Abstract

Non-adiabatic pulse compression of cascaded higher-order optical soliton is investigated. We demonstrate high degree compression of pulses with soliton orders N=2, 3, 4, and 5 in two or three nonlinear fibers with different second-order dispersion coefficients. Each fiber length is shorter than half of its soliton period. This compression technique has significant advantages over the widely reported adiabatic and higher-order soliton compression.

© 2010 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, 1998).
  2. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001).
  3. W. J. Tomlinson, R. H. Stolen, and C. V. Shank, “Compression of optical pulses by self-phase modulation in fibers,” J. Opt. Soc. Am. B 1, 139–149 (1984).
    [CrossRef]
  4. K. C. Chan and H. F. Liu, “Short pulse generation by higher order soliton-effect compression: Effects of optical fiber characteristics,” IEEE J. Quantum Electron. 31, 2226–2235 (1995).
    [CrossRef]
  5. M. D. Pelusi and H. F. Liu, “Higher order soliton pulse compression in dispersion-decreasing optical fibers,” IEEE J. Quantum Electron. 33, 1430–1439 (1997).
    [CrossRef]
  6. R. H. Stolen, J. Botineau, and A. Ashkin, “Intensity discrimination of optical pulses with birefringent fibers,” Opt. Lett. 7, 512–514 (1982).
    [CrossRef]
  7. J. L. Tapié and G. Mourou, “Shaping of clean, femtosecond pulses at 1.053 μm for chirped pulse amplification,” Opt. Lett. 17, 136–138 (1992).
    [CrossRef]
  8. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 56–58 (1988).
    [CrossRef]
  9. B. J. Eggleton, G. Lenz, and N. M. Litchinitser, “Optical pulse compression schemes that use nonlinear Bragg gratings,” Fiber Integr. Opt. 19, 383–421 (2000).
    [CrossRef]
  10. S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, “Soliton pulse compression in dispersion decreasing fiber,” Opt. Lett. 18, 476–478 (1993).
    [CrossRef]
  11. M. J. Guy, S. V. Chernikov, J. R. Taylor, D. G. Moodie, and R. Kashyap, “200 fs soliton pulse generation at 10 GHz through nonlinear compression of transform-limited pulses from an electroabsorption modulator,” Electron. Lett. 31, 740–741 (1995).
    [CrossRef]
  12. M. Nakazawa, E. Yoshida, H. Kubota, and Y. Kimura, “Generation of a 170 fs, 10 GHz transform-limited pulse train at 1.55 μm using a dispersion decreasing, erbium-doped active soliton compressor,” Electron. Lett. 30, 2038–2040 (1994).
    [CrossRef]
  13. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
    [CrossRef]
  14. G. Lenz and B. J. Eggleton, “Adiabatic Bragg soliton compression in nonuniform grating structures,” J. Opt. Soc. Am. B 15, 2979–2985 (1998).
    [CrossRef]
  15. Q. Li, K. Senthilnathan, K. Nakkeeran, and P. K. A. Wai, “Nearly chirp-and pedestal-free pulse compression in nonlinear fiber Bragg gratings,” J. Opt. Soc. Am. B 26, 432–443 (2009).
    [CrossRef]
  16. Q. Li, P. K. A. Wai, K. Senthilnathan, and K. Nakkeeran, “Modeling self-similar optical pulse compression in nonlinear fiber Bragg gratings using the coupled mode equations” (submitted to J. Lightwave Technol.).
  17. K. Senthilnathan, K. Nakkeeran, Q. Li, and P. K. A. Wai, “Chirped higher order solitons” (submitted to J. Mod. Opt.).
  18. K. Senthilnathan, K. Nakkeeran, Q. Li, and P. K. A. Wai, “Chirped optical solitons: High degree pulse compression,” in Proceedings of OptoElectronics and Communications Conference (2009), paper FG2.
  19. M. V. Tognetti and H. M. Crespo, “Sub-two-cycle soliton-effect pulse compression at 800 nm in photonic crystal fibers,” J. Opt. Soc. Am. B 24, 1410–1415 (2007).
    [CrossRef]
  20. A. A. Voronin and A. M. Zheltikov, “Soliton-number analysis of soliton-effect pulse compression to single-cycle pulse widths,” Phys. Rev. A 78, 063834 (2008).
    [CrossRef]
  21. A. A. Voronin and A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33, 1723–1725 (2008).
    [CrossRef]
  22. M. Foster, A. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13, 6848–6855 (2005).
    [CrossRef]
  23. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  24. P. V. Mamyshev, “Generation and compression of femtosecond solitons in optical fibers,” in Optical Solitons—Theory and Experiment, J.R.Taylor, ed. (Cambridge University Press, 1992).
  25. W.-h. Cao and P. K. A. Wai, “Picosecond soliton transmission by use of concatenated gain-distributed nonlinear amplifying fiber loop mirrors,” Appl. Opt. 44, 7611–7620 (2005).
    [CrossRef]
  26. K. Smith, N. J. Doran, and P. G. J. Wigley, “Pulse shaping, compression, and pedestal suppression employing a nonlinear-optical loop mirror,” Opt. Lett. 15, 1294–1296 (1990).
    [CrossRef]
  27. K. Saitoh and M. Koshiba, “Numerical modeling of photonic crystal fibers,” J. Lightwave Technol. 23, 3580–3590 (2005).
    [CrossRef]
  28. S. P. Survaiya and R. K. Shevgaonkar, “Design of subpicosecond dispersion-flattened fibers,” IEEE Photon. Technol. Lett. 8, 803–805 (1996).
    [CrossRef]
  29. P. Palai, R. K. Varshney, and K. Thyagarajan, “A dispersion flattening dispersion compensating fiber design for broadband dispersion compensation,” Fiber Integr. Opt. 20, 21–27 (2001).
  30. T. Yamamoto, H. Kubota, S. Kawanishi, M. Tanaka, and S. Yamaguchi, “Supercontinum generation at 1.55 um in a dispersion-flattened polarization-maintaining photonic crystal fiber,” Opt. Express 11, 1537–1540 (2003).
    [CrossRef]
  31. K. Saitoh and M. Koshiba, “Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window,” Opt. Express 12, 2027–2032 (2004).
    [CrossRef]
  32. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andrés, “Nearly zero ultraflattened dispersion in photonic crystal fibers,” Opt. Lett. 25, 790–792 (2000).
    [CrossRef]
  33. W. H. Reeves, J. C. Knight, and P. St. J. Russell, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express 10, 609–613 (2002).
  34. M. Yan, P. Shum, and C. Lu, “Hole-assisted multiring fiber with low dispersion around 1550 nm,” IEEE Photon. Technol. Lett. 16, 123–125 (2004).
    [CrossRef]
  35. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
    [CrossRef]

2009

2008

A. A. Voronin and A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33, 1723–1725 (2008).
[CrossRef]

A. A. Voronin and A. M. Zheltikov, “Soliton-number analysis of soliton-effect pulse compression to single-cycle pulse widths,” Phys. Rev. A 78, 063834 (2008).
[CrossRef]

2007

2005

2004

K. Saitoh and M. Koshiba, “Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window,” Opt. Express 12, 2027–2032 (2004).
[CrossRef]

M. Yan, P. Shum, and C. Lu, “Hole-assisted multiring fiber with low dispersion around 1550 nm,” IEEE Photon. Technol. Lett. 16, 123–125 (2004).
[CrossRef]

2003

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[CrossRef]

T. Yamamoto, H. Kubota, S. Kawanishi, M. Tanaka, and S. Yamaguchi, “Supercontinum generation at 1.55 um in a dispersion-flattened polarization-maintaining photonic crystal fiber,” Opt. Express 11, 1537–1540 (2003).
[CrossRef]

2002

2001

P. Palai, R. K. Varshney, and K. Thyagarajan, “A dispersion flattening dispersion compensating fiber design for broadband dispersion compensation,” Fiber Integr. Opt. 20, 21–27 (2001).

2000

B. J. Eggleton, G. Lenz, and N. M. Litchinitser, “Optical pulse compression schemes that use nonlinear Bragg gratings,” Fiber Integr. Opt. 19, 383–421 (2000).
[CrossRef]

A. Ferrando, E. Silvestre, J. J. Miret, and P. Andrés, “Nearly zero ultraflattened dispersion in photonic crystal fibers,” Opt. Lett. 25, 790–792 (2000).
[CrossRef]

1998

1997

M. D. Pelusi and H. F. Liu, “Higher order soliton pulse compression in dispersion-decreasing optical fibers,” IEEE J. Quantum Electron. 33, 1430–1439 (1997).
[CrossRef]

1996

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
[CrossRef]

S. P. Survaiya and R. K. Shevgaonkar, “Design of subpicosecond dispersion-flattened fibers,” IEEE Photon. Technol. Lett. 8, 803–805 (1996).
[CrossRef]

1995

K. C. Chan and H. F. Liu, “Short pulse generation by higher order soliton-effect compression: Effects of optical fiber characteristics,” IEEE J. Quantum Electron. 31, 2226–2235 (1995).
[CrossRef]

M. J. Guy, S. V. Chernikov, J. R. Taylor, D. G. Moodie, and R. Kashyap, “200 fs soliton pulse generation at 10 GHz through nonlinear compression of transform-limited pulses from an electroabsorption modulator,” Electron. Lett. 31, 740–741 (1995).
[CrossRef]

1994

M. Nakazawa, E. Yoshida, H. Kubota, and Y. Kimura, “Generation of a 170 fs, 10 GHz transform-limited pulse train at 1.55 μm using a dispersion decreasing, erbium-doped active soliton compressor,” Electron. Lett. 30, 2038–2040 (1994).
[CrossRef]

1993

1992

1990

1988

1984

1982

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001).

Andrés, P.

Ashkin, A.

Biancalana, F.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[CrossRef]

Botineau, J.

Cao, Q.

Cao, W. -h.

Chan, K. C.

K. C. Chan and H. F. Liu, “Short pulse generation by higher order soliton-effect compression: Effects of optical fiber characteristics,” IEEE J. Quantum Electron. 31, 2226–2235 (1995).
[CrossRef]

Chernikov, S. V.

M. J. Guy, S. V. Chernikov, J. R. Taylor, D. G. Moodie, and R. Kashyap, “200 fs soliton pulse generation at 10 GHz through nonlinear compression of transform-limited pulses from an electroabsorption modulator,” Electron. Lett. 31, 740–741 (1995).
[CrossRef]

S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, “Soliton pulse compression in dispersion decreasing fiber,” Opt. Lett. 18, 476–478 (1993).
[CrossRef]

Crespo, H. M.

de Sterke, C. M.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
[CrossRef]

Dianov, E. M.

Diels, J. C.

J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, 1998).

Doran, N. J.

Efimov, A.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[CrossRef]

Eggleton, B. J.

B. J. Eggleton, G. Lenz, and N. M. Litchinitser, “Optical pulse compression schemes that use nonlinear Bragg gratings,” Fiber Integr. Opt. 19, 383–421 (2000).
[CrossRef]

G. Lenz and B. J. Eggleton, “Adiabatic Bragg soliton compression in nonuniform grating structures,” J. Opt. Soc. Am. B 15, 2979–2985 (1998).
[CrossRef]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
[CrossRef]

Ferrando, A.

Foster, M.

Gaeta, A.

Guy, M. J.

M. J. Guy, S. V. Chernikov, J. R. Taylor, D. G. Moodie, and R. Kashyap, “200 fs soliton pulse generation at 10 GHz through nonlinear compression of transform-limited pulses from an electroabsorption modulator,” Electron. Lett. 31, 740–741 (1995).
[CrossRef]

Kashyap, R.

M. J. Guy, S. V. Chernikov, J. R. Taylor, D. G. Moodie, and R. Kashyap, “200 fs soliton pulse generation at 10 GHz through nonlinear compression of transform-limited pulses from an electroabsorption modulator,” Electron. Lett. 31, 740–741 (1995).
[CrossRef]

Kawanishi, S.

Kimura, Y.

M. Nakazawa, E. Yoshida, H. Kubota, and Y. Kimura, “Generation of a 170 fs, 10 GHz transform-limited pulse train at 1.55 μm using a dispersion decreasing, erbium-doped active soliton compressor,” Electron. Lett. 30, 2038–2040 (1994).
[CrossRef]

Knight, J. C.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[CrossRef]

W. H. Reeves, J. C. Knight, and P. St. J. Russell, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express 10, 609–613 (2002).

Koshiba, M.

Krug, P. A.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
[CrossRef]

Kubota, H.

T. Yamamoto, H. Kubota, S. Kawanishi, M. Tanaka, and S. Yamaguchi, “Supercontinum generation at 1.55 um in a dispersion-flattened polarization-maintaining photonic crystal fiber,” Opt. Express 11, 1537–1540 (2003).
[CrossRef]

M. Nakazawa, E. Yoshida, H. Kubota, and Y. Kimura, “Generation of a 170 fs, 10 GHz transform-limited pulse train at 1.55 μm using a dispersion decreasing, erbium-doped active soliton compressor,” Electron. Lett. 30, 2038–2040 (1994).
[CrossRef]

Lenz, G.

B. J. Eggleton, G. Lenz, and N. M. Litchinitser, “Optical pulse compression schemes that use nonlinear Bragg gratings,” Fiber Integr. Opt. 19, 383–421 (2000).
[CrossRef]

G. Lenz and B. J. Eggleton, “Adiabatic Bragg soliton compression in nonuniform grating structures,” J. Opt. Soc. Am. B 15, 2979–2985 (1998).
[CrossRef]

Li, Q.

Q. Li, K. Senthilnathan, K. Nakkeeran, and P. K. A. Wai, “Nearly chirp-and pedestal-free pulse compression in nonlinear fiber Bragg gratings,” J. Opt. Soc. Am. B 26, 432–443 (2009).
[CrossRef]

K. Senthilnathan, K. Nakkeeran, Q. Li, and P. K. A. Wai, “Chirped optical solitons: High degree pulse compression,” in Proceedings of OptoElectronics and Communications Conference (2009), paper FG2.

Q. Li, P. K. A. Wai, K. Senthilnathan, and K. Nakkeeran, “Modeling self-similar optical pulse compression in nonlinear fiber Bragg gratings using the coupled mode equations” (submitted to J. Lightwave Technol.).

K. Senthilnathan, K. Nakkeeran, Q. Li, and P. K. A. Wai, “Chirped higher order solitons” (submitted to J. Mod. Opt.).

Litchinitser, N. M.

B. J. Eggleton, G. Lenz, and N. M. Litchinitser, “Optical pulse compression schemes that use nonlinear Bragg gratings,” Fiber Integr. Opt. 19, 383–421 (2000).
[CrossRef]

Liu, H. F.

M. D. Pelusi and H. F. Liu, “Higher order soliton pulse compression in dispersion-decreasing optical fibers,” IEEE J. Quantum Electron. 33, 1430–1439 (1997).
[CrossRef]

K. C. Chan and H. F. Liu, “Short pulse generation by higher order soliton-effect compression: Effects of optical fiber characteristics,” IEEE J. Quantum Electron. 31, 2226–2235 (1995).
[CrossRef]

Lu, C.

M. Yan, P. Shum, and C. Lu, “Hole-assisted multiring fiber with low dispersion around 1550 nm,” IEEE Photon. Technol. Lett. 16, 123–125 (2004).
[CrossRef]

Mamyshev, P. V.

P. V. Mamyshev, “Generation and compression of femtosecond solitons in optical fibers,” in Optical Solitons—Theory and Experiment, J.R.Taylor, ed. (Cambridge University Press, 1992).

Miret, J. J.

Moodie, D. G.

M. J. Guy, S. V. Chernikov, J. R. Taylor, D. G. Moodie, and R. Kashyap, “200 fs soliton pulse generation at 10 GHz through nonlinear compression of transform-limited pulses from an electroabsorption modulator,” Electron. Lett. 31, 740–741 (1995).
[CrossRef]

Mourou, G.

Nakazawa, M.

M. Nakazawa, E. Yoshida, H. Kubota, and Y. Kimura, “Generation of a 170 fs, 10 GHz transform-limited pulse train at 1.55 μm using a dispersion decreasing, erbium-doped active soliton compressor,” Electron. Lett. 30, 2038–2040 (1994).
[CrossRef]

Nakkeeran, K.

Q. Li, K. Senthilnathan, K. Nakkeeran, and P. K. A. Wai, “Nearly chirp-and pedestal-free pulse compression in nonlinear fiber Bragg gratings,” J. Opt. Soc. Am. B 26, 432–443 (2009).
[CrossRef]

K. Senthilnathan, K. Nakkeeran, Q. Li, and P. K. A. Wai, “Chirped optical solitons: High degree pulse compression,” in Proceedings of OptoElectronics and Communications Conference (2009), paper FG2.

Q. Li, P. K. A. Wai, K. Senthilnathan, and K. Nakkeeran, “Modeling self-similar optical pulse compression in nonlinear fiber Bragg gratings using the coupled mode equations” (submitted to J. Lightwave Technol.).

K. Senthilnathan, K. Nakkeeran, Q. Li, and P. K. A. Wai, “Chirped higher order solitons” (submitted to J. Mod. Opt.).

Omenetto, F. G.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[CrossRef]

Palai, P.

P. Palai, R. K. Varshney, and K. Thyagarajan, “A dispersion flattening dispersion compensating fiber design for broadband dispersion compensation,” Fiber Integr. Opt. 20, 21–27 (2001).

Payne, D. N.

Pelusi, M. D.

M. D. Pelusi and H. F. Liu, “Higher order soliton pulse compression in dispersion-decreasing optical fibers,” IEEE J. Quantum Electron. 33, 1430–1439 (1997).
[CrossRef]

Reeves, W. H.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[CrossRef]

W. H. Reeves, J. C. Knight, and P. St. J. Russell, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express 10, 609–613 (2002).

Richardson, D. J.

Rudolph, W.

J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, 1998).

Russell, P. St. J.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[CrossRef]

W. H. Reeves, J. C. Knight, and P. St. J. Russell, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express 10, 609–613 (2002).

Saitoh, K.

Senthilnathan, K.

Q. Li, K. Senthilnathan, K. Nakkeeran, and P. K. A. Wai, “Nearly chirp-and pedestal-free pulse compression in nonlinear fiber Bragg gratings,” J. Opt. Soc. Am. B 26, 432–443 (2009).
[CrossRef]

K. Senthilnathan, K. Nakkeeran, Q. Li, and P. K. A. Wai, “Chirped optical solitons: High degree pulse compression,” in Proceedings of OptoElectronics and Communications Conference (2009), paper FG2.

Q. Li, P. K. A. Wai, K. Senthilnathan, and K. Nakkeeran, “Modeling self-similar optical pulse compression in nonlinear fiber Bragg gratings using the coupled mode equations” (submitted to J. Lightwave Technol.).

K. Senthilnathan, K. Nakkeeran, Q. Li, and P. K. A. Wai, “Chirped higher order solitons” (submitted to J. Mod. Opt.).

Shank, C. V.

Shevgaonkar, R. K.

S. P. Survaiya and R. K. Shevgaonkar, “Design of subpicosecond dispersion-flattened fibers,” IEEE Photon. Technol. Lett. 8, 803–805 (1996).
[CrossRef]

Shum, P.

M. Yan, P. Shum, and C. Lu, “Hole-assisted multiring fiber with low dispersion around 1550 nm,” IEEE Photon. Technol. Lett. 16, 123–125 (2004).
[CrossRef]

Silvestre, E.

Sipe, J. E.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
[CrossRef]

Skryabin, D. V.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[CrossRef]

Slusher, R. E.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
[CrossRef]

Smith, K.

Stolen, R. H.

Survaiya, S. P.

S. P. Survaiya and R. K. Shevgaonkar, “Design of subpicosecond dispersion-flattened fibers,” IEEE Photon. Technol. Lett. 8, 803–805 (1996).
[CrossRef]

Tanaka, M.

Tapié, J. L.

Taylor, A. J.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[CrossRef]

Taylor, J. R.

M. J. Guy, S. V. Chernikov, J. R. Taylor, D. G. Moodie, and R. Kashyap, “200 fs soliton pulse generation at 10 GHz through nonlinear compression of transform-limited pulses from an electroabsorption modulator,” Electron. Lett. 31, 740–741 (1995).
[CrossRef]

Thyagarajan, K.

P. Palai, R. K. Varshney, and K. Thyagarajan, “A dispersion flattening dispersion compensating fiber design for broadband dispersion compensation,” Fiber Integr. Opt. 20, 21–27 (2001).

Tognetti, M. V.

Tomlinson, W. J.

Trebino, R.

Varshney, R. K.

P. Palai, R. K. Varshney, and K. Thyagarajan, “A dispersion flattening dispersion compensating fiber design for broadband dispersion compensation,” Fiber Integr. Opt. 20, 21–27 (2001).

Voronin, A. A.

A. A. Voronin and A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33, 1723–1725 (2008).
[CrossRef]

A. A. Voronin and A. M. Zheltikov, “Soliton-number analysis of soliton-effect pulse compression to single-cycle pulse widths,” Phys. Rev. A 78, 063834 (2008).
[CrossRef]

Wai, P. K. A.

Q. Li, K. Senthilnathan, K. Nakkeeran, and P. K. A. Wai, “Nearly chirp-and pedestal-free pulse compression in nonlinear fiber Bragg gratings,” J. Opt. Soc. Am. B 26, 432–443 (2009).
[CrossRef]

W.-h. Cao and P. K. A. Wai, “Picosecond soliton transmission by use of concatenated gain-distributed nonlinear amplifying fiber loop mirrors,” Appl. Opt. 44, 7611–7620 (2005).
[CrossRef]

K. Senthilnathan, K. Nakkeeran, Q. Li, and P. K. A. Wai, “Chirped optical solitons: High degree pulse compression,” in Proceedings of OptoElectronics and Communications Conference (2009), paper FG2.

Q. Li, P. K. A. Wai, K. Senthilnathan, and K. Nakkeeran, “Modeling self-similar optical pulse compression in nonlinear fiber Bragg gratings using the coupled mode equations” (submitted to J. Lightwave Technol.).

K. Senthilnathan, K. Nakkeeran, Q. Li, and P. K. A. Wai, “Chirped higher order solitons” (submitted to J. Mod. Opt.).

Wigley, P. G. J.

Wood, D.

Yamaguchi, S.

Yamamoto, T.

Yan, M.

M. Yan, P. Shum, and C. Lu, “Hole-assisted multiring fiber with low dispersion around 1550 nm,” IEEE Photon. Technol. Lett. 16, 123–125 (2004).
[CrossRef]

Yoshida, E.

M. Nakazawa, E. Yoshida, H. Kubota, and Y. Kimura, “Generation of a 170 fs, 10 GHz transform-limited pulse train at 1.55 μm using a dispersion decreasing, erbium-doped active soliton compressor,” Electron. Lett. 30, 2038–2040 (1994).
[CrossRef]

Zheltikov, A. M.

A. A. Voronin and A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33, 1723–1725 (2008).
[CrossRef]

A. A. Voronin and A. M. Zheltikov, “Soliton-number analysis of soliton-effect pulse compression to single-cycle pulse widths,” Phys. Rev. A 78, 063834 (2008).
[CrossRef]

Appl. Opt.

Electron. Lett.

M. J. Guy, S. V. Chernikov, J. R. Taylor, D. G. Moodie, and R. Kashyap, “200 fs soliton pulse generation at 10 GHz through nonlinear compression of transform-limited pulses from an electroabsorption modulator,” Electron. Lett. 31, 740–741 (1995).
[CrossRef]

M. Nakazawa, E. Yoshida, H. Kubota, and Y. Kimura, “Generation of a 170 fs, 10 GHz transform-limited pulse train at 1.55 μm using a dispersion decreasing, erbium-doped active soliton compressor,” Electron. Lett. 30, 2038–2040 (1994).
[CrossRef]

Fiber Integr. Opt.

B. J. Eggleton, G. Lenz, and N. M. Litchinitser, “Optical pulse compression schemes that use nonlinear Bragg gratings,” Fiber Integr. Opt. 19, 383–421 (2000).
[CrossRef]

P. Palai, R. K. Varshney, and K. Thyagarajan, “A dispersion flattening dispersion compensating fiber design for broadband dispersion compensation,” Fiber Integr. Opt. 20, 21–27 (2001).

IEEE J. Quantum Electron.

K. C. Chan and H. F. Liu, “Short pulse generation by higher order soliton-effect compression: Effects of optical fiber characteristics,” IEEE J. Quantum Electron. 31, 2226–2235 (1995).
[CrossRef]

M. D. Pelusi and H. F. Liu, “Higher order soliton pulse compression in dispersion-decreasing optical fibers,” IEEE J. Quantum Electron. 33, 1430–1439 (1997).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Yan, P. Shum, and C. Lu, “Hole-assisted multiring fiber with low dispersion around 1550 nm,” IEEE Photon. Technol. Lett. 16, 123–125 (2004).
[CrossRef]

S. P. Survaiya and R. K. Shevgaonkar, “Design of subpicosecond dispersion-flattened fibers,” IEEE Photon. Technol. Lett. 8, 803–805 (1996).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Nature

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

A. A. Voronin and A. M. Zheltikov, “Soliton-number analysis of soliton-effect pulse compression to single-cycle pulse widths,” Phys. Rev. A 78, 063834 (2008).
[CrossRef]

Phys. Rev. Lett.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
[CrossRef]

Other

Q. Li, P. K. A. Wai, K. Senthilnathan, and K. Nakkeeran, “Modeling self-similar optical pulse compression in nonlinear fiber Bragg gratings using the coupled mode equations” (submitted to J. Lightwave Technol.).

K. Senthilnathan, K. Nakkeeran, Q. Li, and P. K. A. Wai, “Chirped higher order solitons” (submitted to J. Mod. Opt.).

K. Senthilnathan, K. Nakkeeran, Q. Li, and P. K. A. Wai, “Chirped optical solitons: High degree pulse compression,” in Proceedings of OptoElectronics and Communications Conference (2009), paper FG2.

J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, 1998).

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

P. V. Mamyshev, “Generation and compression of femtosecond solitons in optical fibers,” in Optical Solitons—Theory and Experiment, J.R.Taylor, ed. (Cambridge University Press, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics