Abstract

A two-electrode quantum-dot semiconductor optical amplifier (QD-SOA) is proposed to enhance gain recovery rate and cross-gain modulation (XGM) bandwidth. In the theoretical model, electron and hole dynamics as well as the carrier diffusion are accounted for in the quantum-dot rate equations, which are solved with forward and backward propagation equations of signal and amplified spontaneous emission. The simulation results show that two-electrode QD-SOA can distribute injection current density nonuniformly to maintain carriers in carrier reservoirs of quantum dot sufficient along the entire cavity length of the semiconductor optical amplifier, thus making gain saturation dynamics dominated by spectral hole burning at lower bias current than common QD-SOA. Besides, distributing more current density in the second section of the two-electrode QD-SOA at higher bias can greatly accelerate gain recovery as well as expand the XGM bandwidth.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high speed digital information processing,” Science 286, 1523–1528 (1999).
    [CrossRef] [PubMed]
  2. E. B. Zhou, X. L. Zhang, and D. X. Huang, “Evaluating characteristics of semiconductor optical amplifiers using optical pumping near the transparency,” J. Opt. Soc. Am. B 24, 2647–2657 (2007).
    [CrossRef]
  3. D. Bimberg, “Quantum dots for lasers, amplifiers and computing,” J. Phys. D: Appl. Phys. 38, 2055–2058 (2005).
    [CrossRef]
  4. L. R. Huang, Y. Yu, P. Tian, and D. X. Huang, “Polarization-insensitive quantum-dot coupled quantum-well semiconductor optical amplifier,” Semicond. Sci. Technol. 24, 015009 (2009).
    [CrossRef]
  5. J. M. Vazquez, J. Z. Zhang, and I. Galbraith, “Quantum dot versus quantum well semiconductor optical amplifiers for subpicosecond pulse amplification,” Opt. Quantum Electron. 36, 539–549 (2004).
    [CrossRef]
  6. R. Brenot, F. Lelarge, O. Legouezigou, F. Pommereau, F. Poingt, L. Legouezigou, E. Derouin, O. Drisse, B. Rousseau, F. Martin, and G. H. Duan, “Quantum dots semiconductor optical amplifier with a –3 dB bandwidth of up to 120 nm in semi-cooled operation,” in Proceedings of the Optical Fiber Communication Conference (OFC’08) (2008), paper OTuC1.
  7. M. Sugawara, N. Hatori, T. Akiyama, Y. Nakata, and H. Ishikawa, “Quantum-dot semiconductor optical amplifiers for high bit-rate signal processing up to 160 Gbit/s and a new scheme of 3R regenerators,” Meas. Sci. Technol. 13, 1683–1691 (2002).
    [CrossRef]
  8. T. Vallaitis, C. Koos, R. Bonk, W. Freude, M. Laemmlin, C. Meuer, D. Bimberg, and J. Leuthold, “Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier,” Opt. Express 16, 170–178 (2008).
    [CrossRef] [PubMed]
  9. J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Static gain saturation model of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 44, 658–666 (2008).
    [CrossRef]
  10. J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Theoretical and experimental study of high-speed small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45, 240–248 (2009).
    [CrossRef]
  11. M. Sugawara, N. Hatori, T. Akiyama, Y. Nakata, and H. Ishikawa, “Quantum dot semiconductor optical amplifiers for high bit rate signal processing over 40 Gbit/s,” Jpn. J. Appl. Phys., Part 2 40, L488–L491 (2001).
    [CrossRef]
  12. T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free amplification and cross-gain modulation achieved by using ultrafast gain nonlinearity in quantum-dot semiconductor optical amplifiers,” Phys. Status Solidi B 238, 301–304 (2003).
    [CrossRef]
  13. J. L. Xiao and Y. Z. Huang, “Numerical analysis of gain saturation, noise figure, and carrier distribution for quantum-dot semiconductor-optical amplifiers,” IEEE J. Quantum Electron. 44, 448–455 (2008).
    [CrossRef]
  14. H. Kawaguchi, “Absorptive and dispersive bistability in semiconductor injection lasers,” Opt. Quantum Electron. 19, S1–S36 (1987).
    [CrossRef]
  15. Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3 μm Quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19, 501–503 (2007).
    [CrossRef]
  16. L. R. Huang, S. H. Yu, and D. X. Huang, “Gain spectrum and saturation characteristics of two-segment semiconductor optical amplifier,” Proc. SPIE 7135, 71352C (2008).
    [CrossRef]
  17. P. Tian, L. R. Huang, W. Hong, and D. X. Huang, “Pattern effect reduction in all-optical wavelength conversion using two-electrode semiconductor optical amplifier,” Appl. Opt. 49, 5005–5012 (2010).
    [CrossRef] [PubMed]
  18. A. Sharaiha and M. Guegan, “Equivalent circuit model for multi-electrode semiconductor optical amplifiers and analysis of inline photodetection in bidirectional transmissions,” J. Lightwave Technol. 18, 700–707 (2000).
    [CrossRef]
  19. M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1−xAs/GaAs quantum dot lasers,” Phys. Rev. B 61, 7595–7603 (2000).
    [CrossRef]
  20. D. G. Deppe, D. L. Huffaker, S. Csutak, Z. Zou, G. Park, and O. B. Shchekin, “Spontaneous emission and threshold characteristics of 1.3-um InGaAs-GaAs quantum-dot GaAs-based lasers,” IEEE J. Quantum Electron. 35, 1238–1246 (1999).
    [CrossRef]
  21. M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III–V compounds applicable in device simulation codes,” J. Appl. Phys. 87, 2890–2900 (2000).
    [CrossRef]
  22. A. Markus, M. Rossetti, V. Calligari, J. X. Chen, and A. Fiore, “Role of thermal hopping and homogeneous broadening on the spectral characteristics of quantum dot lasers,” J. Appl. Phys. 98, 104506 (2005).
    [CrossRef]
  23. M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69, 235332 (2004).
    [CrossRef]
  24. G. Talli and M. J. Adams, “Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,” IEEE J. Quantum Electron. 39, 1305–1313 (2003).
    [CrossRef]

2010

2009

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Theoretical and experimental study of high-speed small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45, 240–248 (2009).
[CrossRef]

L. R. Huang, Y. Yu, P. Tian, and D. X. Huang, “Polarization-insensitive quantum-dot coupled quantum-well semiconductor optical amplifier,” Semicond. Sci. Technol. 24, 015009 (2009).
[CrossRef]

2008

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Static gain saturation model of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 44, 658–666 (2008).
[CrossRef]

J. L. Xiao and Y. Z. Huang, “Numerical analysis of gain saturation, noise figure, and carrier distribution for quantum-dot semiconductor-optical amplifiers,” IEEE J. Quantum Electron. 44, 448–455 (2008).
[CrossRef]

L. R. Huang, S. H. Yu, and D. X. Huang, “Gain spectrum and saturation characteristics of two-segment semiconductor optical amplifier,” Proc. SPIE 7135, 71352C (2008).
[CrossRef]

T. Vallaitis, C. Koos, R. Bonk, W. Freude, M. Laemmlin, C. Meuer, D. Bimberg, and J. Leuthold, “Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier,” Opt. Express 16, 170–178 (2008).
[CrossRef] [PubMed]

2007

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3 μm Quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19, 501–503 (2007).
[CrossRef]

E. B. Zhou, X. L. Zhang, and D. X. Huang, “Evaluating characteristics of semiconductor optical amplifiers using optical pumping near the transparency,” J. Opt. Soc. Am. B 24, 2647–2657 (2007).
[CrossRef]

2005

D. Bimberg, “Quantum dots for lasers, amplifiers and computing,” J. Phys. D: Appl. Phys. 38, 2055–2058 (2005).
[CrossRef]

A. Markus, M. Rossetti, V. Calligari, J. X. Chen, and A. Fiore, “Role of thermal hopping and homogeneous broadening on the spectral characteristics of quantum dot lasers,” J. Appl. Phys. 98, 104506 (2005).
[CrossRef]

2004

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69, 235332 (2004).
[CrossRef]

J. M. Vazquez, J. Z. Zhang, and I. Galbraith, “Quantum dot versus quantum well semiconductor optical amplifiers for subpicosecond pulse amplification,” Opt. Quantum Electron. 36, 539–549 (2004).
[CrossRef]

2003

G. Talli and M. J. Adams, “Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,” IEEE J. Quantum Electron. 39, 1305–1313 (2003).
[CrossRef]

T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free amplification and cross-gain modulation achieved by using ultrafast gain nonlinearity in quantum-dot semiconductor optical amplifiers,” Phys. Status Solidi B 238, 301–304 (2003).
[CrossRef]

2002

M. Sugawara, N. Hatori, T. Akiyama, Y. Nakata, and H. Ishikawa, “Quantum-dot semiconductor optical amplifiers for high bit-rate signal processing up to 160 Gbit/s and a new scheme of 3R regenerators,” Meas. Sci. Technol. 13, 1683–1691 (2002).
[CrossRef]

2001

M. Sugawara, N. Hatori, T. Akiyama, Y. Nakata, and H. Ishikawa, “Quantum dot semiconductor optical amplifiers for high bit rate signal processing over 40 Gbit/s,” Jpn. J. Appl. Phys., Part 2 40, L488–L491 (2001).
[CrossRef]

2000

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1−xAs/GaAs quantum dot lasers,” Phys. Rev. B 61, 7595–7603 (2000).
[CrossRef]

A. Sharaiha and M. Guegan, “Equivalent circuit model for multi-electrode semiconductor optical amplifiers and analysis of inline photodetection in bidirectional transmissions,” J. Lightwave Technol. 18, 700–707 (2000).
[CrossRef]

M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III–V compounds applicable in device simulation codes,” J. Appl. Phys. 87, 2890–2900 (2000).
[CrossRef]

1999

D. G. Deppe, D. L. Huffaker, S. Csutak, Z. Zou, G. Park, and O. B. Shchekin, “Spontaneous emission and threshold characteristics of 1.3-um InGaAs-GaAs quantum-dot GaAs-based lasers,” IEEE J. Quantum Electron. 35, 1238–1246 (1999).
[CrossRef]

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high speed digital information processing,” Science 286, 1523–1528 (1999).
[CrossRef] [PubMed]

1987

H. Kawaguchi, “Absorptive and dispersive bistability in semiconductor injection lasers,” Opt. Quantum Electron. 19, S1–S36 (1987).
[CrossRef]

Adams, M. J.

G. Talli and M. J. Adams, “Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,” IEEE J. Quantum Electron. 39, 1305–1313 (2003).
[CrossRef]

Akiyama, T.

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69, 235332 (2004).
[CrossRef]

T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free amplification and cross-gain modulation achieved by using ultrafast gain nonlinearity in quantum-dot semiconductor optical amplifiers,” Phys. Status Solidi B 238, 301–304 (2003).
[CrossRef]

M. Sugawara, N. Hatori, T. Akiyama, Y. Nakata, and H. Ishikawa, “Quantum-dot semiconductor optical amplifiers for high bit-rate signal processing up to 160 Gbit/s and a new scheme of 3R regenerators,” Meas. Sci. Technol. 13, 1683–1691 (2002).
[CrossRef]

M. Sugawara, N. Hatori, T. Akiyama, Y. Nakata, and H. Ishikawa, “Quantum dot semiconductor optical amplifiers for high bit rate signal processing over 40 Gbit/s,” Jpn. J. Appl. Phys., Part 2 40, L488–L491 (2001).
[CrossRef]

Arakawa, Y.

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69, 235332 (2004).
[CrossRef]

Bimberg, D.

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Theoretical and experimental study of high-speed small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45, 240–248 (2009).
[CrossRef]

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Static gain saturation model of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 44, 658–666 (2008).
[CrossRef]

T. Vallaitis, C. Koos, R. Bonk, W. Freude, M. Laemmlin, C. Meuer, D. Bimberg, and J. Leuthold, “Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier,” Opt. Express 16, 170–178 (2008).
[CrossRef] [PubMed]

D. Bimberg, “Quantum dots for lasers, amplifiers and computing,” J. Phys. D: Appl. Phys. 38, 2055–2058 (2005).
[CrossRef]

Blow, K. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high speed digital information processing,” Science 286, 1523–1528 (1999).
[CrossRef] [PubMed]

Bonk, R.

Brenot, R.

R. Brenot, F. Lelarge, O. Legouezigou, F. Pommereau, F. Poingt, L. Legouezigou, E. Derouin, O. Drisse, B. Rousseau, F. Martin, and G. H. Duan, “Quantum dots semiconductor optical amplifier with a –3 dB bandwidth of up to 120 nm in semi-cooled operation,” in Proceedings of the Optical Fiber Communication Conference (OFC’08) (2008), paper OTuC1.

Calligari, V.

A. Markus, M. Rossetti, V. Calligari, J. X. Chen, and A. Fiore, “Role of thermal hopping and homogeneous broadening on the spectral characteristics of quantum dot lasers,” J. Appl. Phys. 98, 104506 (2005).
[CrossRef]

Chen, J. X.

A. Markus, M. Rossetti, V. Calligari, J. X. Chen, and A. Fiore, “Role of thermal hopping and homogeneous broadening on the spectral characteristics of quantum dot lasers,” J. Appl. Phys. 98, 104506 (2005).
[CrossRef]

Cotter, D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high speed digital information processing,” Science 286, 1523–1528 (1999).
[CrossRef] [PubMed]

Csutak, S.

D. G. Deppe, D. L. Huffaker, S. Csutak, Z. Zou, G. Park, and O. B. Shchekin, “Spontaneous emission and threshold characteristics of 1.3-um InGaAs-GaAs quantum-dot GaAs-based lasers,” IEEE J. Quantum Electron. 35, 1238–1246 (1999).
[CrossRef]

Deppe, D. G.

D. G. Deppe, D. L. Huffaker, S. Csutak, Z. Zou, G. Park, and O. B. Shchekin, “Spontaneous emission and threshold characteristics of 1.3-um InGaAs-GaAs quantum-dot GaAs-based lasers,” IEEE J. Quantum Electron. 35, 1238–1246 (1999).
[CrossRef]

Derouin, E.

R. Brenot, F. Lelarge, O. Legouezigou, F. Pommereau, F. Poingt, L. Legouezigou, E. Derouin, O. Drisse, B. Rousseau, F. Martin, and G. H. Duan, “Quantum dots semiconductor optical amplifier with a –3 dB bandwidth of up to 120 nm in semi-cooled operation,” in Proceedings of the Optical Fiber Communication Conference (OFC’08) (2008), paper OTuC1.

Drisse, O.

R. Brenot, F. Lelarge, O. Legouezigou, F. Pommereau, F. Poingt, L. Legouezigou, E. Derouin, O. Drisse, B. Rousseau, F. Martin, and G. H. Duan, “Quantum dots semiconductor optical amplifier with a –3 dB bandwidth of up to 120 nm in semi-cooled operation,” in Proceedings of the Optical Fiber Communication Conference (OFC’08) (2008), paper OTuC1.

Duan, G. H.

R. Brenot, F. Lelarge, O. Legouezigou, F. Pommereau, F. Poingt, L. Legouezigou, E. Derouin, O. Drisse, B. Rousseau, F. Martin, and G. H. Duan, “Quantum dots semiconductor optical amplifier with a –3 dB bandwidth of up to 120 nm in semi-cooled operation,” in Proceedings of the Optical Fiber Communication Conference (OFC’08) (2008), paper OTuC1.

Ebe, H.

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69, 235332 (2004).
[CrossRef]

T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free amplification and cross-gain modulation achieved by using ultrafast gain nonlinearity in quantum-dot semiconductor optical amplifiers,” Phys. Status Solidi B 238, 301–304 (2003).
[CrossRef]

Eisenstein, G.

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Theoretical and experimental study of high-speed small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45, 240–248 (2009).
[CrossRef]

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Static gain saturation model of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 44, 658–666 (2008).
[CrossRef]

Ellis, A. D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high speed digital information processing,” Science 286, 1523–1528 (1999).
[CrossRef] [PubMed]

Fiore, A.

A. Markus, M. Rossetti, V. Calligari, J. X. Chen, and A. Fiore, “Role of thermal hopping and homogeneous broadening on the spectral characteristics of quantum dot lasers,” J. Appl. Phys. 98, 104506 (2005).
[CrossRef]

Freude, W.

Galbraith, I.

J. M. Vazquez, J. Z. Zhang, and I. Galbraith, “Quantum dot versus quantum well semiconductor optical amplifiers for subpicosecond pulse amplification,” Opt. Quantum Electron. 36, 539–549 (2004).
[CrossRef]

Gray, A. L.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3 μm Quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19, 501–503 (2007).
[CrossRef]

Guegan, M.

Hatori, N.

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69, 235332 (2004).
[CrossRef]

T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free amplification and cross-gain modulation achieved by using ultrafast gain nonlinearity in quantum-dot semiconductor optical amplifiers,” Phys. Status Solidi B 238, 301–304 (2003).
[CrossRef]

M. Sugawara, N. Hatori, T. Akiyama, Y. Nakata, and H. Ishikawa, “Quantum-dot semiconductor optical amplifiers for high bit-rate signal processing up to 160 Gbit/s and a new scheme of 3R regenerators,” Meas. Sci. Technol. 13, 1683–1691 (2002).
[CrossRef]

M. Sugawara, N. Hatori, T. Akiyama, Y. Nakata, and H. Ishikawa, “Quantum dot semiconductor optical amplifiers for high bit rate signal processing over 40 Gbit/s,” Jpn. J. Appl. Phys., Part 2 40, L488–L491 (2001).
[CrossRef]

Hong, W.

Huang, D. X.

P. Tian, L. R. Huang, W. Hong, and D. X. Huang, “Pattern effect reduction in all-optical wavelength conversion using two-electrode semiconductor optical amplifier,” Appl. Opt. 49, 5005–5012 (2010).
[CrossRef] [PubMed]

L. R. Huang, Y. Yu, P. Tian, and D. X. Huang, “Polarization-insensitive quantum-dot coupled quantum-well semiconductor optical amplifier,” Semicond. Sci. Technol. 24, 015009 (2009).
[CrossRef]

L. R. Huang, S. H. Yu, and D. X. Huang, “Gain spectrum and saturation characteristics of two-segment semiconductor optical amplifier,” Proc. SPIE 7135, 71352C (2008).
[CrossRef]

E. B. Zhou, X. L. Zhang, and D. X. Huang, “Evaluating characteristics of semiconductor optical amplifiers using optical pumping near the transparency,” J. Opt. Soc. Am. B 24, 2647–2657 (2007).
[CrossRef]

Huang, L. R.

P. Tian, L. R. Huang, W. Hong, and D. X. Huang, “Pattern effect reduction in all-optical wavelength conversion using two-electrode semiconductor optical amplifier,” Appl. Opt. 49, 5005–5012 (2010).
[CrossRef] [PubMed]

L. R. Huang, Y. Yu, P. Tian, and D. X. Huang, “Polarization-insensitive quantum-dot coupled quantum-well semiconductor optical amplifier,” Semicond. Sci. Technol. 24, 015009 (2009).
[CrossRef]

L. R. Huang, S. H. Yu, and D. X. Huang, “Gain spectrum and saturation characteristics of two-segment semiconductor optical amplifier,” Proc. SPIE 7135, 71352C (2008).
[CrossRef]

Huang, Y. Z.

J. L. Xiao and Y. Z. Huang, “Numerical analysis of gain saturation, noise figure, and carrier distribution for quantum-dot semiconductor-optical amplifiers,” IEEE J. Quantum Electron. 44, 448–455 (2008).
[CrossRef]

Huffaker, D. L.

D. G. Deppe, D. L. Huffaker, S. Csutak, Z. Zou, G. Park, and O. B. Shchekin, “Spontaneous emission and threshold characteristics of 1.3-um InGaAs-GaAs quantum-dot GaAs-based lasers,” IEEE J. Quantum Electron. 35, 1238–1246 (1999).
[CrossRef]

Ishida, M.

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69, 235332 (2004).
[CrossRef]

Ishikawa, H.

M. Sugawara, N. Hatori, T. Akiyama, Y. Nakata, and H. Ishikawa, “Quantum-dot semiconductor optical amplifiers for high bit-rate signal processing up to 160 Gbit/s and a new scheme of 3R regenerators,” Meas. Sci. Technol. 13, 1683–1691 (2002).
[CrossRef]

M. Sugawara, N. Hatori, T. Akiyama, Y. Nakata, and H. Ishikawa, “Quantum dot semiconductor optical amplifiers for high bit rate signal processing over 40 Gbit/s,” Jpn. J. Appl. Phys., Part 2 40, L488–L491 (2001).
[CrossRef]

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1−xAs/GaAs quantum dot lasers,” Phys. Rev. B 61, 7595–7603 (2000).
[CrossRef]

Kawaguchi, H.

H. Kawaguchi, “Absorptive and dispersive bistability in semiconductor injection lasers,” Opt. Quantum Electron. 19, S1–S36 (1987).
[CrossRef]

Kelly, A. E.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high speed digital information processing,” Science 286, 1523–1528 (1999).
[CrossRef] [PubMed]

Khalid, A. H.

M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III–V compounds applicable in device simulation codes,” J. Appl. Phys. 87, 2890–2900 (2000).
[CrossRef]

Kim, J.

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Theoretical and experimental study of high-speed small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45, 240–248 (2009).
[CrossRef]

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Static gain saturation model of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 44, 658–666 (2008).
[CrossRef]

Koos, C.

Laemmlin, M.

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Theoretical and experimental study of high-speed small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45, 240–248 (2009).
[CrossRef]

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Static gain saturation model of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 44, 658–666 (2008).
[CrossRef]

T. Vallaitis, C. Koos, R. Bonk, W. Freude, M. Laemmlin, C. Meuer, D. Bimberg, and J. Leuthold, “Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier,” Opt. Express 16, 170–178 (2008).
[CrossRef] [PubMed]

Legouezigou, L.

R. Brenot, F. Lelarge, O. Legouezigou, F. Pommereau, F. Poingt, L. Legouezigou, E. Derouin, O. Drisse, B. Rousseau, F. Martin, and G. H. Duan, “Quantum dots semiconductor optical amplifier with a –3 dB bandwidth of up to 120 nm in semi-cooled operation,” in Proceedings of the Optical Fiber Communication Conference (OFC’08) (2008), paper OTuC1.

Legouezigou, O.

R. Brenot, F. Lelarge, O. Legouezigou, F. Pommereau, F. Poingt, L. Legouezigou, E. Derouin, O. Drisse, B. Rousseau, F. Martin, and G. H. Duan, “Quantum dots semiconductor optical amplifier with a –3 dB bandwidth of up to 120 nm in semi-cooled operation,” in Proceedings of the Optical Fiber Communication Conference (OFC’08) (2008), paper OTuC1.

Lelarge, F.

R. Brenot, F. Lelarge, O. Legouezigou, F. Pommereau, F. Poingt, L. Legouezigou, E. Derouin, O. Drisse, B. Rousseau, F. Martin, and G. H. Duan, “Quantum dots semiconductor optical amplifier with a –3 dB bandwidth of up to 120 nm in semi-cooled operation,” in Proceedings of the Optical Fiber Communication Conference (OFC’08) (2008), paper OTuC1.

Lester, L. F.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3 μm Quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19, 501–503 (2007).
[CrossRef]

Leuthold, J.

Li, Y.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3 μm Quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19, 501–503 (2007).
[CrossRef]

Manning, R. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high speed digital information processing,” Science 286, 1523–1528 (1999).
[CrossRef] [PubMed]

Markus, A.

A. Markus, M. Rossetti, V. Calligari, J. X. Chen, and A. Fiore, “Role of thermal hopping and homogeneous broadening on the spectral characteristics of quantum dot lasers,” J. Appl. Phys. 98, 104506 (2005).
[CrossRef]

Martin, F.

R. Brenot, F. Lelarge, O. Legouezigou, F. Pommereau, F. Poingt, L. Legouezigou, E. Derouin, O. Drisse, B. Rousseau, F. Martin, and G. H. Duan, “Quantum dots semiconductor optical amplifier with a –3 dB bandwidth of up to 120 nm in semi-cooled operation,” in Proceedings of the Optical Fiber Communication Conference (OFC’08) (2008), paper OTuC1.

Martinez, A.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3 μm Quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19, 501–503 (2007).
[CrossRef]

Meuer, C.

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Theoretical and experimental study of high-speed small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45, 240–248 (2009).
[CrossRef]

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Static gain saturation model of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 44, 658–666 (2008).
[CrossRef]

T. Vallaitis, C. Koos, R. Bonk, W. Freude, M. Laemmlin, C. Meuer, D. Bimberg, and J. Leuthold, “Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier,” Opt. Express 16, 170–178 (2008).
[CrossRef] [PubMed]

Moscho, A. J.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3 μm Quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19, 501–503 (2007).
[CrossRef]

Mukai, K.

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1−xAs/GaAs quantum dot lasers,” Phys. Rev. B 61, 7595–7603 (2000).
[CrossRef]

Nakata, Y.

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69, 235332 (2004).
[CrossRef]

T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free amplification and cross-gain modulation achieved by using ultrafast gain nonlinearity in quantum-dot semiconductor optical amplifiers,” Phys. Status Solidi B 238, 301–304 (2003).
[CrossRef]

M. Sugawara, N. Hatori, T. Akiyama, Y. Nakata, and H. Ishikawa, “Quantum-dot semiconductor optical amplifiers for high bit-rate signal processing up to 160 Gbit/s and a new scheme of 3R regenerators,” Meas. Sci. Technol. 13, 1683–1691 (2002).
[CrossRef]

M. Sugawara, N. Hatori, T. Akiyama, Y. Nakata, and H. Ishikawa, “Quantum dot semiconductor optical amplifiers for high bit rate signal processing over 40 Gbit/s,” Jpn. J. Appl. Phys., Part 2 40, L488–L491 (2001).
[CrossRef]

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1−xAs/GaAs quantum dot lasers,” Phys. Rev. B 61, 7595–7603 (2000).
[CrossRef]

Nesset, D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high speed digital information processing,” Science 286, 1523–1528 (1999).
[CrossRef] [PubMed]

Nilsen, T. A.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3 μm Quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19, 501–503 (2007).
[CrossRef]

Otsubo, K.

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69, 235332 (2004).
[CrossRef]

Park, G.

D. G. Deppe, D. L. Huffaker, S. Csutak, Z. Zou, G. Park, and O. B. Shchekin, “Spontaneous emission and threshold characteristics of 1.3-um InGaAs-GaAs quantum-dot GaAs-based lasers,” IEEE J. Quantum Electron. 35, 1238–1246 (1999).
[CrossRef]

Phillips, I. D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high speed digital information processing,” Science 286, 1523–1528 (1999).
[CrossRef] [PubMed]

Poingt, F.

R. Brenot, F. Lelarge, O. Legouezigou, F. Pommereau, F. Poingt, L. Legouezigou, E. Derouin, O. Drisse, B. Rousseau, F. Martin, and G. H. Duan, “Quantum dots semiconductor optical amplifier with a –3 dB bandwidth of up to 120 nm in semi-cooled operation,” in Proceedings of the Optical Fiber Communication Conference (OFC’08) (2008), paper OTuC1.

Pommereau, F.

R. Brenot, F. Lelarge, O. Legouezigou, F. Pommereau, F. Poingt, L. Legouezigou, E. Derouin, O. Drisse, B. Rousseau, F. Martin, and G. H. Duan, “Quantum dots semiconductor optical amplifier with a –3 dB bandwidth of up to 120 nm in semi-cooled operation,” in Proceedings of the Optical Fiber Communication Conference (OFC’08) (2008), paper OTuC1.

Poustie, A. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high speed digital information processing,” Science 286, 1523–1528 (1999).
[CrossRef] [PubMed]

Rezazadeh, A. A.

M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III–V compounds applicable in device simulation codes,” J. Appl. Phys. 87, 2890–2900 (2000).
[CrossRef]

Rogers, D. C.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high speed digital information processing,” Science 286, 1523–1528 (1999).
[CrossRef] [PubMed]

Rossetti, M.

A. Markus, M. Rossetti, V. Calligari, J. X. Chen, and A. Fiore, “Role of thermal hopping and homogeneous broadening on the spectral characteristics of quantum dot lasers,” J. Appl. Phys. 98, 104506 (2005).
[CrossRef]

Rousseau, B.

R. Brenot, F. Lelarge, O. Legouezigou, F. Pommereau, F. Poingt, L. Legouezigou, E. Derouin, O. Drisse, B. Rousseau, F. Martin, and G. H. Duan, “Quantum dots semiconductor optical amplifier with a –3 dB bandwidth of up to 120 nm in semi-cooled operation,” in Proceedings of the Optical Fiber Communication Conference (OFC’08) (2008), paper OTuC1.

Saiz, T.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3 μm Quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19, 501–503 (2007).
[CrossRef]

Sakamoto, A.

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1−xAs/GaAs quantum dot lasers,” Phys. Rev. B 61, 7595–7603 (2000).
[CrossRef]

Sharaiha, A.

Shchekin, O. B.

D. G. Deppe, D. L. Huffaker, S. Csutak, Z. Zou, G. Park, and O. B. Shchekin, “Spontaneous emission and threshold characteristics of 1.3-um InGaAs-GaAs quantum-dot GaAs-based lasers,” IEEE J. Quantum Electron. 35, 1238–1246 (1999).
[CrossRef]

Sotoodeh, M.

M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III–V compounds applicable in device simulation codes,” J. Appl. Phys. 87, 2890–2900 (2000).
[CrossRef]

Sugawara, M.

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69, 235332 (2004).
[CrossRef]

T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free amplification and cross-gain modulation achieved by using ultrafast gain nonlinearity in quantum-dot semiconductor optical amplifiers,” Phys. Status Solidi B 238, 301–304 (2003).
[CrossRef]

M. Sugawara, N. Hatori, T. Akiyama, Y. Nakata, and H. Ishikawa, “Quantum-dot semiconductor optical amplifiers for high bit-rate signal processing up to 160 Gbit/s and a new scheme of 3R regenerators,” Meas. Sci. Technol. 13, 1683–1691 (2002).
[CrossRef]

M. Sugawara, N. Hatori, T. Akiyama, Y. Nakata, and H. Ishikawa, “Quantum dot semiconductor optical amplifiers for high bit rate signal processing over 40 Gbit/s,” Jpn. J. Appl. Phys., Part 2 40, L488–L491 (2001).
[CrossRef]

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1−xAs/GaAs quantum dot lasers,” Phys. Rev. B 61, 7595–7603 (2000).
[CrossRef]

Talli, G.

G. Talli and M. J. Adams, “Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,” IEEE J. Quantum Electron. 39, 1305–1313 (2003).
[CrossRef]

Tian, P.

P. Tian, L. R. Huang, W. Hong, and D. X. Huang, “Pattern effect reduction in all-optical wavelength conversion using two-electrode semiconductor optical amplifier,” Appl. Opt. 49, 5005–5012 (2010).
[CrossRef] [PubMed]

L. R. Huang, Y. Yu, P. Tian, and D. X. Huang, “Polarization-insensitive quantum-dot coupled quantum-well semiconductor optical amplifier,” Semicond. Sci. Technol. 24, 015009 (2009).
[CrossRef]

Vallaitis, T.

Vazquez, J. M.

J. M. Vazquez, J. Z. Zhang, and I. Galbraith, “Quantum dot versus quantum well semiconductor optical amplifiers for subpicosecond pulse amplification,” Opt. Quantum Electron. 36, 539–549 (2004).
[CrossRef]

Xiao, J. L.

J. L. Xiao and Y. Z. Huang, “Numerical analysis of gain saturation, noise figure, and carrier distribution for quantum-dot semiconductor-optical amplifiers,” IEEE J. Quantum Electron. 44, 448–455 (2008).
[CrossRef]

Xin, Y. C.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3 μm Quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19, 501–503 (2007).
[CrossRef]

Yu, S. H.

L. R. Huang, S. H. Yu, and D. X. Huang, “Gain spectrum and saturation characteristics of two-segment semiconductor optical amplifier,” Proc. SPIE 7135, 71352C (2008).
[CrossRef]

Yu, Y.

L. R. Huang, Y. Yu, P. Tian, and D. X. Huang, “Polarization-insensitive quantum-dot coupled quantum-well semiconductor optical amplifier,” Semicond. Sci. Technol. 24, 015009 (2009).
[CrossRef]

Zhang, J. Z.

J. M. Vazquez, J. Z. Zhang, and I. Galbraith, “Quantum dot versus quantum well semiconductor optical amplifiers for subpicosecond pulse amplification,” Opt. Quantum Electron. 36, 539–549 (2004).
[CrossRef]

Zhang, X. L.

Zhou, E. B.

Zou, Z.

D. G. Deppe, D. L. Huffaker, S. Csutak, Z. Zou, G. Park, and O. B. Shchekin, “Spontaneous emission and threshold characteristics of 1.3-um InGaAs-GaAs quantum-dot GaAs-based lasers,” IEEE J. Quantum Electron. 35, 1238–1246 (1999).
[CrossRef]

Appl. Opt.

IEEE J. Quantum Electron.

G. Talli and M. J. Adams, “Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,” IEEE J. Quantum Electron. 39, 1305–1313 (2003).
[CrossRef]

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Static gain saturation model of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 44, 658–666 (2008).
[CrossRef]

J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Theoretical and experimental study of high-speed small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45, 240–248 (2009).
[CrossRef]

J. L. Xiao and Y. Z. Huang, “Numerical analysis of gain saturation, noise figure, and carrier distribution for quantum-dot semiconductor-optical amplifiers,” IEEE J. Quantum Electron. 44, 448–455 (2008).
[CrossRef]

D. G. Deppe, D. L. Huffaker, S. Csutak, Z. Zou, G. Park, and O. B. Shchekin, “Spontaneous emission and threshold characteristics of 1.3-um InGaAs-GaAs quantum-dot GaAs-based lasers,” IEEE J. Quantum Electron. 35, 1238–1246 (1999).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3 μm Quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19, 501–503 (2007).
[CrossRef]

J. Appl. Phys.

M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III–V compounds applicable in device simulation codes,” J. Appl. Phys. 87, 2890–2900 (2000).
[CrossRef]

A. Markus, M. Rossetti, V. Calligari, J. X. Chen, and A. Fiore, “Role of thermal hopping and homogeneous broadening on the spectral characteristics of quantum dot lasers,” J. Appl. Phys. 98, 104506 (2005).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

J. Phys. D: Appl. Phys.

D. Bimberg, “Quantum dots for lasers, amplifiers and computing,” J. Phys. D: Appl. Phys. 38, 2055–2058 (2005).
[CrossRef]

Jpn. J. Appl. Phys., Part 2

M. Sugawara, N. Hatori, T. Akiyama, Y. Nakata, and H. Ishikawa, “Quantum dot semiconductor optical amplifiers for high bit rate signal processing over 40 Gbit/s,” Jpn. J. Appl. Phys., Part 2 40, L488–L491 (2001).
[CrossRef]

Meas. Sci. Technol.

M. Sugawara, N. Hatori, T. Akiyama, Y. Nakata, and H. Ishikawa, “Quantum-dot semiconductor optical amplifiers for high bit-rate signal processing up to 160 Gbit/s and a new scheme of 3R regenerators,” Meas. Sci. Technol. 13, 1683–1691 (2002).
[CrossRef]

Opt. Express

Opt. Quantum Electron.

H. Kawaguchi, “Absorptive and dispersive bistability in semiconductor injection lasers,” Opt. Quantum Electron. 19, S1–S36 (1987).
[CrossRef]

J. M. Vazquez, J. Z. Zhang, and I. Galbraith, “Quantum dot versus quantum well semiconductor optical amplifiers for subpicosecond pulse amplification,” Opt. Quantum Electron. 36, 539–549 (2004).
[CrossRef]

Phys. Rev. B

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69, 235332 (2004).
[CrossRef]

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1−xAs/GaAs quantum dot lasers,” Phys. Rev. B 61, 7595–7603 (2000).
[CrossRef]

Phys. Status Solidi B

T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free amplification and cross-gain modulation achieved by using ultrafast gain nonlinearity in quantum-dot semiconductor optical amplifiers,” Phys. Status Solidi B 238, 301–304 (2003).
[CrossRef]

Proc. SPIE

L. R. Huang, S. H. Yu, and D. X. Huang, “Gain spectrum and saturation characteristics of two-segment semiconductor optical amplifier,” Proc. SPIE 7135, 71352C (2008).
[CrossRef]

Science

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high speed digital information processing,” Science 286, 1523–1528 (1999).
[CrossRef] [PubMed]

Semicond. Sci. Technol.

L. R. Huang, Y. Yu, P. Tian, and D. X. Huang, “Polarization-insensitive quantum-dot coupled quantum-well semiconductor optical amplifier,” Semicond. Sci. Technol. 24, 015009 (2009).
[CrossRef]

Other

R. Brenot, F. Lelarge, O. Legouezigou, F. Pommereau, F. Poingt, L. Legouezigou, E. Derouin, O. Drisse, B. Rousseau, F. Martin, and G. H. Duan, “Quantum dots semiconductor optical amplifier with a –3 dB bandwidth of up to 120 nm in semi-cooled operation,” in Proceedings of the Optical Fiber Communication Conference (OFC’08) (2008), paper OTuC1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the two gain recovery processes of a QD ensemble. (a) Recovery process at high bias current. (b) Recovery process at low bias current.

Fig. 2
Fig. 2

Schematic view of QD-SOA. (a) Common QD-SOA. (b) Two-electrode QD-SOA.

Fig. 3
Fig. 3

Carrier occupation probability of WL with different J 1 : J 2 . (a) Electron occupation probability. (b) Hole occupation probability.

Fig. 4
Fig. 4

Gain saturation of a single Gaussian pulse in two-electrode QD-SOA. The bias current is 200 mA.

Fig. 5
Fig. 5

Gain saturation of a single Gaussian pulse in two-electrode QD-SOA. The bias current is 100 mA.

Fig. 6
Fig. 6

(a) Gain recovery time versus J 1 : J 2 with different bias currents. (b) Optical gain of the Gaussian pulse peak versus J 1 : J 2 with different bias currents.

Fig. 7
Fig. 7

Normalized XGM efficiency versus the pump signal modulation frequency with different J 1 : J 2 . (a) The bias current is 145 mA. (b) The bias current is 80 mA.

Fig. 8
Fig. 8

XGM bandwidth versus bias current with different J 1 : J 2 .

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

d f w c ( υ ) d t = η B k q ρ w c ( υ ) + m = 1 M N e f e , m c ( υ ) ρ w c ( υ ) τ e w c ( υ ) ( 1 f w c ( υ ) ) m = 1 M f w c ( υ ) τ w e c ( υ ) G m c ( υ ) ( 1 f e , m c ( υ ) ) f w c f w υ τ w r + D w c ( υ ) 2 f w c ( υ ) z 2 ,
d f e , m c ( υ ) d t = f w c ( υ ) τ w e c ( υ ) G m c ( υ ) ( 1 f e , m c ( υ ) ) f e , m c ( υ ) τ e w c ( υ ) ( 1 f w c ( υ ) ) + N g f g , m c ( υ ) N e τ g e c ( υ ) ( 1 f e , m c ( υ ) ) f e , m c ( υ ) τ e g c ( υ ) ( 1 f g , m c ( υ ) ) f e , m c f e , m υ τ e r R e , m ,
d f g , m c ( υ ) d t = N e f e , m c ( υ ) N g τ e g c ( υ ) ( 1 f g , m c ( υ ) ) f g , m c ( υ ) τ g e c ( υ ) ( 1 f e , m c ( υ ) ) f g , m c f g , m υ τ g r R g , m ,
R i , m = Γ L k N i g i , m ( z , t , ω s ) P s ω s + Γ L k N i s p g i , m ( z , t , ω s p ) P s p ω s p
( i = e , g ) ,
g i , m ( z , t , ω ) = D i π q 2 N D n r c ε 0 m 0 2 V E i G m s | M e n v | 2 | M b | 2 L ( E i , m , ω ) [ f i , m c ( z , t ) + f i , m υ ( z , t ) 1 ] ,
L ( E i , m , ω ) = γ / 2 π ( E i , m ω ) 2 + ( γ / 2 ) 2 ,
P s ± ( z , ω s ) z = [ Γ i = e , g m = 1 M g i , m ( z , ω s ) α i n ] P s ± ( z , ω s ) ,
P s p ± ( z , ω s p ) z = [ Γ i = e , g m = 1 M g i , m ( z , ω s p ) α i n ] P s p ± ( z , ω s p ) + Γ ω s p d ω s p 2 π i = e , g m = 1 M g i , m ( z , ω s p ) f i , m c f i , m υ ( f i , m c + f i , m υ 1 ) ,
P s + ( 0 , ω s ) = ( 1 R 1 ) P s , i n + R 1 P s ( 0 , ω s ) ,
P s ( L , ω s ) = R 2 P s + ( L , ω s ) ,

Metrics