Abstract

While applications of plasmonics are rapidly growing, magneto-optical effects in nanocomposites are poorly understood. We therefore devote this paper to the theoretical analysis of magneto-optical effects in nanocomposites. Based on the Drude model, we derived the constitutive equation where the dielectric and coupling functions describe the interactions of metal nanoparticles with magnetic field. In the limitation of low volume fraction of metal nanoparticles (i.e., when the material is still transparent), these functions were calculated within the Maxwell–Rayleigh theory of dilute suspensions. We showed that in the absence of external magnetic fields, a non-magnetic nanoparticle can be magnetized in the circularly polarized light beam, and the magnetization depends on the direction of rotation of the light wave. The external magnetic field alters the particle magnetization, and when the fields are weak, this change in magnetization linearly depends on the particular field. The proposed theory was applied to an analysis of the Faraday effect in nanocomposites. We predicted a resonance behavior of the Verdet function in nanocomposites and its dependence on concentration, sample thickness, and external magnetic field.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
    [CrossRef]
  2. P. M. Platzman and P. A. Wolff, Waves and Interactions in Solid State Plasmas (Academic, 1973).
  3. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  4. P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12, 788–800 (1996).
    [CrossRef]
  5. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101–011110 (2005).
    [CrossRef]
  6. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
    [CrossRef]
  7. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  8. P. Drude, “Zur Elektronentheorie der metalle,” Ann. Phys. (Leipzig) 306, 566–613 (1900).
    [CrossRef]
  9. P. Drude, “Zur Elektronentheorie der Metalle; II. Teil. Galvanomagnetische und thermomagnetische Effecte,” Ann. Phys. (Leipzig) 308, 369–402 (1900).
    [CrossRef]
  10. M. Abe, “Derivation of nondiagonal effective dielectric permeability tensors for magnetized granular composites,” Phys. Rev. B 53, 7065–7075 (1996).
    [CrossRef]
  11. A. A. Zharov, and V. V. Kurin, “Giant resonant magneto-optic Kerr effect in nanostructured ferromagnetic metamaterials,” J. Appl. Phys. 102, 123514 (2007).
    [CrossRef]
  12. J. B. Gonzalez-Diaz, A. Garcia-Martin, J. M. Garcia-Martin, A. Cebollada, G. Armelles, B. Sepulveda, Y. Alaverdyan, and M. Kall, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
    [CrossRef] [PubMed]
  13. M. Faraday, “On the magnetization of light, and the illumination of magnetic lines of force,” Philos. Trans. R. Soc. London 1, 104–123 (1846).
  14. V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
    [CrossRef]
  15. V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
    [CrossRef] [PubMed]
  16. C. Clavero, K. Yang, J. R. Skuza, and R. A. Lukaszew, “Magnetic-field modulation of surface plasmon polaritons on gratings,” Opt. Lett. 35, 1557–1559 (2010).
    [CrossRef] [PubMed]
  17. K. Yang, C. Clavero, J. R. Skuza, M. Varela, and R. A. Lukaszew, “Surface plasmon resonance and magneto-optical enhancement on Au–Co nanocomposite thin films,” J. Appl. Phys. 107, 103924–103925 (2010).
    [CrossRef]
  18. P. K. Jain, Y. H. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” Nano Lett. 9, 1644–1650 (2009).
    [CrossRef] [PubMed]
  19. H. Feil and C. Haas, “Magnetooptical Kerr effect, enhanced by the plasma resonance of charge-carriers,” Phys. Rev. Lett. 58, 65–68 (1987).
    [CrossRef] [PubMed]
  20. P. M. Hui and D. Stroud, “Theory of Faraday-rotation by dilute suspensions of small particles,” Appl. Phys. Lett. 50, 950–952 (1987).
    [CrossRef]
  21. L. D. Landau and E. M. Lifshitz, Quantum Mechanics Non-Relativistic Theory (Butterworth-Heinemann, 1981).
  22. L. D. Landau and E. M. Lifshitz, Electrodynamics Of Continuous Media (Pergamon, 1960).
  23. L. P. Pitaevskii, “Electric forces in a transparent dispersive medium,” Sov. Phys. JETP 12, 1008–1013 (1961).
  24. Y. R. Shen, and N. Bloember, “Interaction between light waves and spin waves,” Phys. Rev. 143, 372–384 (1966).
    [CrossRef]
  25. P. S. Pershan, J. P. van der Ziel, and L. D. Malmstro, “Theoretical discussion of inverse Faraday effect Raman scattering and related phenomena,” Phys. Rev. 143, 574–583 (1966).
    [CrossRef]
  26. J. W. Strutt (Lord Rayleigh), “On the scattering of light by small particles,” Philos. Mag. 41, 447–454 (1871).
  27. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  28. J. C. Maxwell Garnett, “Colours in metal glasses and metal films,” Philos. Trans. R. Soc. London, Ser. A A203, 385–420 (1904).
  29. C. B. Pedroso, E. Munin, A. B. Villaverde, J. A. M. Neto, N. Aranha, and L. C. Barbosa, “High Verdet constant Ga: S: La: O chalcogenide glasses for magneto-optical devices,” Opt. Eng. (Bellingham) 38, 214–219 (1999).
    [CrossRef]
  30. A. L. Greer and N. Mathur, “Materials science—Changing face of the chameleon,” Nature 437, 1246–1247 (2005).
    [CrossRef] [PubMed]
  31. N. Carlie, L. Petit, and K. Richardson, “Engineering of glasses for advanced optical fiber applications,” J. Engineered Fibers Fabrics 4, 21–29 (2009).
  32. A. K. Zvezdin and V. A. Kotov, Modern Magneto-Optics and Magneto-Optical Materials (IOP, 1997).
    [CrossRef]
  33. J. Ballato and E. Snitzer, “Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications,” Appl. Opt. 34, 6848–6854 (1995).
    [CrossRef] [PubMed]
  34. A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nature Mater. 6, 336–347 (2007).
    [CrossRef]
  35. M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
    [CrossRef] [PubMed]

2010

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[CrossRef]

C. Clavero, K. Yang, J. R. Skuza, and R. A. Lukaszew, “Magnetic-field modulation of surface plasmon polaritons on gratings,” Opt. Lett. 35, 1557–1559 (2010).
[CrossRef] [PubMed]

K. Yang, C. Clavero, J. R. Skuza, M. Varela, and R. A. Lukaszew, “Surface plasmon resonance and magneto-optical enhancement on Au–Co nanocomposite thin films,” J. Appl. Phys. 107, 103924–103925 (2010).
[CrossRef]

2009

P. K. Jain, Y. H. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” Nano Lett. 9, 1644–1650 (2009).
[CrossRef] [PubMed]

N. Carlie, L. Petit, and K. Richardson, “Engineering of glasses for advanced optical fiber applications,” J. Engineered Fibers Fabrics 4, 21–29 (2009).

2008

J. B. Gonzalez-Diaz, A. Garcia-Martin, J. M. Garcia-Martin, A. Cebollada, G. Armelles, B. Sepulveda, Y. Alaverdyan, and M. Kall, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[CrossRef] [PubMed]

2007

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[CrossRef] [PubMed]

A. A. Zharov, and V. V. Kurin, “Giant resonant magneto-optic Kerr effect in nanostructured ferromagnetic metamaterials,” J. Appl. Phys. 102, 123514 (2007).
[CrossRef]

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nature Mater. 6, 336–347 (2007).
[CrossRef]

2005

A. L. Greer and N. Mathur, “Materials science—Changing face of the chameleon,” Nature 437, 1246–1247 (2005).
[CrossRef] [PubMed]

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101–011110 (2005).
[CrossRef]

2004

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[CrossRef] [PubMed]

2003

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

1999

C. B. Pedroso, E. Munin, A. B. Villaverde, J. A. M. Neto, N. Aranha, and L. C. Barbosa, “High Verdet constant Ga: S: La: O chalcogenide glasses for magneto-optical devices,” Opt. Eng. (Bellingham) 38, 214–219 (1999).
[CrossRef]

1996

M. Abe, “Derivation of nondiagonal effective dielectric permeability tensors for magnetized granular composites,” Phys. Rev. B 53, 7065–7075 (1996).
[CrossRef]

P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12, 788–800 (1996).
[CrossRef]

1995

1987

H. Feil and C. Haas, “Magnetooptical Kerr effect, enhanced by the plasma resonance of charge-carriers,” Phys. Rev. Lett. 58, 65–68 (1987).
[CrossRef] [PubMed]

P. M. Hui and D. Stroud, “Theory of Faraday-rotation by dilute suspensions of small particles,” Appl. Phys. Lett. 50, 950–952 (1987).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1966

Y. R. Shen, and N. Bloember, “Interaction between light waves and spin waves,” Phys. Rev. 143, 372–384 (1966).
[CrossRef]

P. S. Pershan, J. P. van der Ziel, and L. D. Malmstro, “Theoretical discussion of inverse Faraday effect Raman scattering and related phenomena,” Phys. Rev. 143, 574–583 (1966).
[CrossRef]

1961

L. P. Pitaevskii, “Electric forces in a transparent dispersive medium,” Sov. Phys. JETP 12, 1008–1013 (1961).

1957

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
[CrossRef]

1904

J. C. Maxwell Garnett, “Colours in metal glasses and metal films,” Philos. Trans. R. Soc. London, Ser. A A203, 385–420 (1904).

1900

P. Drude, “Zur Elektronentheorie der metalle,” Ann. Phys. (Leipzig) 306, 566–613 (1900).
[CrossRef]

P. Drude, “Zur Elektronentheorie der Metalle; II. Teil. Galvanomagnetische und thermomagnetische Effecte,” Ann. Phys. (Leipzig) 308, 369–402 (1900).
[CrossRef]

1871

J. W. Strutt (Lord Rayleigh), “On the scattering of light by small particles,” Philos. Mag. 41, 447–454 (1871).

1846

M. Faraday, “On the magnetization of light, and the illumination of magnetic lines of force,” Philos. Trans. R. Soc. London 1, 104–123 (1846).

Abe, M.

M. Abe, “Derivation of nondiagonal effective dielectric permeability tensors for magnetized granular composites,” Phys. Rev. B 53, 7065–7075 (1996).
[CrossRef]

Abouraddy, A. F.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nature Mater. 6, 336–347 (2007).
[CrossRef]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[CrossRef] [PubMed]

Alaverdyan, Y.

J. B. Gonzalez-Diaz, A. Garcia-Martin, J. M. Garcia-Martin, A. Cebollada, G. Armelles, B. Sepulveda, Y. Alaverdyan, and M. Kall, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[CrossRef] [PubMed]

Aranha, N.

C. B. Pedroso, E. Munin, A. B. Villaverde, J. A. M. Neto, N. Aranha, and L. C. Barbosa, “High Verdet constant Ga: S: La: O chalcogenide glasses for magneto-optical devices,” Opt. Eng. (Bellingham) 38, 214–219 (1999).
[CrossRef]

Armelles, G.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[CrossRef]

J. B. Gonzalez-Diaz, A. Garcia-Martin, J. M. Garcia-Martin, A. Cebollada, G. Armelles, B. Sepulveda, Y. Alaverdyan, and M. Kall, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[CrossRef] [PubMed]

Atwater, H. A.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101–011110 (2005).
[CrossRef]

Ballato, J.

Barbosa, L. C.

C. B. Pedroso, E. Munin, A. B. Villaverde, J. A. M. Neto, N. Aranha, and L. C. Barbosa, “High Verdet constant Ga: S: La: O chalcogenide glasses for magneto-optical devices,” Opt. Eng. (Bellingham) 38, 214–219 (1999).
[CrossRef]

Bayindir, M.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nature Mater. 6, 336–347 (2007).
[CrossRef]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[CrossRef] [PubMed]

Belotelov, V. I.

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[CrossRef] [PubMed]

Benoit, G.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nature Mater. 6, 336–347 (2007).
[CrossRef]

Bloember, N.

Y. R. Shen, and N. Bloember, “Interaction between light waves and spin waves,” Phys. Rev. 143, 372–384 (1966).
[CrossRef]

Bratschitsch, R.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[CrossRef]

Carlie, N.

N. Carlie, L. Petit, and K. Richardson, “Engineering of glasses for advanced optical fiber applications,” J. Engineered Fibers Fabrics 4, 21–29 (2009).

Cebollada, A.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[CrossRef]

J. B. Gonzalez-Diaz, A. Garcia-Martin, J. M. Garcia-Martin, A. Cebollada, G. Armelles, B. Sepulveda, Y. Alaverdyan, and M. Kall, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Clavero, C.

C. Clavero, K. Yang, J. R. Skuza, and R. A. Lukaszew, “Magnetic-field modulation of surface plasmon polaritons on gratings,” Opt. Lett. 35, 1557–1559 (2010).
[CrossRef] [PubMed]

K. Yang, C. Clavero, J. R. Skuza, M. Varela, and R. A. Lukaszew, “Surface plasmon resonance and magneto-optical enhancement on Au–Co nanocomposite thin films,” J. Appl. Phys. 107, 103924–103925 (2010).
[CrossRef]

Cohen, A. E.

P. K. Jain, Y. H. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” Nano Lett. 9, 1644–1650 (2009).
[CrossRef] [PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Doskolovich, L. L.

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[CrossRef] [PubMed]

Drude, P.

P. Drude, “Zur Elektronentheorie der metalle,” Ann. Phys. (Leipzig) 306, 566–613 (1900).
[CrossRef]

P. Drude, “Zur Elektronentheorie der Metalle; II. Teil. Galvanomagnetische und thermomagnetische Effecte,” Ann. Phys. (Leipzig) 308, 369–402 (1900).
[CrossRef]

Faraday, M.

M. Faraday, “On the magnetization of light, and the illumination of magnetic lines of force,” Philos. Trans. R. Soc. London 1, 104–123 (1846).

Feil, H.

H. Feil and C. Haas, “Magnetooptical Kerr effect, enhanced by the plasma resonance of charge-carriers,” Phys. Rev. Lett. 58, 65–68 (1987).
[CrossRef] [PubMed]

Fink, Y.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nature Mater. 6, 336–347 (2007).
[CrossRef]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[CrossRef] [PubMed]

Garcia-Martin, A.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[CrossRef]

J. B. Gonzalez-Diaz, A. Garcia-Martin, J. M. Garcia-Martin, A. Cebollada, G. Armelles, B. Sepulveda, Y. Alaverdyan, and M. Kall, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[CrossRef] [PubMed]

Garcia-Martin, J. M.

J. B. Gonzalez-Diaz, A. Garcia-Martin, J. M. Garcia-Martin, A. Cebollada, G. Armelles, B. Sepulveda, Y. Alaverdyan, and M. Kall, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[CrossRef] [PubMed]

Garcia-Martin, J. -M.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[CrossRef]

Gonzalez-Diaz, J. B.

J. B. Gonzalez-Diaz, A. Garcia-Martin, J. M. Garcia-Martin, A. Cebollada, G. Armelles, B. Sepulveda, Y. Alaverdyan, and M. Kall, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[CrossRef] [PubMed]

Greer, A. L.

A. L. Greer and N. Mathur, “Materials science—Changing face of the chameleon,” Nature 437, 1246–1247 (2005).
[CrossRef] [PubMed]

Guzatov, D.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[CrossRef]

Haas, C.

H. Feil and C. Haas, “Magnetooptical Kerr effect, enhanced by the plasma resonance of charge-carriers,” Phys. Rev. Lett. 58, 65–68 (1987).
[CrossRef] [PubMed]

Hart, S. D.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nature Mater. 6, 336–347 (2007).
[CrossRef]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[CrossRef] [PubMed]

Hui, P. M.

P. M. Hui and D. Stroud, “Theory of Faraday-rotation by dilute suspensions of small particles,” Appl. Phys. Lett. 50, 950–952 (1987).
[CrossRef]

Jain, P. K.

P. K. Jain, Y. H. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” Nano Lett. 9, 1644–1650 (2009).
[CrossRef] [PubMed]

Joannopoulos, J. D.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kall, M.

J. B. Gonzalez-Diaz, A. Garcia-Martin, J. M. Garcia-Martin, A. Cebollada, G. Armelles, B. Sepulveda, Y. Alaverdyan, and M. Kall, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[CrossRef] [PubMed]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Kotov, V. A.

A. K. Zvezdin and V. A. Kotov, Modern Magneto-Optics and Magneto-Optical Materials (IOP, 1997).
[CrossRef]

Kuriki, K.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nature Mater. 6, 336–347 (2007).
[CrossRef]

Kurin, V. V.

A. A. Zharov, and V. V. Kurin, “Giant resonant magneto-optic Kerr effect in nanostructured ferromagnetic metamaterials,” J. Appl. Phys. 102, 123514 (2007).
[CrossRef]

Landau, L. D.

L. D. Landau and E. M. Lifshitz, Electrodynamics Of Continuous Media (Pergamon, 1960).

L. D. Landau and E. M. Lifshitz, Quantum Mechanics Non-Relativistic Theory (Butterworth-Heinemann, 1981).

Leitenstorfer, A.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[CrossRef]

Lifshitz, E. M.

L. D. Landau and E. M. Lifshitz, Quantum Mechanics Non-Relativistic Theory (Butterworth-Heinemann, 1981).

L. D. Landau and E. M. Lifshitz, Electrodynamics Of Continuous Media (Pergamon, 1960).

Lukaszew, R. A.

K. Yang, C. Clavero, J. R. Skuza, M. Varela, and R. A. Lukaszew, “Surface plasmon resonance and magneto-optical enhancement on Au–Co nanocomposite thin films,” J. Appl. Phys. 107, 103924–103925 (2010).
[CrossRef]

C. Clavero, K. Yang, J. R. Skuza, and R. A. Lukaszew, “Magnetic-field modulation of surface plasmon polaritons on gratings,” Opt. Lett. 35, 1557–1559 (2010).
[CrossRef] [PubMed]

Maier, S. A.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101–011110 (2005).
[CrossRef]

Malmstro, L. D.

P. S. Pershan, J. P. van der Ziel, and L. D. Malmstro, “Theoretical discussion of inverse Faraday effect Raman scattering and related phenomena,” Phys. Rev. 143, 574–583 (1966).
[CrossRef]

Mathur, N.

A. L. Greer and N. Mathur, “Materials science—Changing face of the chameleon,” Nature 437, 1246–1247 (2005).
[CrossRef] [PubMed]

Maxwell Garnett, J. C.

J. C. Maxwell Garnett, “Colours in metal glasses and metal films,” Philos. Trans. R. Soc. London, Ser. A A203, 385–420 (1904).

Mulvaney, P.

P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12, 788–800 (1996).
[CrossRef]

Munin, E.

C. B. Pedroso, E. Munin, A. B. Villaverde, J. A. M. Neto, N. Aranha, and L. C. Barbosa, “High Verdet constant Ga: S: La: O chalcogenide glasses for magneto-optical devices,” Opt. Eng. (Bellingham) 38, 214–219 (1999).
[CrossRef]

Neto, J. A. M.

C. B. Pedroso, E. Munin, A. B. Villaverde, J. A. M. Neto, N. Aranha, and L. C. Barbosa, “High Verdet constant Ga: S: La: O chalcogenide glasses for magneto-optical devices,” Opt. Eng. (Bellingham) 38, 214–219 (1999).
[CrossRef]

Orf, N.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nature Mater. 6, 336–347 (2007).
[CrossRef]

Pedroso, C. B.

C. B. Pedroso, E. Munin, A. B. Villaverde, J. A. M. Neto, N. Aranha, and L. C. Barbosa, “High Verdet constant Ga: S: La: O chalcogenide glasses for magneto-optical devices,” Opt. Eng. (Bellingham) 38, 214–219 (1999).
[CrossRef]

Pershan, P. S.

P. S. Pershan, J. P. van der Ziel, and L. D. Malmstro, “Theoretical discussion of inverse Faraday effect Raman scattering and related phenomena,” Phys. Rev. 143, 574–583 (1966).
[CrossRef]

Petit, L.

N. Carlie, L. Petit, and K. Richardson, “Engineering of glasses for advanced optical fiber applications,” J. Engineered Fibers Fabrics 4, 21–29 (2009).

Pitaevskii, L. P.

L. P. Pitaevskii, “Electric forces in a transparent dispersive medium,” Sov. Phys. JETP 12, 1008–1013 (1961).

Platzman, P. M.

P. M. Platzman and P. A. Wolff, Waves and Interactions in Solid State Plasmas (Academic, 1973).

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Richardson, K.

N. Carlie, L. Petit, and K. Richardson, “Engineering of glasses for advanced optical fiber applications,” J. Engineered Fibers Fabrics 4, 21–29 (2009).

Ritchie, R. H.

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
[CrossRef]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Sepulveda, B.

J. B. Gonzalez-Diaz, A. Garcia-Martin, J. M. Garcia-Martin, A. Cebollada, G. Armelles, B. Sepulveda, Y. Alaverdyan, and M. Kall, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[CrossRef] [PubMed]

Shapira, O.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nature Mater. 6, 336–347 (2007).
[CrossRef]

Shen, Y. R.

Y. R. Shen, and N. Bloember, “Interaction between light waves and spin waves,” Phys. Rev. 143, 372–384 (1966).
[CrossRef]

Skuza, J. R.

K. Yang, C. Clavero, J. R. Skuza, M. Varela, and R. A. Lukaszew, “Surface plasmon resonance and magneto-optical enhancement on Au–Co nanocomposite thin films,” J. Appl. Phys. 107, 103924–103925 (2010).
[CrossRef]

C. Clavero, K. Yang, J. R. Skuza, and R. A. Lukaszew, “Magnetic-field modulation of surface plasmon polaritons on gratings,” Opt. Lett. 35, 1557–1559 (2010).
[CrossRef] [PubMed]

Snitzer, E.

Sorin, F.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nature Mater. 6, 336–347 (2007).
[CrossRef]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[CrossRef] [PubMed]

Stroud, D.

P. M. Hui and D. Stroud, “Theory of Faraday-rotation by dilute suspensions of small particles,” Appl. Phys. Lett. 50, 950–952 (1987).
[CrossRef]

Strutt, J. W.

J. W. Strutt (Lord Rayleigh), “On the scattering of light by small particles,” Philos. Mag. 41, 447–454 (1871).

Temelkuran, B.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nature Mater. 6, 336–347 (2007).
[CrossRef]

Temnov, V. V.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[CrossRef]

Thomay, T.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).

van der Ziel, J. P.

P. S. Pershan, J. P. van der Ziel, and L. D. Malmstro, “Theoretical discussion of inverse Faraday effect Raman scattering and related phenomena,” Phys. Rev. 143, 574–583 (1966).
[CrossRef]

Varela, M.

K. Yang, C. Clavero, J. R. Skuza, M. Varela, and R. A. Lukaszew, “Surface plasmon resonance and magneto-optical enhancement on Au–Co nanocomposite thin films,” J. Appl. Phys. 107, 103924–103925 (2010).
[CrossRef]

Viens, J.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[CrossRef] [PubMed]

Villaverde, A. B.

C. B. Pedroso, E. Munin, A. B. Villaverde, J. A. M. Neto, N. Aranha, and L. C. Barbosa, “High Verdet constant Ga: S: La: O chalcogenide glasses for magneto-optical devices,” Opt. Eng. (Bellingham) 38, 214–219 (1999).
[CrossRef]

Walsworth, R.

P. K. Jain, Y. H. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” Nano Lett. 9, 1644–1650 (2009).
[CrossRef] [PubMed]

Woggon, U.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[CrossRef]

Wolff, P. A.

P. M. Platzman and P. A. Wolff, Waves and Interactions in Solid State Plasmas (Academic, 1973).

Xiao, Y. H.

P. K. Jain, Y. H. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” Nano Lett. 9, 1644–1650 (2009).
[CrossRef] [PubMed]

Yang, K.

K. Yang, C. Clavero, J. R. Skuza, M. Varela, and R. A. Lukaszew, “Surface plasmon resonance and magneto-optical enhancement on Au–Co nanocomposite thin films,” J. Appl. Phys. 107, 103924–103925 (2010).
[CrossRef]

C. Clavero, K. Yang, J. R. Skuza, and R. A. Lukaszew, “Magnetic-field modulation of surface plasmon polaritons on gratings,” Opt. Lett. 35, 1557–1559 (2010).
[CrossRef] [PubMed]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Zharov, A. A.

A. A. Zharov, and V. V. Kurin, “Giant resonant magneto-optic Kerr effect in nanostructured ferromagnetic metamaterials,” J. Appl. Phys. 102, 123514 (2007).
[CrossRef]

Zvezdin, A. K.

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[CrossRef] [PubMed]

A. K. Zvezdin and V. A. Kotov, Modern Magneto-Optics and Magneto-Optical Materials (IOP, 1997).
[CrossRef]

Ann. Phys. (Leipzig)

P. Drude, “Zur Elektronentheorie der metalle,” Ann. Phys. (Leipzig) 306, 566–613 (1900).
[CrossRef]

P. Drude, “Zur Elektronentheorie der Metalle; II. Teil. Galvanomagnetische und thermomagnetische Effecte,” Ann. Phys. (Leipzig) 308, 369–402 (1900).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

P. M. Hui and D. Stroud, “Theory of Faraday-rotation by dilute suspensions of small particles,” Appl. Phys. Lett. 50, 950–952 (1987).
[CrossRef]

J. Appl. Phys.

K. Yang, C. Clavero, J. R. Skuza, M. Varela, and R. A. Lukaszew, “Surface plasmon resonance and magneto-optical enhancement on Au–Co nanocomposite thin films,” J. Appl. Phys. 107, 103924–103925 (2010).
[CrossRef]

A. A. Zharov, and V. V. Kurin, “Giant resonant magneto-optic Kerr effect in nanostructured ferromagnetic metamaterials,” J. Appl. Phys. 102, 123514 (2007).
[CrossRef]

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101–011110 (2005).
[CrossRef]

J. Engineered Fibers Fabrics

N. Carlie, L. Petit, and K. Richardson, “Engineering of glasses for advanced optical fiber applications,” J. Engineered Fibers Fabrics 4, 21–29 (2009).

J. Phys. Chem. B

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Langmuir

P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12, 788–800 (1996).
[CrossRef]

Nano Lett.

P. K. Jain, Y. H. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” Nano Lett. 9, 1644–1650 (2009).
[CrossRef] [PubMed]

Nat. Photonics

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010).
[CrossRef]

Nature

A. L. Greer and N. Mathur, “Materials science—Changing face of the chameleon,” Nature 437, 1246–1247 (2005).
[CrossRef] [PubMed]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004).
[CrossRef] [PubMed]

Nature Mater.

A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nature Mater. 6, 336–347 (2007).
[CrossRef]

Opt. Eng. (Bellingham)

C. B. Pedroso, E. Munin, A. B. Villaverde, J. A. M. Neto, N. Aranha, and L. C. Barbosa, “High Verdet constant Ga: S: La: O chalcogenide glasses for magneto-optical devices,” Opt. Eng. (Bellingham) 38, 214–219 (1999).
[CrossRef]

Opt. Lett.

Philos. Mag.

J. W. Strutt (Lord Rayleigh), “On the scattering of light by small particles,” Philos. Mag. 41, 447–454 (1871).

Philos. Trans. R. Soc. London

M. Faraday, “On the magnetization of light, and the illumination of magnetic lines of force,” Philos. Trans. R. Soc. London 1, 104–123 (1846).

Philos. Trans. R. Soc. London, Ser. A

J. C. Maxwell Garnett, “Colours in metal glasses and metal films,” Philos. Trans. R. Soc. London, Ser. A A203, 385–420 (1904).

Phys. Rev.

Y. R. Shen, and N. Bloember, “Interaction between light waves and spin waves,” Phys. Rev. 143, 372–384 (1966).
[CrossRef]

P. S. Pershan, J. P. van der Ziel, and L. D. Malmstro, “Theoretical discussion of inverse Faraday effect Raman scattering and related phenomena,” Phys. Rev. 143, 574–583 (1966).
[CrossRef]

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
[CrossRef]

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

M. Abe, “Derivation of nondiagonal effective dielectric permeability tensors for magnetized granular composites,” Phys. Rev. B 53, 7065–7075 (1996).
[CrossRef]

Phys. Rev. Lett.

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[CrossRef] [PubMed]

H. Feil and C. Haas, “Magnetooptical Kerr effect, enhanced by the plasma resonance of charge-carriers,” Phys. Rev. Lett. 58, 65–68 (1987).
[CrossRef] [PubMed]

Small

J. B. Gonzalez-Diaz, A. Garcia-Martin, J. M. Garcia-Martin, A. Cebollada, G. Armelles, B. Sepulveda, Y. Alaverdyan, and M. Kall, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008).
[CrossRef] [PubMed]

Sov. Phys. JETP

L. P. Pitaevskii, “Electric forces in a transparent dispersive medium,” Sov. Phys. JETP 12, 1008–1013 (1961).

Other

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).

A. K. Zvezdin and V. A. Kotov, Modern Magneto-Optics and Magneto-Optical Materials (IOP, 1997).
[CrossRef]

P. M. Platzman and P. A. Wolff, Waves and Interactions in Solid State Plasmas (Academic, 1973).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

L. D. Landau and E. M. Lifshitz, Quantum Mechanics Non-Relativistic Theory (Butterworth-Heinemann, 1981).

L. D. Landau and E. M. Lifshitz, Electrodynamics Of Continuous Media (Pergamon, 1960).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Dimensionless magnetic energy of metal nanoparticles calculated from Eqs. (15, 16) for plus-waves. The matrix is water ( ε l = n 2 = 1.77 , f l = 6.3 × 10 18   F   m 1 T 1 ) [the inset shows the corresponding dimensionless magnetic energy for silver calculated from Eq. (4)].

Fig. 2
Fig. 2

Dimensionless magnetic energy induced by plus- and minus-waves.

Fig. 3
Fig. 3

Resonance behaviors for real and imaginary parts of the dielectric function and coupling f-function for different water-based ( ε l = n 2 = 1.77 , f l = 6.3 × 10 18   F   m 1 T 1 ) colloids with gold, silver, and copper nanoparticles. Volume fraction of nanoparticles is χ = 0.0001 (the insets show the corresponding dielectric and f-functions for bulk silver).

Fig. 4
Fig. 4

Dependence of the resonance wavelength λ = 2 π c / ω for imaginary part of dielectric function as a function of refractive index of the matrix.

Fig. 5
Fig. 5

Resonance behavior of Verdet function in nanocomposites.

Fig. 6
Fig. 6

Resonance wavelengths of the Verdet function in the nanocomposites. The volume fraction of nanoparticles is ranged between 0.0001 < χ < 0.01 . Observe that the left negative peak depends on the nanoparticle concentration almost linearly.

Fig. 7
Fig. 7

Imaginary part of the wave number (water-based colloids, χ = 0.0001 ). The inset shows the dependency of the transmission coefficient on the sample thickness. The transmission coefficient was calculated at the peak wavelength.

Tables (1)

Tables Icon

Table 1 Physical Parameters of Noble Metals [7]

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

m d v d t + γ m v = e E + e v × B ,
P ( ω ) = i e 2 N m ( γ i ω ) ω ( γ 2 + ω 2 ) E i e 3 N m 2 ( γ i ω ) 2 ω ( γ 2 + ω 2 ) 2 E × B .
D ( ω ) = ε 0 E ( ω ) + P ( ω ) = ε 0 ε ( ω ) E ( ω ) + i f ( ω ) E ( ω ) × B ,
M ± = ± ( 1 ω ( γ 2 + ω 2 ) + 2 e B m 1 ( γ 2 + ω 2 ) 2 ) N e 3 m 2 E 0 2 k ̂ = ± g ( ω , B ) E 0 2 k ̂ .
φ l = φ m ,     r = R ,
( D l D m ) n = 0 ,     r = R ,
ε 0 ε l ( ω ) ( φ l R R ) ε 0 ε m ( ω ) ( φ m R R ) + i { f l ( ω ) ( [ φ l × B ] R R ) f m ( ω ) ( [ φ m × B ] R R ) } = ε 0 ( ε l ( ω ) ε m ( ω ) ) ( E ¯ R R ) i { ( f l ( ω ) f m ( ω ) ) ( [ E ¯ × B ] R R ) }     r = R ,
φ l = 0     r .
i [ E ¯ × B ] = i ( E y B i E x B ) = E x B + i E y B = B E ¯ .
φ l , m = ( E ¯ r ) Φ l , m ( r ) ,
Φ l ( r ) = β r 3 ( liquid ) ,     Φ m ( r ) = α ( parcticle ) .
α = β R 3 = ε l ( ω ) ε m ( ω ) + ( f l ( ω ) f m ( ω ) ) B / ε 0 2 ε l ( ω ) + ε m ( ω ) + ( f m ( ω ) f l ( ω ) ) B / ε 0 .
φ ( r ) = 3 ε l ( ω ) ( E ¯ r ) 2 ε l ( ω ) + ε m ( ω ) + ( f m ( ω ) f l ( ω ) ) B / ε 0 , ( r < 0 )
φ ( r ) = ( E ¯ r ) { 1 + ( ε l ( ω ) ε m ( ω ) ) + ( f l ( ω ) f m ( ω ) ) B / ε 0 2 ε l ( ω ) + ε m ( ω ) + ( f m ( ω ) f l ( ω ) ) B / ε 0 R 3 r 3 } , ( r 0 ) .
d = 4 π ε 0 ε l R 3 E ¯ ( ε l ( ω ) ε m ( ω ) ) + ( f l ( ω ) f m ( ω ) ) B / ε 0 2 ε l ( ω ) + ε m ( ω ) + ( f m ( ω ) f l ( ω ) ) B / ε 0 .
M = ± g ( ω , B ) | A ± | 2 E ¯ 2 k ,
A ± = 3 ε l ( ± ω ) 2 ε l ( ± ω ) + ε m ( ± ω ) + ( f m ( ± ω ) f l ( ± ω ) ) B / ε 0 ,
1 V { D ( ω , r ) ε 0 ε l ( ω , r ) E ( ω , r ) i f l ( ω , r ) [ E ( ω , r ) × B ] } d 3 r = D ¯ ( ω ) ε 0 ε l ( ω ) E ¯ ( ω ) i f l ( ω ) [ E ¯ ( ω ) × B ] .
D ¯ ( ω ) = ε 0 ε ( ω ) E ¯ ( ω ) + i f ( ω ) [ E ¯ ( ω ) × B ] = ε 0 ε ( ω ) E ¯ ( ω ) + f ( ω ) B E ¯ ( ω ) ,
D ¯ ( ω ) = ε 0 ( ε l + χ 3 ε l ( ε m ε l ) ( 2 ε l + ε m ) + ( f m f l ) B / ε 0 ) E ¯ ( ω ) + ( f l + χ 3 ε l ( f m f l ) ( 2 ε l + ε m ) + ( f m f l ) B / ε 0 ) B E ¯ ( ω ) ,
ε ( ω ) = ε l ( ω ) + χ ( ε m ε l ) 3 ε l 2 ε l + ε m ,
f ( ω ) = f l ( ω ) + χ ( f m f l ) 9 ε l 2 ( 2 ε l + ε m ) 2 ,
( k 2 + μ 0 ε 0 ω 2 ε ( ω ) ) E x + i μ 0 ω 2 f ( ω ) B z E y = 0 ,
( k 2 + μ 0 ε 0 ω 2 ε ( ω ) ) E y i μ 0 ω 2 f ( ω ) B z E x + i μ 0 ω 2 f ( ω ) B x E z = 0 ,
μ 0 ε 0 ω 2 ε ( ω ) E z i μ 0 ω 2 f ( ω ) B x E y = 0.
k ± 2 = ω 2 μ 0 ( ε 0 ε ( ± ω ) + f ( ± ω ) B ) .
k ± = ω c ε ( ± ω ) + f ( ± ω ) B / ε 0 = ω c ε ± f B / ε 0 + i ( f B / ε 0 ± ε ) ,
E ¯ = E ¯ + + E ¯ = 2 a e k d e i ( k + k ) d / 2   cos ( ω t k + + k 2 d ) .
tan   θ = E ¯ y E ¯ x = tan ( k + k ) d 2 ,     or   θ ω B d 2 ε 0 c Re [ f ( + ω ) ε ( + ω ) ] .
Ω = 3 ( ε m ( ω r ) ε l ( ω r ) ) { d [ 2 ε l ( ω ) + ε m ( ω ) ] / d ω ω = ω c } 1 .

Metrics