D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, “Vertically and laterally waveguide-coupled cylindrical microresonators in Si3N4 on SiO2 technology,” Appl. Phys. B 73, 603–608 (2001).

M. J. Khan, C. Manolatou, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Mode-coupling analysis of multipole symmetric resonant add/drop filters,” IEEE J. Quantum Electron. 35, 1451–1460 (1999).

[CrossRef]

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).

[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, M. J. Khan, C. Manolatou, and H. A. Haus, “Theoretical analysis of channel drop tunneling processes,” Phys. Rev. B 59, 15882–15892 (1999).

[CrossRef]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University Press, 1992).

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).

[CrossRef]

Y. M. Kang, A. Arbabi, and L. L. Goddard, “A microring resonator with an integrated Bragg grating: a compact replacement for a sampled grating distributed Bragg reflector,” Opt. Quantum Electron. 41, 689–697 (2010) (available online).

M. Hammer, “Chains of coupled square dielectric optical microcavities,” Opt. Quantum Electron. 40, 821–835 (2009).

[CrossRef]

M. Hammer, “Hybrid analytical/numerical coupled-mode modeling of guided wave devices,” J. Lightwave Technol. 25, 2287–2298 (2007).

[CrossRef]

K. R. Hiremath, R. Stoffer, and M. Hammer, “Modeling of circular integrated optical microresonators by 2-D frequency-domain coupled mode theory,” Opt. Commun. 257, 277–297 (2006).

[CrossRef]

K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, and J. Čtyroký, “Analytical approach to dielectric optical bent slab waveguides,” Opt. Quantum Electron. 37, 37–61 (2005).

[CrossRef]

R. Stoffer, K. R. Hiremath, M. Hammer, L. Prkna, and J. Čtyroký, “Cylindrical integrated optical microresonators: Modeling by 3-D vectorial frequency domain coupled mode theory,” Opt. Commun. 256, 46–67 (2005).

[CrossRef]

M. Hammer, “Quadridirectional eigenmode expansion scheme for 2-D modeling of wave propagation in integrated optics,” Opt. Commun. 235, 285–303 (2004).

[CrossRef]

M. Hammer, K. R. Hiremath, and R. Stoffer, “Analytical approaches to the description of optical microresonator devices,” in Microresonators as Building Blocks for VLSI Photonics, Vol. 709 of AIP Conference Proceedings, M.Bertolotti, A.Driessen, and F.Michelotti, eds. (American Institute of Physics, 2004), pp. 48–71.

M. Hammer, “METRIC—Mode expansion tools for 2D rectangular integrated optical circuits,” http://www.math.utwente.nl/~hammerm/Metric/.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, M. J. Khan, C. Manolatou, and H. A. Haus, “Theoretical analysis of channel drop tunneling processes,” Phys. Rev. B 59, 15882–15892 (1999).

[CrossRef]

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).

[CrossRef]

M. J. Khan, C. Manolatou, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Mode-coupling analysis of multipole symmetric resonant add/drop filters,” IEEE J. Quantum Electron. 35, 1451–1460 (1999).

[CrossRef]

K. R. Hiremath, R. Stoffer, and M. Hammer, “Modeling of circular integrated optical microresonators by 2-D frequency-domain coupled mode theory,” Opt. Commun. 257, 277–297 (2006).

[CrossRef]

R. Stoffer, K. R. Hiremath, M. Hammer, L. Prkna, and J. Čtyroký, “Cylindrical integrated optical microresonators: Modeling by 3-D vectorial frequency domain coupled mode theory,” Opt. Commun. 256, 46–67 (2005).

[CrossRef]

K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, and J. Čtyroký, “Analytical approach to dielectric optical bent slab waveguides,” Opt. Quantum Electron. 37, 37–61 (2005).

[CrossRef]

K. R. Hiremath, “Coupled mode theory based modeling and analysis of circular optical microresonators,” Ph.D. dissertation (University of Twente, 2005).

K. R. Hiremath, “CIRCURS—Circular resonator simulator,” http://www.math.utwente.nl/aamp/FormMem/Hiremath/circurs/.

M. Hammer, K. R. Hiremath, and R. Stoffer, “Analytical approaches to the description of optical microresonator devices,” in Microresonators as Building Blocks for VLSI Photonics, Vol. 709 of AIP Conference Proceedings, M.Bertolotti, A.Driessen, and F.Michelotti, eds. (American Institute of Physics, 2004), pp. 48–71.

D. J. W. Klunder, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, B. Docter, H. J. W. M. Hoekstra, and A. Driessen, “Experimental and numerical study of SiON microresonators with air and polymer cladding,” J. Lightwave Technol. 21, 1099–1110 (2003).

[CrossRef]

D. J. W. Klunder, M. L. M. Balistreri, F. C. Blom, H. J. W. M. Hoekstra, A. Driessen, L. Kuipers, and N. F. van Hulst, “Detailed analysis of the intracavity phenomena inside a cylindrical microresonator,” J. Lightwave Technol. 20, 519–529 (2002).

[CrossRef]

D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, “Vertically and laterally waveguide-coupled cylindrical microresonators in Si3N4 on SiO2 technology,” Appl. Phys. B 73, 603–608 (2001).

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).

[CrossRef]

L. Prkna, J. Čtyroký, and M. Hubálek, “Ring microresonator as a photonic structure with complex eigenfrequency,” Opt. Quantum Electron. 36, 259–269 (2004).

[CrossRef]

M. J. Khan, C. Manolatou, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Mode-coupling analysis of multipole symmetric resonant add/drop filters,” IEEE J. Quantum Electron. 35, 1451–1460 (1999).

[CrossRef]

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).

[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, M. J. Khan, C. Manolatou, and H. A. Haus, “Theoretical analysis of channel drop tunneling processes,” Phys. Rev. B 59, 15882–15892 (1999).

[CrossRef]

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).

[CrossRef]

Y. M. Kang, A. Arbabi, and L. L. Goddard, “A microring resonator with an integrated Bragg grating: a compact replacement for a sampled grating distributed Bragg reflector,” Opt. Quantum Electron. 41, 689–697 (2010) (available online).

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).

[CrossRef]

M. J. Khan, C. Manolatou, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Mode-coupling analysis of multipole symmetric resonant add/drop filters,” IEEE J. Quantum Electron. 35, 1451–1460 (1999).

[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, M. J. Khan, C. Manolatou, and H. A. Haus, “Theoretical analysis of channel drop tunneling processes,” Phys. Rev. B 59, 15882–15892 (1999).

[CrossRef]

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).

[CrossRef]

D. J. W. Klunder, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, B. Docter, H. J. W. M. Hoekstra, and A. Driessen, “Experimental and numerical study of SiON microresonators with air and polymer cladding,” J. Lightwave Technol. 21, 1099–1110 (2003).

[CrossRef]

D. J. W. Klunder, M. L. M. Balistreri, F. C. Blom, H. J. W. M. Hoekstra, A. Driessen, L. Kuipers, and N. F. van Hulst, “Detailed analysis of the intracavity phenomena inside a cylindrical microresonator,” J. Lightwave Technol. 20, 519–529 (2002).

[CrossRef]

D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, “Vertically and laterally waveguide-coupled cylindrical microresonators in Si3N4 on SiO2 technology,” Appl. Phys. B 73, 603–608 (2001).

D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, “Vertically and laterally waveguide-coupled cylindrical microresonators in Si3N4 on SiO2 technology,” Appl. Phys. B 73, 603–608 (2001).

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).

[CrossRef]

D. R. Rowland and J. D. Love, “Evanescent wave coupling of whispering gallery modes of a dielectric cylinder,” IEE Proc.-J: Optoelectron. 140, 177–188 (1993).

[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, M. J. Khan, C. Manolatou, and H. A. Haus, “Theoretical analysis of channel drop tunneling processes,” Phys. Rev. B 59, 15882–15892 (1999).

[CrossRef]

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).

[CrossRef]

M. J. Khan, C. Manolatou, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Mode-coupling analysis of multipole symmetric resonant add/drop filters,” IEEE J. Quantum Electron. 35, 1451–1460 (1999).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Threshold reduction in a cyclic photonic molecule laser composed of identical microdisks with whispering-gallery modes,” Opt. Lett. 31, 921–923 (2006).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Cold-cavity thresholds of microdisks with uniform and nonuniform gain: Quasi-3-D modeling with accurate 2-D analysis,” IEEE J. Sel. Top. Quantum Electron. 11, 1135–1142 (2005).

[CrossRef]

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).

D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, “Vertically and laterally waveguide-coupled cylindrical microresonators in Si3N4 on SiO2 technology,” Appl. Phys. B 73, 603–608 (2001).

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University Press, 1992).

K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, and J. Čtyroký, “Analytical approach to dielectric optical bent slab waveguides,” Opt. Quantum Electron. 37, 37–61 (2005).

[CrossRef]

R. Stoffer, K. R. Hiremath, M. Hammer, L. Prkna, and J. Čtyroký, “Cylindrical integrated optical microresonators: Modeling by 3-D vectorial frequency domain coupled mode theory,” Opt. Commun. 256, 46–67 (2005).

[CrossRef]

L. Prkna, J. Čtyroký, and M. Hubálek, “Ring microresonator as a photonic structure with complex eigenfrequency,” Opt. Quantum Electron. 36, 259–269 (2004).

[CrossRef]

J. Čtyroký, I. Richter, and M. Šiňor, “Dual resonance in a waveguide-coupled ring microresonator,” Opt. Quantum Electron. 38, 781–797 (2006).

[CrossRef]

D. R. Rowland and J. D. Love, “Evanescent wave coupling of whispering gallery modes of a dielectric cylinder,” IEE Proc.-J: Optoelectron. 140, 177–188 (1993).

[CrossRef]

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).

[CrossRef]

D. J. W. Klunder, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, B. Docter, H. J. W. M. Hoekstra, and A. Driessen, “Experimental and numerical study of SiON microresonators with air and polymer cladding,” J. Lightwave Technol. 21, 1099–1110 (2003).

[CrossRef]

D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, “Vertically and laterally waveguide-coupled cylindrical microresonators in Si3N4 on SiO2 technology,” Appl. Phys. B 73, 603–608 (2001).

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Threshold reduction in a cyclic photonic molecule laser composed of identical microdisks with whispering-gallery modes,” Opt. Lett. 31, 921–923 (2006).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Cold-cavity thresholds of microdisks with uniform and nonuniform gain: Quasi-3-D modeling with accurate 2-D analysis,” IEEE J. Sel. Top. Quantum Electron. 11, 1135–1142 (2005).

[CrossRef]

J. Čtyroký, I. Richter, and M. Šiňor, “Dual resonance in a waveguide-coupled ring microresonator,” Opt. Quantum Electron. 38, 781–797 (2006).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Threshold reduction in a cyclic photonic molecule laser composed of identical microdisks with whispering-gallery modes,” Opt. Lett. 31, 921–923 (2006).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Cold-cavity thresholds of microdisks with uniform and nonuniform gain: Quasi-3-D modeling with accurate 2-D analysis,” IEEE J. Sel. Top. Quantum Electron. 11, 1135–1142 (2005).

[CrossRef]

K. R. Hiremath, R. Stoffer, and M. Hammer, “Modeling of circular integrated optical microresonators by 2-D frequency-domain coupled mode theory,” Opt. Commun. 257, 277–297 (2006).

[CrossRef]

R. Stoffer, K. R. Hiremath, M. Hammer, L. Prkna, and J. Čtyroký, “Cylindrical integrated optical microresonators: Modeling by 3-D vectorial frequency domain coupled mode theory,” Opt. Commun. 256, 46–67 (2005).

[CrossRef]

K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, and J. Čtyroký, “Analytical approach to dielectric optical bent slab waveguides,” Opt. Quantum Electron. 37, 37–61 (2005).

[CrossRef]

M. Hammer, K. R. Hiremath, and R. Stoffer, “Analytical approaches to the description of optical microresonator devices,” in Microresonators as Building Blocks for VLSI Photonics, Vol. 709 of AIP Conference Proceedings, M.Bertolotti, A.Driessen, and F.Michelotti, eds. (American Institute of Physics, 2004), pp. 48–71.

D. J. W. Klunder, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, B. Docter, H. J. W. M. Hoekstra, and A. Driessen, “Experimental and numerical study of SiON microresonators with air and polymer cladding,” J. Lightwave Technol. 21, 1099–1110 (2003).

[CrossRef]

D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, “Vertically and laterally waveguide-coupled cylindrical microresonators in Si3N4 on SiO2 technology,” Appl. Phys. B 73, 603–608 (2001).

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University Press, 1992).

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).

[CrossRef]

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).

[CrossRef]

D. J. W. Klunder, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, B. Docter, H. J. W. M. Hoekstra, and A. Driessen, “Experimental and numerical study of SiON microresonators with air and polymer cladding,” J. Lightwave Technol. 21, 1099–1110 (2003).

[CrossRef]

D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, “Vertically and laterally waveguide-coupled cylindrical microresonators in Si3N4 on SiO2 technology,” Appl. Phys. B 73, 603–608 (2001).

C. Vassallo, Optical Waveguide Concepts (Elsevier, 1991).

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University Press, 1992).

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, M. J. Khan, C. Manolatou, and H. A. Haus, “Theoretical analysis of channel drop tunneling processes,” Phys. Rev. B 59, 15882–15892 (1999).

[CrossRef]

M. J. Khan, C. Manolatou, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Mode-coupling analysis of multipole symmetric resonant add/drop filters,” IEEE J. Quantum Electron. 35, 1451–1460 (1999).

[CrossRef]

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).

[CrossRef]

D. J. W. Klunder, E. Krioukov, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, C. Otto, H. J. W. M. Hoekstra, and A. Driessen, “Vertically and laterally waveguide-coupled cylindrical microresonators in Si3N4 on SiO2 technology,” Appl. Phys. B 73, 603–608 (2001).

A. Yariv, “Universal relations for coupling of optical power between miroresonators and dielectric waveguide,” Electron. Lett. 36, 321–322 (2000).

[CrossRef]

D. R. Rowland and J. D. Love, “Evanescent wave coupling of whispering gallery modes of a dielectric cylinder,” IEE Proc.-J: Optoelectron. 140, 177–188 (1993).

[CrossRef]

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).

[CrossRef]

M. J. Khan, C. Manolatou, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Mode-coupling analysis of multipole symmetric resonant add/drop filters,” IEEE J. Quantum Electron. 35, 1451–1460 (1999).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Cold-cavity thresholds of microdisks with uniform and nonuniform gain: Quasi-3-D modeling with accurate 2-D analysis,” IEEE J. Sel. Top. Quantum Electron. 11, 1135–1142 (2005).

[CrossRef]

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16, 2263–2265 (2004).

[CrossRef]

M. K. Chin and S. T. Ho, “Design and modeling of waveguide-coupled single-mode microring resonators,” J. Lightwave Technol. 16, 1433–1446 (1998).

[CrossRef]

D. J. W. Klunder, M. L. M. Balistreri, F. C. Blom, H. J. W. M. Hoekstra, A. Driessen, L. Kuipers, and N. F. van Hulst, “Detailed analysis of the intracavity phenomena inside a cylindrical microresonator,” J. Lightwave Technol. 20, 519–529 (2002).

[CrossRef]

D. J. W. Klunder, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, B. Docter, H. J. W. M. Hoekstra, and A. Driessen, “Experimental and numerical study of SiON microresonators with air and polymer cladding,” J. Lightwave Technol. 21, 1099–1110 (2003).

[CrossRef]

M. Hammer, “Hybrid analytical/numerical coupled-mode modeling of guided wave devices,” J. Lightwave Technol. 25, 2287–2298 (2007).

[CrossRef]

S. V. Boriskina, “Spectrally engineered photonic molecules as optical sensors with enhanced sensitivity: a proposal and numerical analysis,” J. Opt. Soc. Am. 23, 1565–1573 (2006).

[CrossRef]

M. Hammer, “Quadridirectional eigenmode expansion scheme for 2-D modeling of wave propagation in integrated optics,” Opt. Commun. 235, 285–303 (2004).

[CrossRef]

K. R. Hiremath, R. Stoffer, and M. Hammer, “Modeling of circular integrated optical microresonators by 2-D frequency-domain coupled mode theory,” Opt. Commun. 257, 277–297 (2006).

[CrossRef]

R. Stoffer, K. R. Hiremath, M. Hammer, L. Prkna, and J. Čtyroký, “Cylindrical integrated optical microresonators: Modeling by 3-D vectorial frequency domain coupled mode theory,” Opt. Commun. 256, 46–67 (2005).

[CrossRef]

F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15, 17273–17281 (2007).

[CrossRef]

M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).

[CrossRef]

E. I. Smotrova, A. I. Nosich, T. M. Benson, and P. Sewell, “Threshold reduction in a cyclic photonic molecule laser composed of identical microdisks with whispering-gallery modes,” Opt. Lett. 31, 921–923 (2006).

[CrossRef]

L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-single-mode fiber resonator,” Opt. Lett. 7, 288–290 (1982).

[CrossRef]

A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999).

[CrossRef]

L. Prkna, J. Čtyroký, and M. Hubálek, “Ring microresonator as a photonic structure with complex eigenfrequency,” Opt. Quantum Electron. 36, 259–269 (2004).

[CrossRef]

Y. M. Kang, A. Arbabi, and L. L. Goddard, “A microring resonator with an integrated Bragg grating: a compact replacement for a sampled grating distributed Bragg reflector,” Opt. Quantum Electron. 41, 689–697 (2010) (available online).

J. Čtyroký, I. Richter, and M. Šiňor, “Dual resonance in a waveguide-coupled ring microresonator,” Opt. Quantum Electron. 38, 781–797 (2006).

[CrossRef]

M. Hammer, “Chains of coupled square dielectric optical microcavities,” Opt. Quantum Electron. 40, 821–835 (2009).

[CrossRef]

K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, and J. Čtyroký, “Analytical approach to dielectric optical bent slab waveguides,” Opt. Quantum Electron. 37, 37–61 (2005).

[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, M. J. Khan, C. Manolatou, and H. A. Haus, “Theoretical analysis of channel drop tunneling processes,” Phys. Rev. B 59, 15882–15892 (1999).

[CrossRef]

M. Hammer, K. R. Hiremath, and R. Stoffer, “Analytical approaches to the description of optical microresonator devices,” in Microresonators as Building Blocks for VLSI Photonics, Vol. 709 of AIP Conference Proceedings, M.Bertolotti, A.Driessen, and F.Michelotti, eds. (American Institute of Physics, 2004), pp. 48–71.

C. Vassallo, Optical Waveguide Concepts (Elsevier, 1991).

D.G.Hall and B.J.Thompson, eds., Selected Papers on Coupled-Mode Theory in Guided-Wave Optics, Vol. MS 84 of SPIE Milestone Series (SPIE Optical Engineering, 1993).

K. R. Hiremath, “Coupled mode theory based modeling and analysis of circular optical microresonators,” Ph.D. dissertation (University of Twente, 2005).

M. Hammer, “METRIC—Mode expansion tools for 2D rectangular integrated optical circuits,” http://www.math.utwente.nl/~hammerm/Metric/.

K. R. Hiremath, “CIRCURS—Circular resonator simulator,” http://www.math.utwente.nl/aamp/FormMem/Hiremath/circurs/.

The fields ψf, ψb, ψc that constitute template satisfy formally the same equations, but each with different permittivity functions that represent the upper core, the lower core, or the cavity only, always on a homogeneous background.

One might observe that this interpolation process is quite analogous to the usual analytical evaluation of parametric CMT models , where one takes into account first or second order wavelength derivatives of effective mode indices and neglects the wavelength dependence of coupling coefficients.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University Press, 1992).

M.Bertolotti, A.Driessen, and F.Michelotti, eds., Microresonators as Building Blocks for VLSI Photonics, Vol. 709 of AIP Conference Proceedings (American Institute of Physics, 2004).

I.Chremmos, N.Uzunoglu, and O.Schwelb, eds., Photonic Microresonator Research and Applications, Springer Series in Optical Sciences, Vol. 156 (Springer, 2010).

This might well relate to actual physical effects, e.g., to a pronounced surface roughness .

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).