Y. He, B. A. Malomed, D. Mihalache, F. Ye, and B. Hu, “Generation of arrays of spatiotemporal dissipative solitons by the phase modulation of a broad beam,” J. Opt. Soc. Am. B 27, 1266–1271 (2010).

[CrossRef]

Y.-J. He, B. A. Malomed, F. Ye, and B. Hu, “Dynamics of dissipative spatial solitons over a sharp potential,” J. Opt. Soc. Am. B 27, 1139–1142 (2010).

[CrossRef]

B. Liu, Y.-J. He, B. A. Malomed, X.-S. Wang, P. G. Kevrekidis, T.-B. Wang, F.-C. Leng, Z.-R. Qiu, and H.-Z. Wang, “Continuous generation of soliton patterns in two-dimensional dissipative media by razor, dagger, and needle potentials,” Opt. Lett. 35, 1974–1976 (2010).

[CrossRef]
[PubMed]

J. M. Soto-Crespo, N. Akhmediev, C. Mejía-Cortés, and N. Devine, “Dissipative ring solitons with vorticity,” Opt. Express 17, 4236–4250 (2009).

[CrossRef]
[PubMed]

H. Sakaguchi and B. A. Malomed, “Two-dimensional dissipative gap solitons,” Phys. Rev. E 80, 026606 (2009).

[CrossRef]

H. Leblond, B.A. Malomed, and D. Mihalache, “Stable vortex solitons in the Ginzburg–Landau model of a two-dimensional lasing medium with a transverse grating,” Phys. Rev. A 80, 033835 (2009).

[CrossRef]

Y. J. He, B. A. Malomed, D. Mihalache, B. Liu, H. C. Huang, H. Yang, and H. Z. Wang, “Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg–Landau equations with a linear potential,” Opt. Lett. 34, 2976–2978 (2009).

[CrossRef]
[PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).

[CrossRef]

B. A. Malomed, “Solitary pulses in linearly coupled Ginzburg–Landau equations,” Chaos 17, 037117 (2007).

[CrossRef]
[PubMed]

N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Spatiotemporal optical solitons in nonlinear dissipative media: From stationary light bullets to pulsating complexes,” Chaos 17, 037112 (2007).

[CrossRef]
[PubMed]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. A 75, 033811 (2007).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability limits for three-dimensional vortex solitons in the Ginzburg–Landau equation with the cubic-quintic nonlinearity,” Phys. Rev. A 76, 045803 (2007).

[CrossRef]

Y. J. He, H. H. Fan, J. W. Dong, and H. Z. Wang, “Self-trapped spatiotemporal necklace-ring solitons in the Ginzburg–Landau equation,” Phys. Rev. E 74, 016611 (2006).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

[CrossRef]
[PubMed]

N. N. Rosanov, S. V. Fedorov, and A. N. Shatsev, “Universal properties of self-organized localized structures,” Appl. Phys. B 81, 937–943 (2005).

[CrossRef]

P. Mandel and M. Tlidi, “Transverse dynamics in cavity nonlinear optics,” J. Opt. B: Quantum Semiclassical Opt. 6, R60–R75 (2004).

[CrossRef]

I. S. Aranson and L. Kramer, “The world of the complex Ginzburg–Landau equation,” Rev. Mod. Phys. 74, 99–143 (2002).

[CrossRef]

D. V. Skryabin and A. G. Vladimirov, “Vortex-induced rotation of clusters of localized states in the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 89, 044101 (2002).

[CrossRef]
[PubMed]

L.-C. Crasovan, B. A. Malomed, and D. Mihalache, “Stable vortex solitons in the two-dimensional Ginzburg–Landau equation,” Phys. Rev. E 63, 016605 (2001).

[CrossRef]

F. T. Arecchi, S. Boccaletti, and P. Ramazza, “Pattern formation and competition in nonlinear optics,” Phys. Rep. 318, 1–83 (1999).

[CrossRef]

N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo, “Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1190–1201 (1996).

[CrossRef]

B. A. Malomed, “Bound solitons in the nonlinear Schrödinger–Ginzburg–Landau equation,” Phys. Rev. A 44, 6954–6957 (1991).

[CrossRef]
[PubMed]

N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo, “Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1190–1201 (1996).

[CrossRef]

J. M. Soto-Crespo, N. Akhmediev, C. Mejía-Cortés, and N. Devine, “Dissipative ring solitons with vorticity,” Opt. Express 17, 4236–4250 (2009).

[CrossRef]
[PubMed]

N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Spatiotemporal optical solitons in nonlinear dissipative media: From stationary light bullets to pulsating complexes,” Chaos 17, 037112 (2007).

[CrossRef]
[PubMed]

N. Akhmediev and A. Ankiewicz, Dissipative Solitons, Vol. 661 of Lecture Notes in Physics (Springer, 2005).

[CrossRef]

N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo, “Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1190–1201 (1996).

[CrossRef]

N. Akhmediev and A. Ankiewicz, Dissipative Solitons, Vol. 661 of Lecture Notes in Physics (Springer, 2005).

[CrossRef]

I. S. Aranson and L. Kramer, “The world of the complex Ginzburg–Landau equation,” Rev. Mod. Phys. 74, 99–143 (2002).

[CrossRef]

F. T. Arecchi, S. Boccaletti, and P. Ramazza, “Pattern formation and competition in nonlinear optics,” Phys. Rep. 318, 1–83 (1999).

[CrossRef]

F. T. Arecchi, S. Boccaletti, and P. Ramazza, “Pattern formation and competition in nonlinear optics,” Phys. Rep. 318, 1–83 (1999).

[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

[CrossRef]
[PubMed]

L.-C. Crasovan, B. A. Malomed, and D. Mihalache, “Stable vortex solitons in the two-dimensional Ginzburg–Landau equation,” Phys. Rev. E 63, 016605 (2001).

[CrossRef]

Y. J. He, H. H. Fan, J. W. Dong, and H. Z. Wang, “Self-trapped spatiotemporal necklace-ring solitons in the Ginzburg–Landau equation,” Phys. Rev. E 74, 016611 (2006).

[CrossRef]

Y. J. He, H. H. Fan, J. W. Dong, and H. Z. Wang, “Self-trapped spatiotemporal necklace-ring solitons in the Ginzburg–Landau equation,” Phys. Rev. E 74, 016611 (2006).

[CrossRef]

N. N. Rosanov, S. V. Fedorov, and A. N. Shatsev, “Universal properties of self-organized localized structures,” Appl. Phys. B 81, 937–943 (2005).

[CrossRef]

N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Spatiotemporal optical solitons in nonlinear dissipative media: From stationary light bullets to pulsating complexes,” Chaos 17, 037112 (2007).

[CrossRef]
[PubMed]

Y. J. He, B. A. Malomed, D. Mihalache, B. Liu, H. C. Huang, H. Yang, and H. Z. Wang, “Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg–Landau equations with a linear potential,” Opt. Lett. 34, 2976–2978 (2009).

[CrossRef]
[PubMed]

Y. J. He, H. H. Fan, J. W. Dong, and H. Z. Wang, “Self-trapped spatiotemporal necklace-ring solitons in the Ginzburg–Landau equation,” Phys. Rev. E 74, 016611 (2006).

[CrossRef]

Y.-J. He, B. A. Malomed, F. Ye, and B. Hu, “Dynamics of dissipative spatial solitons over a sharp potential,” J. Opt. Soc. Am. B 27, 1139–1142 (2010).

[CrossRef]

B. Liu, Y.-J. He, B. A. Malomed, X.-S. Wang, P. G. Kevrekidis, T.-B. Wang, F.-C. Leng, Z.-R. Qiu, and H.-Z. Wang, “Continuous generation of soliton patterns in two-dimensional dissipative media by razor, dagger, and needle potentials,” Opt. Lett. 35, 1974–1976 (2010).

[CrossRef]
[PubMed]

Y.-J. He, B. A. Malomed, F. Ye, and B. Hu, “Dynamics of dissipative spatial solitons over a sharp potential,” J. Opt. Soc. Am. B 27, 1139–1142 (2010).

[CrossRef]

Y. He, B. A. Malomed, D. Mihalache, F. Ye, and B. Hu, “Generation of arrays of spatiotemporal dissipative solitons by the phase modulation of a broad beam,” J. Opt. Soc. Am. B 27, 1266–1271 (2010).

[CrossRef]

Y. J. He, B. A. Malomed, D. Mihalache, B. Liu, H. C. Huang, H. Yang, and H. Z. Wang, “Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg–Landau equations with a linear potential,” Opt. Lett. 34, 2976–2978 (2009).

[CrossRef]
[PubMed]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

[CrossRef]
[PubMed]

B. Liu, Y.-J. He, B. A. Malomed, X.-S. Wang, P. G. Kevrekidis, T.-B. Wang, F.-C. Leng, Z.-R. Qiu, and H.-Z. Wang, “Continuous generation of soliton patterns in two-dimensional dissipative media by razor, dagger, and needle potentials,” Opt. Lett. 35, 1974–1976 (2010).

[CrossRef]
[PubMed]

I. S. Aranson and L. Kramer, “The world of the complex Ginzburg–Landau equation,” Rev. Mod. Phys. 74, 99–143 (2002).

[CrossRef]

H. Leblond, B.A. Malomed, and D. Mihalache, “Stable vortex solitons in the Ginzburg–Landau model of a two-dimensional lasing medium with a transverse grating,” Phys. Rev. A 80, 033835 (2009).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability limits for three-dimensional vortex solitons in the Ginzburg–Landau equation with the cubic-quintic nonlinearity,” Phys. Rev. A 76, 045803 (2007).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. A 75, 033811 (2007).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. A 75, 033811 (2007).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability limits for three-dimensional vortex solitons in the Ginzburg–Landau equation with the cubic-quintic nonlinearity,” Phys. Rev. A 76, 045803 (2007).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

[CrossRef]
[PubMed]

B. Liu, Y.-J. He, B. A. Malomed, X.-S. Wang, P. G. Kevrekidis, T.-B. Wang, F.-C. Leng, Z.-R. Qiu, and H.-Z. Wang, “Continuous generation of soliton patterns in two-dimensional dissipative media by razor, dagger, and needle potentials,” Opt. Lett. 35, 1974–1976 (2010).

[CrossRef]
[PubMed]

B. Liu, Y.-J. He, B. A. Malomed, X.-S. Wang, P. G. Kevrekidis, T.-B. Wang, F.-C. Leng, Z.-R. Qiu, and H.-Z. Wang, “Continuous generation of soliton patterns in two-dimensional dissipative media by razor, dagger, and needle potentials,” Opt. Lett. 35, 1974–1976 (2010).

[CrossRef]
[PubMed]

Y. J. He, B. A. Malomed, D. Mihalache, B. Liu, H. C. Huang, H. Yang, and H. Z. Wang, “Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg–Landau equations with a linear potential,” Opt. Lett. 34, 2976–2978 (2009).

[CrossRef]
[PubMed]

Y.-J. He, B. A. Malomed, F. Ye, and B. Hu, “Dynamics of dissipative spatial solitons over a sharp potential,” J. Opt. Soc. Am. B 27, 1139–1142 (2010).

[CrossRef]

Y. He, B. A. Malomed, D. Mihalache, F. Ye, and B. Hu, “Generation of arrays of spatiotemporal dissipative solitons by the phase modulation of a broad beam,” J. Opt. Soc. Am. B 27, 1266–1271 (2010).

[CrossRef]

B. Liu, Y.-J. He, B. A. Malomed, X.-S. Wang, P. G. Kevrekidis, T.-B. Wang, F.-C. Leng, Z.-R. Qiu, and H.-Z. Wang, “Continuous generation of soliton patterns in two-dimensional dissipative media by razor, dagger, and needle potentials,” Opt. Lett. 35, 1974–1976 (2010).

[CrossRef]
[PubMed]

H. Sakaguchi and B. A. Malomed, “Two-dimensional dissipative gap solitons,” Phys. Rev. E 80, 026606 (2009).

[CrossRef]

H. Leblond, B.A. Malomed, and D. Mihalache, “Stable vortex solitons in the Ginzburg–Landau model of a two-dimensional lasing medium with a transverse grating,” Phys. Rev. A 80, 033835 (2009).

[CrossRef]

Y. J. He, B. A. Malomed, D. Mihalache, B. Liu, H. C. Huang, H. Yang, and H. Z. Wang, “Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg–Landau equations with a linear potential,” Opt. Lett. 34, 2976–2978 (2009).

[CrossRef]
[PubMed]

B. A. Malomed, “Solitary pulses in linearly coupled Ginzburg–Landau equations,” Chaos 17, 037117 (2007).

[CrossRef]
[PubMed]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability limits for three-dimensional vortex solitons in the Ginzburg–Landau equation with the cubic-quintic nonlinearity,” Phys. Rev. A 76, 045803 (2007).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. A 75, 033811 (2007).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

[CrossRef]
[PubMed]

L.-C. Crasovan, B. A. Malomed, and D. Mihalache, “Stable vortex solitons in the two-dimensional Ginzburg–Landau equation,” Phys. Rev. E 63, 016605 (2001).

[CrossRef]

B. A. Malomed, “Bound solitons in the nonlinear Schrödinger–Ginzburg–Landau equation,” Phys. Rev. A 44, 6954–6957 (1991).

[CrossRef]
[PubMed]

B. A. Malomed, “Complex Ginzburg–Landau equation,” in Encyclopedia of Nonlinear Science, A.Scott, ed. (Routledge, 2005), pp. 157–160.

P. Mandel and M. Tlidi, “Transverse dynamics in cavity nonlinear optics,” J. Opt. B: Quantum Semiclassical Opt. 6, R60–R75 (2004).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. A 75, 033811 (2007).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability limits for three-dimensional vortex solitons in the Ginzburg–Landau equation with the cubic-quintic nonlinearity,” Phys. Rev. A 76, 045803 (2007).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

[CrossRef]
[PubMed]

Y. He, B. A. Malomed, D. Mihalache, F. Ye, and B. Hu, “Generation of arrays of spatiotemporal dissipative solitons by the phase modulation of a broad beam,” J. Opt. Soc. Am. B 27, 1266–1271 (2010).

[CrossRef]

H. Leblond, B.A. Malomed, and D. Mihalache, “Stable vortex solitons in the Ginzburg–Landau model of a two-dimensional lasing medium with a transverse grating,” Phys. Rev. A 80, 033835 (2009).

[CrossRef]

Y. J. He, B. A. Malomed, D. Mihalache, B. Liu, H. C. Huang, H. Yang, and H. Z. Wang, “Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg–Landau equations with a linear potential,” Opt. Lett. 34, 2976–2978 (2009).

[CrossRef]
[PubMed]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability limits for three-dimensional vortex solitons in the Ginzburg–Landau equation with the cubic-quintic nonlinearity,” Phys. Rev. A 76, 045803 (2007).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. A 75, 033811 (2007).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

[CrossRef]
[PubMed]

L.-C. Crasovan, B. A. Malomed, and D. Mihalache, “Stable vortex solitons in the two-dimensional Ginzburg–Landau equation,” Phys. Rev. E 63, 016605 (2001).

[CrossRef]

B. Liu, Y.-J. He, B. A. Malomed, X.-S. Wang, P. G. Kevrekidis, T.-B. Wang, F.-C. Leng, Z.-R. Qiu, and H.-Z. Wang, “Continuous generation of soliton patterns in two-dimensional dissipative media by razor, dagger, and needle potentials,” Opt. Lett. 35, 1974–1976 (2010).

[CrossRef]
[PubMed]

F. T. Arecchi, S. Boccaletti, and P. Ramazza, “Pattern formation and competition in nonlinear optics,” Phys. Rep. 318, 1–83 (1999).

[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).

[CrossRef]

N. N. Rosanov, S. V. Fedorov, and A. N. Shatsev, “Universal properties of self-organized localized structures,” Appl. Phys. B 81, 937–943 (2005).

[CrossRef]

N. N. Rosanov, Spatial Hysteresis and Optical Patterns (Springer-Verlag, 2002).

H. Sakaguchi and B. A. Malomed, “Two-dimensional dissipative gap solitons,” Phys. Rev. E 80, 026606 (2009).

[CrossRef]

N. N. Rosanov, S. V. Fedorov, and A. N. Shatsev, “Universal properties of self-organized localized structures,” Appl. Phys. B 81, 937–943 (2005).

[CrossRef]

D. V. Skryabin and A. G. Vladimirov, “Vortex-induced rotation of clusters of localized states in the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 89, 044101 (2002).

[CrossRef]
[PubMed]

J. M. Soto-Crespo, N. Akhmediev, C. Mejía-Cortés, and N. Devine, “Dissipative ring solitons with vorticity,” Opt. Express 17, 4236–4250 (2009).

[CrossRef]
[PubMed]

N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Spatiotemporal optical solitons in nonlinear dissipative media: From stationary light bullets to pulsating complexes,” Chaos 17, 037112 (2007).

[CrossRef]
[PubMed]

N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo, “Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1190–1201 (1996).

[CrossRef]

P. Mandel and M. Tlidi, “Transverse dynamics in cavity nonlinear optics,” J. Opt. B: Quantum Semiclassical Opt. 6, R60–R75 (2004).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

[CrossRef]
[PubMed]

D. V. Skryabin and A. G. Vladimirov, “Vortex-induced rotation of clusters of localized states in the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 89, 044101 (2002).

[CrossRef]
[PubMed]

Y. J. He, B. A. Malomed, D. Mihalache, B. Liu, H. C. Huang, H. Yang, and H. Z. Wang, “Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg–Landau equations with a linear potential,” Opt. Lett. 34, 2976–2978 (2009).

[CrossRef]
[PubMed]

Y. J. He, H. H. Fan, J. W. Dong, and H. Z. Wang, “Self-trapped spatiotemporal necklace-ring solitons in the Ginzburg–Landau equation,” Phys. Rev. E 74, 016611 (2006).

[CrossRef]

B. Liu, Y.-J. He, B. A. Malomed, X.-S. Wang, P. G. Kevrekidis, T.-B. Wang, F.-C. Leng, Z.-R. Qiu, and H.-Z. Wang, “Continuous generation of soliton patterns in two-dimensional dissipative media by razor, dagger, and needle potentials,” Opt. Lett. 35, 1974–1976 (2010).

[CrossRef]
[PubMed]

B. Liu, Y.-J. He, B. A. Malomed, X.-S. Wang, P. G. Kevrekidis, T.-B. Wang, F.-C. Leng, Z.-R. Qiu, and H.-Z. Wang, “Continuous generation of soliton patterns in two-dimensional dissipative media by razor, dagger, and needle potentials,” Opt. Lett. 35, 1974–1976 (2010).

[CrossRef]
[PubMed]

B. Liu, Y.-J. He, B. A. Malomed, X.-S. Wang, P. G. Kevrekidis, T.-B. Wang, F.-C. Leng, Z.-R. Qiu, and H.-Z. Wang, “Continuous generation of soliton patterns in two-dimensional dissipative media by razor, dagger, and needle potentials,” Opt. Lett. 35, 1974–1976 (2010).

[CrossRef]
[PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).

[CrossRef]

Y. J. He, B. A. Malomed, D. Mihalache, B. Liu, H. C. Huang, H. Yang, and H. Z. Wang, “Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg–Landau equations with a linear potential,” Opt. Lett. 34, 2976–2978 (2009).

[CrossRef]
[PubMed]

Y.-J. He, B. A. Malomed, F. Ye, and B. Hu, “Dynamics of dissipative spatial solitons over a sharp potential,” J. Opt. Soc. Am. B 27, 1139–1142 (2010).

[CrossRef]

Y. He, B. A. Malomed, D. Mihalache, F. Ye, and B. Hu, “Generation of arrays of spatiotemporal dissipative solitons by the phase modulation of a broad beam,” J. Opt. Soc. Am. B 27, 1266–1271 (2010).

[CrossRef]

N. N. Rosanov, S. V. Fedorov, and A. N. Shatsev, “Universal properties of self-organized localized structures,” Appl. Phys. B 81, 937–943 (2005).

[CrossRef]

B. A. Malomed, “Solitary pulses in linearly coupled Ginzburg–Landau equations,” Chaos 17, 037117 (2007).

[CrossRef]
[PubMed]

N. Akhmediev, J. M. Soto-Crespo, and Ph. Grelu, “Spatiotemporal optical solitons in nonlinear dissipative media: From stationary light bullets to pulsating complexes,” Chaos 17, 037112 (2007).

[CrossRef]
[PubMed]

P. Mandel and M. Tlidi, “Transverse dynamics in cavity nonlinear optics,” J. Opt. B: Quantum Semiclassical Opt. 6, R60–R75 (2004).

[CrossRef]

Y. He, B. A. Malomed, D. Mihalache, F. Ye, and B. Hu, “Generation of arrays of spatiotemporal dissipative solitons by the phase modulation of a broad beam,” J. Opt. Soc. Am. B 27, 1266–1271 (2010).

[CrossRef]

Y.-J. He, B. A. Malomed, F. Ye, and B. Hu, “Dynamics of dissipative spatial solitons over a sharp potential,” J. Opt. Soc. Am. B 27, 1139–1142 (2010).

[CrossRef]

B. Liu, Y.-J. He, B. A. Malomed, X.-S. Wang, P. G. Kevrekidis, T.-B. Wang, F.-C. Leng, Z.-R. Qiu, and H.-Z. Wang, “Continuous generation of soliton patterns in two-dimensional dissipative media by razor, dagger, and needle potentials,” Opt. Lett. 35, 1974–1976 (2010).

[CrossRef]
[PubMed]

Y. J. He, B. A. Malomed, D. Mihalache, B. Liu, H. C. Huang, H. Yang, and H. Z. Wang, “Bound states of one-, two-, and three-dimensional solitons in complex Ginzburg–Landau equations with a linear potential,” Opt. Lett. 34, 2976–2978 (2009).

[CrossRef]
[PubMed]

F. T. Arecchi, S. Boccaletti, and P. Ramazza, “Pattern formation and competition in nonlinear optics,” Phys. Rep. 318, 1–83 (1999).

[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. A 75, 033811 (2007).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, “Stability limits for three-dimensional vortex solitons in the Ginzburg–Landau equation with the cubic-quintic nonlinearity,” Phys. Rev. A 76, 045803 (2007).

[CrossRef]

B. A. Malomed, “Bound solitons in the nonlinear Schrödinger–Ginzburg–Landau equation,” Phys. Rev. A 44, 6954–6957 (1991).

[CrossRef]
[PubMed]

H. Leblond, B.A. Malomed, and D. Mihalache, “Stable vortex solitons in the Ginzburg–Landau model of a two-dimensional lasing medium with a transverse grating,” Phys. Rev. A 80, 033835 (2009).

[CrossRef]

H. Sakaguchi and B. A. Malomed, “Two-dimensional dissipative gap solitons,” Phys. Rev. E 80, 026606 (2009).

[CrossRef]

Y. J. He, H. H. Fan, J. W. Dong, and H. Z. Wang, “Self-trapped spatiotemporal necklace-ring solitons in the Ginzburg–Landau equation,” Phys. Rev. E 74, 016611 (2006).

[CrossRef]

L.-C. Crasovan, B. A. Malomed, and D. Mihalache, “Stable vortex solitons in the two-dimensional Ginzburg–Landau equation,” Phys. Rev. E 63, 016605 (2001).

[CrossRef]

N. N. Akhmediev, V. V. Afanasjev, and J. M. Soto-Crespo, “Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation,” Phys. Rev. E 53, 1190–1201 (1996).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C. Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in the three-dimensional cubic-quintic Ginzburg–Landau equation,” Phys. Rev. Lett. 97, 073904 (2006).

[CrossRef]
[PubMed]

D. V. Skryabin and A. G. Vladimirov, “Vortex-induced rotation of clusters of localized states in the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 89, 044101 (2002).

[CrossRef]
[PubMed]

I. S. Aranson and L. Kramer, “The world of the complex Ginzburg–Landau equation,” Rev. Mod. Phys. 74, 99–143 (2002).

[CrossRef]

N. N. Rosanov, Spatial Hysteresis and Optical Patterns (Springer-Verlag, 2002).

B. A. Malomed, “Complex Ginzburg–Landau equation,” in Encyclopedia of Nonlinear Science, A.Scott, ed. (Routledge, 2005), pp. 157–160.

N. Akhmediev and A. Ankiewicz, Dissipative Solitons, Vol. 661 of Lecture Notes in Physics (Springer, 2005).

[CrossRef]