Abstract

The electromagnetic transmission, reflection, and absorption characteristics of two-dimensional metallic photonic crystals with a coherent atomic gas as the host medium were systematically studied, with emphasis on the appearance and features of mini passbands within bandgaps of the unfilled (gas-free) crystals. Only normally incident s-polarized plane waves were considered. The mini passbands are connected with strong frequency dispersion of the relative permittivity of the host gas, being highly variable for a certain narrow regime of frequencies. Transmission effects similar to those connected with defect modes can appear in photonic crystals, which are associated with localization of dispersion in the frequency domain rather than with spatial localization of the field at structural defects. In addition, analogy with Fabry–Perot resonances is possible within the new bands. Their locations can be strongly sensitive to a variation of gas parameters so that they can be efficiently tuned at fixed frequency. Also, the occurrence of high-absorbance bands can be correlated with the frequency-dependent properties of the metal and the coherent atomic gas. Finally, the energy of the incident wave can be distributed in a desired proportion between either transmittance or reflectance on one hand and absorbance on the other.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Figotin, Y. A. Godin, and I. Vitebsky, “Two-dimensional tunable photonic crystals,” Phys. Rev. B 57, 2841–2848 (1998).
    [CrossRef]
  2. F. Glöckler, S. Peters, U. Lemmer, and M. Gerken, “Tunable superprism effect in photonic crystals,” Phys. Status Solidi A 204, 3790–3804 (2007).
    [CrossRef]
  3. G. Alagappan, X. W. Sun, P. Shum, M. B. Yu, and M. T. Doan, “One-dimensional anisotropic photonic crystal with a tunable bandgap,” J. Opt. Soc. Am. B 23, 159–167 (2006).
    [CrossRef]
  4. F. Wang and A. Lakhtakia, “Magnetically controllable intra-Brillouin-zone band gaps in one-dimensional helicoidal magnetophotonic crystals,” Phys. Rev. B 79, 193102 (2009).
    [CrossRef]
  5. M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
    [CrossRef]
  6. J. Li, M.-H. Lu, L. Feng, X.-P. Liu, and Y.-F. Chen, “Tunable negative refraction based on the Pockels effect in two-dimensional photonic crystals composed of electro-optic crystals,” J. Appl. Phys. 101, 013516 (2007).
    [CrossRef]
  7. K. L. Jim, D. Y. Wang, C. W. Leung, C. L. Choy, and H. L. W. Chan, “One-dimensional tunable ferroelectric photonic crystals based on Ba0.7Sr0.3TiO3/MgO multilayer thin films,” J. Appl. Phys. 103, 083107 (2008).
    [CrossRef]
  8. P. Jiang, C. Ding, X. Hu, and Q. Gong, “Tunable double-channel filter based on two-dimensional ferroelectric photonic crystals,” Phys. Lett. A 363, 332–336 (2007).
    [CrossRef]
  9. M. Schmidt, M. Eich, U. Huebner, and R. Boucher, “Electro-optically tunable photonic crystals,” Appl. Phys. Lett. 87, 121110 (2005).
    [CrossRef]
  10. K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970 (1999).
    [CrossRef]
  11. K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75, 932–934 (1999).
    [CrossRef]
  12. E. P. Kosmidou, E. E. Kriezis, and T. D. Tsiboukis, “Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects,” IEEE J. Quantum Electron. 41, 657–665 (2005).
    [CrossRef]
  13. D. McPhail, M. Straub, and M. Gu, “Electrical tuning of three-dimensional photonic crystals using polymer dispersed liquid crystals,” Appl. Phys. Lett. 86, 051103 (2005).
    [CrossRef]
  14. H. Takeda and K. Yoshino, “Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature semiconductors,” Phys. Rev. B 67, 245109 (2003).
    [CrossRef]
  15. C. Xu, X. Hu, Z. Li, X. Liu, R. Fu, and J. Zi, “Semiconductor-based tunable photonic crystals by means of an external magnetic field,” Phys. Rev. B 68, 193201 (2003).
    [CrossRef]
  16. J. Han, A. Lakhtakia, Z. Tian, X. Lu, and W. Zhang, “Magnetic and magnetothermal tunabilities of subwavelength-hole arrays in a semiconductor sheet,” Opt. Lett. 34, 1465–1467 (2009).
    [CrossRef] [PubMed]
  17. H. Chen, C. T. Chan, S. Liu, and Z. Lin, “A simple route to a tunable electromagnetic gateway,” New J. Phys. 11, 083012 (2009).
    [CrossRef]
  18. F. Wang, A. Lakhtakia, and R. Messier, “On piezoelectric control of the optical response of sculptured thin films,” J. Mod. Opt. 50, 239–249 (2003).
  19. W. Park and J.-B. Lee, “Mechanically tunable photonic crystals,” Opt. Photonics News 20(1), 40–45 (2009).
    [CrossRef]
  20. J. H. Wu, L. K. Ang, A. Q. Liu, H. G. Teo, and C. Lu, “Tunable high-Q photonic-bandgap Fabry–Perot resonator,” J. Opt. Soc. Am. B 22, 1770–1777 (2005).
    [CrossRef]
  21. A. Lakhtakia and S. A. Ramakrishna, “Narrowband enhancement of the circular Bragg phenomenon by stimulated Raman scattering,” J. Opt. 12, 085101 (2010).
    [CrossRef]
  22. A. Lakhtakia and S. A. Ramakrishna, “Erratum: Narrowband enhancement of the circular Bragg phenomenon by stimulated Raman scattering,” J. Opt. 12, 089802 (2010).
    [CrossRef]
  23. S. Chakrabarti, S. A. Ramakrishna, and H. Wanare, “Coherently controlling metamaterials,” Opt. Express 16, 19504–19511 (2008).
    [CrossRef] [PubMed]
  24. H. Wanare, “Controlling electromagnetic metamaterials,” J. Nanophotonics 4, 040304 (2010).
    [CrossRef]
  25. T. Magath and A. E. Serebryannikov, “Fast iterative, coupled-integral-equation technique for inhomogeneous profiled and periodic slabs,” J. Opt. Soc. Am. A 22, 2405–2418 (2005).
    [CrossRef]
  26. D.Maystre, ed., Selected Papers on Diffraction Gratings (SPIE, 1993).
  27. A. E. Serebryannikov and T. Magath, “Controlling location of opaque ranges in transmission of metallic photonic crystals,” Phys. Rev. A 76, 033828 (2007).
    [CrossRef]
  28. A. E. Serebryannikov, T. Magath, and K. Schuenemann, “Bragg transmittance of s-polarized waves through finite-thickness photonic crystals with a periodically corrugated interface,” Phys. Rev. E 74, 066607 (2006).
    [CrossRef]
  29. S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
    [CrossRef] [PubMed]
  30. K. J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
    [CrossRef] [PubMed]
  31. J. P. Marangos, “Electromagnetically induced transparency,” J. Mod. Opt. 45, 471–503 (1998).
    [CrossRef]
  32. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U. Press, 1997), Sec. 7.3.
  33. We thank the authors of for supplying us typical data on helium used in this paper.
  34. H. A. Haus and C. V. Shank, “Asymmetric taper of distributed feedback lasers,” IEEE J. Quantum Electron. 12, 532–539 (1976).
    [CrossRef]
  35. G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995–997 (1994).
    [CrossRef]
  36. T. G. Mackay and A. Lakhtakia, “A limitation of the Bruggeman formalism for homogenization,” Opt. Commun. 234, 35–42 (2004); Erratum: A limitiation of the Bruggeman formalism for homogenization 282, 4028–4028 (2009).
    [CrossRef]
  37. A. J. Duncan, T. G. Mackay, and A. Lakhtakia, “On the Bergman–Milton bounds for the homogenization of dielectric composite materials,” Opt. Commun. 271, 470–474 (2007).
    [CrossRef]
  38. A. Mejdoubi and C. Brosseau, “Intrinsic electrostatic resonances of heterostructures with negative permittivity from finite-element calculations: Application to core-shell inclusions,” J. Appl. Phys. 102, 094104 (2007).
    [CrossRef]
  39. C. Fourn and C. Brosseau, “Electrostatic resonances of heterostructures with negative permittivity: Homogenization formalisms versus finite-element modeling,” Phys. Rev. E 77, 016603 (2008).
    [CrossRef]
  40. T. G. Mackay and A. Lakhtakia, “On the application of homogenization formalisms to active dielectric composite materials,” Opt. Commun. 282, 2470–2475 (2009).
    [CrossRef]
  41. K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2005).
  42. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980), Sec. 7.6.1.
  43. P. Swab, S. V. Krishnaswamy, and R. Messier, “Characterization of black Ge solar selective absorbers,” J. Vac. Sci. Technol. 17, 362–365 (1980).
    [CrossRef]
  44. R. Messier, S. V. Krishnaswamy, L. R. Gilbert, and P. Swab, “Black a-Si selective absorber surfaces,” J. Appl. Phys. 51, 1611–1614 (1980).
    [CrossRef]
  45. E. Schubert, “Sub-wavelength antireflection coatings from nanostructure sculptured thin films,” Contrib. Plasma Phys. 47, 545–550 (2007).
    [CrossRef]
  46. M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S.-Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33, 2527–2529 (2008).
    [CrossRef] [PubMed]

2010 (3)

A. Lakhtakia and S. A. Ramakrishna, “Narrowband enhancement of the circular Bragg phenomenon by stimulated Raman scattering,” J. Opt. 12, 085101 (2010).
[CrossRef]

A. Lakhtakia and S. A. Ramakrishna, “Erratum: Narrowband enhancement of the circular Bragg phenomenon by stimulated Raman scattering,” J. Opt. 12, 089802 (2010).
[CrossRef]

H. Wanare, “Controlling electromagnetic metamaterials,” J. Nanophotonics 4, 040304 (2010).
[CrossRef]

2009 (5)

T. G. Mackay and A. Lakhtakia, “On the application of homogenization formalisms to active dielectric composite materials,” Opt. Commun. 282, 2470–2475 (2009).
[CrossRef]

F. Wang and A. Lakhtakia, “Magnetically controllable intra-Brillouin-zone band gaps in one-dimensional helicoidal magnetophotonic crystals,” Phys. Rev. B 79, 193102 (2009).
[CrossRef]

H. Chen, C. T. Chan, S. Liu, and Z. Lin, “A simple route to a tunable electromagnetic gateway,” New J. Phys. 11, 083012 (2009).
[CrossRef]

W. Park and J.-B. Lee, “Mechanically tunable photonic crystals,” Opt. Photonics News 20(1), 40–45 (2009).
[CrossRef]

J. Han, A. Lakhtakia, Z. Tian, X. Lu, and W. Zhang, “Magnetic and magnetothermal tunabilities of subwavelength-hole arrays in a semiconductor sheet,” Opt. Lett. 34, 1465–1467 (2009).
[CrossRef] [PubMed]

2008 (4)

M.-L. Kuo, D. J. Poxson, Y. S. Kim, F. W. Mont, J. K. Kim, E. F. Schubert, and S.-Y. Lin, “Realization of a near-perfect antireflection coating for silicon solar energy utilization,” Opt. Lett. 33, 2527–2529 (2008).
[CrossRef] [PubMed]

S. Chakrabarti, S. A. Ramakrishna, and H. Wanare, “Coherently controlling metamaterials,” Opt. Express 16, 19504–19511 (2008).
[CrossRef] [PubMed]

K. L. Jim, D. Y. Wang, C. W. Leung, C. L. Choy, and H. L. W. Chan, “One-dimensional tunable ferroelectric photonic crystals based on Ba0.7Sr0.3TiO3/MgO multilayer thin films,” J. Appl. Phys. 103, 083107 (2008).
[CrossRef]

C. Fourn and C. Brosseau, “Electrostatic resonances of heterostructures with negative permittivity: Homogenization formalisms versus finite-element modeling,” Phys. Rev. E 77, 016603 (2008).
[CrossRef]

2007 (7)

A. J. Duncan, T. G. Mackay, and A. Lakhtakia, “On the Bergman–Milton bounds for the homogenization of dielectric composite materials,” Opt. Commun. 271, 470–474 (2007).
[CrossRef]

A. Mejdoubi and C. Brosseau, “Intrinsic electrostatic resonances of heterostructures with negative permittivity from finite-element calculations: Application to core-shell inclusions,” J. Appl. Phys. 102, 094104 (2007).
[CrossRef]

A. E. Serebryannikov and T. Magath, “Controlling location of opaque ranges in transmission of metallic photonic crystals,” Phys. Rev. A 76, 033828 (2007).
[CrossRef]

P. Jiang, C. Ding, X. Hu, and Q. Gong, “Tunable double-channel filter based on two-dimensional ferroelectric photonic crystals,” Phys. Lett. A 363, 332–336 (2007).
[CrossRef]

J. Li, M.-H. Lu, L. Feng, X.-P. Liu, and Y.-F. Chen, “Tunable negative refraction based on the Pockels effect in two-dimensional photonic crystals composed of electro-optic crystals,” J. Appl. Phys. 101, 013516 (2007).
[CrossRef]

F. Glöckler, S. Peters, U. Lemmer, and M. Gerken, “Tunable superprism effect in photonic crystals,” Phys. Status Solidi A 204, 3790–3804 (2007).
[CrossRef]

E. Schubert, “Sub-wavelength antireflection coatings from nanostructure sculptured thin films,” Contrib. Plasma Phys. 47, 545–550 (2007).
[CrossRef]

2006 (3)

G. Alagappan, X. W. Sun, P. Shum, M. B. Yu, and M. T. Doan, “One-dimensional anisotropic photonic crystal with a tunable bandgap,” J. Opt. Soc. Am. B 23, 159–167 (2006).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[CrossRef]

A. E. Serebryannikov, T. Magath, and K. Schuenemann, “Bragg transmittance of s-polarized waves through finite-thickness photonic crystals with a periodically corrugated interface,” Phys. Rev. E 74, 066607 (2006).
[CrossRef]

2005 (5)

J. H. Wu, L. K. Ang, A. Q. Liu, H. G. Teo, and C. Lu, “Tunable high-Q photonic-bandgap Fabry–Perot resonator,” J. Opt. Soc. Am. B 22, 1770–1777 (2005).
[CrossRef]

T. Magath and A. E. Serebryannikov, “Fast iterative, coupled-integral-equation technique for inhomogeneous profiled and periodic slabs,” J. Opt. Soc. Am. A 22, 2405–2418 (2005).
[CrossRef]

M. Schmidt, M. Eich, U. Huebner, and R. Boucher, “Electro-optically tunable photonic crystals,” Appl. Phys. Lett. 87, 121110 (2005).
[CrossRef]

E. P. Kosmidou, E. E. Kriezis, and T. D. Tsiboukis, “Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects,” IEEE J. Quantum Electron. 41, 657–665 (2005).
[CrossRef]

D. McPhail, M. Straub, and M. Gu, “Electrical tuning of three-dimensional photonic crystals using polymer dispersed liquid crystals,” Appl. Phys. Lett. 86, 051103 (2005).
[CrossRef]

2004 (1)

T. G. Mackay and A. Lakhtakia, “A limitation of the Bruggeman formalism for homogenization,” Opt. Commun. 234, 35–42 (2004); Erratum: A limitiation of the Bruggeman formalism for homogenization 282, 4028–4028 (2009).
[CrossRef]

2003 (3)

H. Takeda and K. Yoshino, “Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature semiconductors,” Phys. Rev. B 67, 245109 (2003).
[CrossRef]

C. Xu, X. Hu, Z. Li, X. Liu, R. Fu, and J. Zi, “Semiconductor-based tunable photonic crystals by means of an external magnetic field,” Phys. Rev. B 68, 193201 (2003).
[CrossRef]

F. Wang, A. Lakhtakia, and R. Messier, “On piezoelectric control of the optical response of sculptured thin films,” J. Mod. Opt. 50, 239–249 (2003).

1999 (2)

K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970 (1999).
[CrossRef]

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75, 932–934 (1999).
[CrossRef]

1998 (2)

A. Figotin, Y. A. Godin, and I. Vitebsky, “Two-dimensional tunable photonic crystals,” Phys. Rev. B 57, 2841–2848 (1998).
[CrossRef]

J. P. Marangos, “Electromagnetically induced transparency,” J. Mod. Opt. 45, 471–503 (1998).
[CrossRef]

1994 (1)

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995–997 (1994).
[CrossRef]

1991 (1)

K. J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

1990 (1)

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef] [PubMed]

1980 (2)

P. Swab, S. V. Krishnaswamy, and R. Messier, “Characterization of black Ge solar selective absorbers,” J. Vac. Sci. Technol. 17, 362–365 (1980).
[CrossRef]

R. Messier, S. V. Krishnaswamy, L. R. Gilbert, and P. Swab, “Black a-Si selective absorber surfaces,” J. Appl. Phys. 51, 1611–1614 (1980).
[CrossRef]

1976 (1)

H. A. Haus and C. V. Shank, “Asymmetric taper of distributed feedback lasers,” IEEE J. Quantum Electron. 12, 532–539 (1976).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995–997 (1994).
[CrossRef]

Alagappan, G.

Ang, L. K.

Baida, F. I.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[CrossRef]

Bernal, M. -P.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[CrossRef]

Boller, K. J.

K. J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

Born, M.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980), Sec. 7.6.1.

Boucher, R.

M. Schmidt, M. Eich, U. Huebner, and R. Boucher, “Electro-optically tunable photonic crystals,” Appl. Phys. Lett. 87, 121110 (2005).
[CrossRef]

Brosseau, C.

C. Fourn and C. Brosseau, “Electrostatic resonances of heterostructures with negative permittivity: Homogenization formalisms versus finite-element modeling,” Phys. Rev. E 77, 016603 (2008).
[CrossRef]

A. Mejdoubi and C. Brosseau, “Intrinsic electrostatic resonances of heterostructures with negative permittivity from finite-element calculations: Application to core-shell inclusions,” J. Appl. Phys. 102, 094104 (2007).
[CrossRef]

Busch, K.

K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970 (1999).
[CrossRef]

Chakrabarti, S.

Chan, C. T.

H. Chen, C. T. Chan, S. Liu, and Z. Lin, “A simple route to a tunable electromagnetic gateway,” New J. Phys. 11, 083012 (2009).
[CrossRef]

Chan, H. L. W.

K. L. Jim, D. Y. Wang, C. W. Leung, C. L. Choy, and H. L. W. Chan, “One-dimensional tunable ferroelectric photonic crystals based on Ba0.7Sr0.3TiO3/MgO multilayer thin films,” J. Appl. Phys. 103, 083107 (2008).
[CrossRef]

Chen, H.

H. Chen, C. T. Chan, S. Liu, and Z. Lin, “A simple route to a tunable electromagnetic gateway,” New J. Phys. 11, 083012 (2009).
[CrossRef]

Chen, Y. -F.

J. Li, M.-H. Lu, L. Feng, X.-P. Liu, and Y.-F. Chen, “Tunable negative refraction based on the Pockels effect in two-dimensional photonic crystals composed of electro-optic crystals,” J. Appl. Phys. 101, 013516 (2007).
[CrossRef]

Choy, C. L.

K. L. Jim, D. Y. Wang, C. W. Leung, C. L. Choy, and H. L. W. Chan, “One-dimensional tunable ferroelectric photonic crystals based on Ba0.7Sr0.3TiO3/MgO multilayer thin films,” J. Appl. Phys. 103, 083107 (2008).
[CrossRef]

Courjal, N.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[CrossRef]

Ding, C.

P. Jiang, C. Ding, X. Hu, and Q. Gong, “Tunable double-channel filter based on two-dimensional ferroelectric photonic crystals,” Phys. Lett. A 363, 332–336 (2007).
[CrossRef]

Doan, M. T.

Duncan, A. J.

A. J. Duncan, T. G. Mackay, and A. Lakhtakia, “On the Bergman–Milton bounds for the homogenization of dielectric composite materials,” Opt. Commun. 271, 470–474 (2007).
[CrossRef]

Eich, M.

M. Schmidt, M. Eich, U. Huebner, and R. Boucher, “Electro-optically tunable photonic crystals,” Appl. Phys. Lett. 87, 121110 (2005).
[CrossRef]

Feng, L.

J. Li, M.-H. Lu, L. Feng, X.-P. Liu, and Y.-F. Chen, “Tunable negative refraction based on the Pockels effect in two-dimensional photonic crystals composed of electro-optic crystals,” J. Appl. Phys. 101, 013516 (2007).
[CrossRef]

Field, J. E.

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef] [PubMed]

Figotin, A.

A. Figotin, Y. A. Godin, and I. Vitebsky, “Two-dimensional tunable photonic crystals,” Phys. Rev. B 57, 2841–2848 (1998).
[CrossRef]

Fourn, C.

C. Fourn and C. Brosseau, “Electrostatic resonances of heterostructures with negative permittivity: Homogenization formalisms versus finite-element modeling,” Phys. Rev. E 77, 016603 (2008).
[CrossRef]

Fu, R.

C. Xu, X. Hu, Z. Li, X. Liu, R. Fu, and J. Zi, “Semiconductor-based tunable photonic crystals by means of an external magnetic field,” Phys. Rev. B 68, 193201 (2003).
[CrossRef]

Gerken, M.

F. Glöckler, S. Peters, U. Lemmer, and M. Gerken, “Tunable superprism effect in photonic crystals,” Phys. Status Solidi A 204, 3790–3804 (2007).
[CrossRef]

Gilbert, L. R.

R. Messier, S. V. Krishnaswamy, L. R. Gilbert, and P. Swab, “Black a-Si selective absorber surfaces,” J. Appl. Phys. 51, 1611–1614 (1980).
[CrossRef]

Glöckler, F.

F. Glöckler, S. Peters, U. Lemmer, and M. Gerken, “Tunable superprism effect in photonic crystals,” Phys. Status Solidi A 204, 3790–3804 (2007).
[CrossRef]

Godin, Y. A.

A. Figotin, Y. A. Godin, and I. Vitebsky, “Two-dimensional tunable photonic crystals,” Phys. Rev. B 57, 2841–2848 (1998).
[CrossRef]

Gong, Q.

P. Jiang, C. Ding, X. Hu, and Q. Gong, “Tunable double-channel filter based on two-dimensional ferroelectric photonic crystals,” Phys. Lett. A 363, 332–336 (2007).
[CrossRef]

Gu, M.

D. McPhail, M. Straub, and M. Gu, “Electrical tuning of three-dimensional photonic crystals using polymer dispersed liquid crystals,” Appl. Phys. Lett. 86, 051103 (2005).
[CrossRef]

Han, J.

Harris, S. E.

K. J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef] [PubMed]

Haus, H. A.

H. A. Haus and C. V. Shank, “Asymmetric taper of distributed feedback lasers,” IEEE J. Quantum Electron. 12, 532–539 (1976).
[CrossRef]

Hu, X.

P. Jiang, C. Ding, X. Hu, and Q. Gong, “Tunable double-channel filter based on two-dimensional ferroelectric photonic crystals,” Phys. Lett. A 363, 332–336 (2007).
[CrossRef]

C. Xu, X. Hu, Z. Li, X. Liu, R. Fu, and J. Zi, “Semiconductor-based tunable photonic crystals by means of an external magnetic field,” Phys. Rev. B 68, 193201 (2003).
[CrossRef]

Huebner, U.

M. Schmidt, M. Eich, U. Huebner, and R. Boucher, “Electro-optically tunable photonic crystals,” Appl. Phys. Lett. 87, 121110 (2005).
[CrossRef]

Imamoglu, A.

K. J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef] [PubMed]

Jiang, P.

P. Jiang, C. Ding, X. Hu, and Q. Gong, “Tunable double-channel filter based on two-dimensional ferroelectric photonic crystals,” Phys. Lett. A 363, 332–336 (2007).
[CrossRef]

Jim, K. L.

K. L. Jim, D. Y. Wang, C. W. Leung, C. L. Choy, and H. L. W. Chan, “One-dimensional tunable ferroelectric photonic crystals based on Ba0.7Sr0.3TiO3/MgO multilayer thin films,” J. Appl. Phys. 103, 083107 (2008).
[CrossRef]

John, S.

K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970 (1999).
[CrossRef]

Kawagishi, Y.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75, 932–934 (1999).
[CrossRef]

Kim, J. K.

Kim, Y. S.

Kosmidou, E. P.

E. P. Kosmidou, E. E. Kriezis, and T. D. Tsiboukis, “Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects,” IEEE J. Quantum Electron. 41, 657–665 (2005).
[CrossRef]

Kriezis, E. E.

E. P. Kosmidou, E. E. Kriezis, and T. D. Tsiboukis, “Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects,” IEEE J. Quantum Electron. 41, 657–665 (2005).
[CrossRef]

Krishnaswamy, S. V.

R. Messier, S. V. Krishnaswamy, L. R. Gilbert, and P. Swab, “Black a-Si selective absorber surfaces,” J. Appl. Phys. 51, 1611–1614 (1980).
[CrossRef]

P. Swab, S. V. Krishnaswamy, and R. Messier, “Characterization of black Ge solar selective absorbers,” J. Vac. Sci. Technol. 17, 362–365 (1980).
[CrossRef]

Kuo, M. -L.

Lakhtakia, A.

A. Lakhtakia and S. A. Ramakrishna, “Erratum: Narrowband enhancement of the circular Bragg phenomenon by stimulated Raman scattering,” J. Opt. 12, 089802 (2010).
[CrossRef]

A. Lakhtakia and S. A. Ramakrishna, “Narrowband enhancement of the circular Bragg phenomenon by stimulated Raman scattering,” J. Opt. 12, 085101 (2010).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “On the application of homogenization formalisms to active dielectric composite materials,” Opt. Commun. 282, 2470–2475 (2009).
[CrossRef]

F. Wang and A. Lakhtakia, “Magnetically controllable intra-Brillouin-zone band gaps in one-dimensional helicoidal magnetophotonic crystals,” Phys. Rev. B 79, 193102 (2009).
[CrossRef]

J. Han, A. Lakhtakia, Z. Tian, X. Lu, and W. Zhang, “Magnetic and magnetothermal tunabilities of subwavelength-hole arrays in a semiconductor sheet,” Opt. Lett. 34, 1465–1467 (2009).
[CrossRef] [PubMed]

A. J. Duncan, T. G. Mackay, and A. Lakhtakia, “On the Bergman–Milton bounds for the homogenization of dielectric composite materials,” Opt. Commun. 271, 470–474 (2007).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “A limitation of the Bruggeman formalism for homogenization,” Opt. Commun. 234, 35–42 (2004); Erratum: A limitiation of the Bruggeman formalism for homogenization 282, 4028–4028 (2009).
[CrossRef]

F. Wang, A. Lakhtakia, and R. Messier, “On piezoelectric control of the optical response of sculptured thin films,” J. Mod. Opt. 50, 239–249 (2003).

Lee, J. -B.

W. Park and J.-B. Lee, “Mechanically tunable photonic crystals,” Opt. Photonics News 20(1), 40–45 (2009).
[CrossRef]

Lemmer, U.

F. Glöckler, S. Peters, U. Lemmer, and M. Gerken, “Tunable superprism effect in photonic crystals,” Phys. Status Solidi A 204, 3790–3804 (2007).
[CrossRef]

Leung, C. W.

K. L. Jim, D. Y. Wang, C. W. Leung, C. L. Choy, and H. L. W. Chan, “One-dimensional tunable ferroelectric photonic crystals based on Ba0.7Sr0.3TiO3/MgO multilayer thin films,” J. Appl. Phys. 103, 083107 (2008).
[CrossRef]

Li, J.

J. Li, M.-H. Lu, L. Feng, X.-P. Liu, and Y.-F. Chen, “Tunable negative refraction based on the Pockels effect in two-dimensional photonic crystals composed of electro-optic crystals,” J. Appl. Phys. 101, 013516 (2007).
[CrossRef]

Li, Z.

C. Xu, X. Hu, Z. Li, X. Liu, R. Fu, and J. Zi, “Semiconductor-based tunable photonic crystals by means of an external magnetic field,” Phys. Rev. B 68, 193201 (2003).
[CrossRef]

Lin, S. -Y.

Lin, Z.

H. Chen, C. T. Chan, S. Liu, and Z. Lin, “A simple route to a tunable electromagnetic gateway,” New J. Phys. 11, 083012 (2009).
[CrossRef]

Liu, A. Q.

Liu, S.

H. Chen, C. T. Chan, S. Liu, and Z. Lin, “A simple route to a tunable electromagnetic gateway,” New J. Phys. 11, 083012 (2009).
[CrossRef]

Liu, X.

C. Xu, X. Hu, Z. Li, X. Liu, R. Fu, and J. Zi, “Semiconductor-based tunable photonic crystals by means of an external magnetic field,” Phys. Rev. B 68, 193201 (2003).
[CrossRef]

Liu, X. -P.

J. Li, M.-H. Lu, L. Feng, X.-P. Liu, and Y.-F. Chen, “Tunable negative refraction based on the Pockels effect in two-dimensional photonic crystals composed of electro-optic crystals,” J. Appl. Phys. 101, 013516 (2007).
[CrossRef]

Lu, C.

Lu, M. -H.

J. Li, M.-H. Lu, L. Feng, X.-P. Liu, and Y.-F. Chen, “Tunable negative refraction based on the Pockels effect in two-dimensional photonic crystals composed of electro-optic crystals,” J. Appl. Phys. 101, 013516 (2007).
[CrossRef]

Lu, X.

Mackay, T. G.

T. G. Mackay and A. Lakhtakia, “On the application of homogenization formalisms to active dielectric composite materials,” Opt. Commun. 282, 2470–2475 (2009).
[CrossRef]

A. J. Duncan, T. G. Mackay, and A. Lakhtakia, “On the Bergman–Milton bounds for the homogenization of dielectric composite materials,” Opt. Commun. 271, 470–474 (2007).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “A limitation of the Bruggeman formalism for homogenization,” Opt. Commun. 234, 35–42 (2004); Erratum: A limitiation of the Bruggeman formalism for homogenization 282, 4028–4028 (2009).
[CrossRef]

Magath, T.

A. E. Serebryannikov and T. Magath, “Controlling location of opaque ranges in transmission of metallic photonic crystals,” Phys. Rev. A 76, 033828 (2007).
[CrossRef]

A. E. Serebryannikov, T. Magath, and K. Schuenemann, “Bragg transmittance of s-polarized waves through finite-thickness photonic crystals with a periodically corrugated interface,” Phys. Rev. E 74, 066607 (2006).
[CrossRef]

T. Magath and A. E. Serebryannikov, “Fast iterative, coupled-integral-equation technique for inhomogeneous profiled and periodic slabs,” J. Opt. Soc. Am. A 22, 2405–2418 (2005).
[CrossRef]

Marangos, J. P.

J. P. Marangos, “Electromagnetically induced transparency,” J. Mod. Opt. 45, 471–503 (1998).
[CrossRef]

McPhail, D.

D. McPhail, M. Straub, and M. Gu, “Electrical tuning of three-dimensional photonic crystals using polymer dispersed liquid crystals,” Appl. Phys. Lett. 86, 051103 (2005).
[CrossRef]

Mejdoubi, A.

A. Mejdoubi and C. Brosseau, “Intrinsic electrostatic resonances of heterostructures with negative permittivity from finite-element calculations: Application to core-shell inclusions,” J. Appl. Phys. 102, 094104 (2007).
[CrossRef]

Messier, R.

F. Wang, A. Lakhtakia, and R. Messier, “On piezoelectric control of the optical response of sculptured thin films,” J. Mod. Opt. 50, 239–249 (2003).

R. Messier, S. V. Krishnaswamy, L. R. Gilbert, and P. Swab, “Black a-Si selective absorber surfaces,” J. Appl. Phys. 51, 1611–1614 (1980).
[CrossRef]

P. Swab, S. V. Krishnaswamy, and R. Messier, “Characterization of black Ge solar selective absorbers,” J. Vac. Sci. Technol. 17, 362–365 (1980).
[CrossRef]

Mont, F. W.

Nakayama, K.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75, 932–934 (1999).
[CrossRef]

Ozaki, M.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75, 932–934 (1999).
[CrossRef]

Park, W.

W. Park and J.-B. Lee, “Mechanically tunable photonic crystals,” Opt. Photonics News 20(1), 40–45 (2009).
[CrossRef]

Peters, S.

F. Glöckler, S. Peters, U. Lemmer, and M. Gerken, “Tunable superprism effect in photonic crystals,” Phys. Status Solidi A 204, 3790–3804 (2007).
[CrossRef]

Poxson, D. J.

Radic, S.

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995–997 (1994).
[CrossRef]

Ramakrishna, S. A.

A. Lakhtakia and S. A. Ramakrishna, “Narrowband enhancement of the circular Bragg phenomenon by stimulated Raman scattering,” J. Opt. 12, 085101 (2010).
[CrossRef]

A. Lakhtakia and S. A. Ramakrishna, “Erratum: Narrowband enhancement of the circular Bragg phenomenon by stimulated Raman scattering,” J. Opt. 12, 089802 (2010).
[CrossRef]

S. Chakrabarti, S. A. Ramakrishna, and H. Wanare, “Coherently controlling metamaterials,” Opt. Express 16, 19504–19511 (2008).
[CrossRef] [PubMed]

Roussey, M.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[CrossRef]

Sakoda, K.

K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2005).

Salut, R.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[CrossRef]

Schmidt, M.

M. Schmidt, M. Eich, U. Huebner, and R. Boucher, “Electro-optically tunable photonic crystals,” Appl. Phys. Lett. 87, 121110 (2005).
[CrossRef]

Schubert, E.

E. Schubert, “Sub-wavelength antireflection coatings from nanostructure sculptured thin films,” Contrib. Plasma Phys. 47, 545–550 (2007).
[CrossRef]

Schubert, E. F.

Schuenemann, K.

A. E. Serebryannikov, T. Magath, and K. Schuenemann, “Bragg transmittance of s-polarized waves through finite-thickness photonic crystals with a periodically corrugated interface,” Phys. Rev. E 74, 066607 (2006).
[CrossRef]

Scully, M. O.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U. Press, 1997), Sec. 7.3.

Serebryannikov, A. E.

A. E. Serebryannikov and T. Magath, “Controlling location of opaque ranges in transmission of metallic photonic crystals,” Phys. Rev. A 76, 033828 (2007).
[CrossRef]

A. E. Serebryannikov, T. Magath, and K. Schuenemann, “Bragg transmittance of s-polarized waves through finite-thickness photonic crystals with a periodically corrugated interface,” Phys. Rev. E 74, 066607 (2006).
[CrossRef]

T. Magath and A. E. Serebryannikov, “Fast iterative, coupled-integral-equation technique for inhomogeneous profiled and periodic slabs,” J. Opt. Soc. Am. A 22, 2405–2418 (2005).
[CrossRef]

Shank, C. V.

H. A. Haus and C. V. Shank, “Asymmetric taper of distributed feedback lasers,” IEEE J. Quantum Electron. 12, 532–539 (1976).
[CrossRef]

Shimoda, Y.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75, 932–934 (1999).
[CrossRef]

Shum, P.

Straub, M.

D. McPhail, M. Straub, and M. Gu, “Electrical tuning of three-dimensional photonic crystals using polymer dispersed liquid crystals,” Appl. Phys. Lett. 86, 051103 (2005).
[CrossRef]

Sun, X. W.

Swab, P.

P. Swab, S. V. Krishnaswamy, and R. Messier, “Characterization of black Ge solar selective absorbers,” J. Vac. Sci. Technol. 17, 362–365 (1980).
[CrossRef]

R. Messier, S. V. Krishnaswamy, L. R. Gilbert, and P. Swab, “Black a-Si selective absorber surfaces,” J. Appl. Phys. 51, 1611–1614 (1980).
[CrossRef]

Takeda, H.

H. Takeda and K. Yoshino, “Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature semiconductors,” Phys. Rev. B 67, 245109 (2003).
[CrossRef]

Teo, H. G.

Tian, Z.

Tsiboukis, T. D.

E. P. Kosmidou, E. E. Kriezis, and T. D. Tsiboukis, “Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects,” IEEE J. Quantum Electron. 41, 657–665 (2005).
[CrossRef]

Van Labeke, D.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[CrossRef]

Vitebsky, I.

A. Figotin, Y. A. Godin, and I. Vitebsky, “Two-dimensional tunable photonic crystals,” Phys. Rev. B 57, 2841–2848 (1998).
[CrossRef]

Wanare, H.

Wang, D. Y.

K. L. Jim, D. Y. Wang, C. W. Leung, C. L. Choy, and H. L. W. Chan, “One-dimensional tunable ferroelectric photonic crystals based on Ba0.7Sr0.3TiO3/MgO multilayer thin films,” J. Appl. Phys. 103, 083107 (2008).
[CrossRef]

Wang, F.

F. Wang and A. Lakhtakia, “Magnetically controllable intra-Brillouin-zone band gaps in one-dimensional helicoidal magnetophotonic crystals,” Phys. Rev. B 79, 193102 (2009).
[CrossRef]

F. Wang, A. Lakhtakia, and R. Messier, “On piezoelectric control of the optical response of sculptured thin films,” J. Mod. Opt. 50, 239–249 (2003).

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980), Sec. 7.6.1.

Wu, J. H.

Xu, C.

C. Xu, X. Hu, Z. Li, X. Liu, R. Fu, and J. Zi, “Semiconductor-based tunable photonic crystals by means of an external magnetic field,” Phys. Rev. B 68, 193201 (2003).
[CrossRef]

Yoshino, K.

H. Takeda and K. Yoshino, “Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature semiconductors,” Phys. Rev. B 67, 245109 (2003).
[CrossRef]

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75, 932–934 (1999).
[CrossRef]

Yu, M. B.

Zhang, W.

Zi, J.

C. Xu, X. Hu, Z. Li, X. Liu, R. Fu, and J. Zi, “Semiconductor-based tunable photonic crystals by means of an external magnetic field,” Phys. Rev. B 68, 193201 (2003).
[CrossRef]

Zubairy, M. S.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U. Press, 1997), Sec. 7.3.

Appl. Phys. Lett. (4)

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, and R. Salut, “Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons,” Appl. Phys. Lett. 89, 241110 (2006).
[CrossRef]

M. Schmidt, M. Eich, U. Huebner, and R. Boucher, “Electro-optically tunable photonic crystals,” Appl. Phys. Lett. 87, 121110 (2005).
[CrossRef]

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75, 932–934 (1999).
[CrossRef]

D. McPhail, M. Straub, and M. Gu, “Electrical tuning of three-dimensional photonic crystals using polymer dispersed liquid crystals,” Appl. Phys. Lett. 86, 051103 (2005).
[CrossRef]

Contrib. Plasma Phys. (1)

E. Schubert, “Sub-wavelength antireflection coatings from nanostructure sculptured thin films,” Contrib. Plasma Phys. 47, 545–550 (2007).
[CrossRef]

IEEE J. Quantum Electron. (2)

E. P. Kosmidou, E. E. Kriezis, and T. D. Tsiboukis, “Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects,” IEEE J. Quantum Electron. 41, 657–665 (2005).
[CrossRef]

H. A. Haus and C. V. Shank, “Asymmetric taper of distributed feedback lasers,” IEEE J. Quantum Electron. 12, 532–539 (1976).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett. 6, 995–997 (1994).
[CrossRef]

J. Appl. Phys. (4)

A. Mejdoubi and C. Brosseau, “Intrinsic electrostatic resonances of heterostructures with negative permittivity from finite-element calculations: Application to core-shell inclusions,” J. Appl. Phys. 102, 094104 (2007).
[CrossRef]

J. Li, M.-H. Lu, L. Feng, X.-P. Liu, and Y.-F. Chen, “Tunable negative refraction based on the Pockels effect in two-dimensional photonic crystals composed of electro-optic crystals,” J. Appl. Phys. 101, 013516 (2007).
[CrossRef]

K. L. Jim, D. Y. Wang, C. W. Leung, C. L. Choy, and H. L. W. Chan, “One-dimensional tunable ferroelectric photonic crystals based on Ba0.7Sr0.3TiO3/MgO multilayer thin films,” J. Appl. Phys. 103, 083107 (2008).
[CrossRef]

R. Messier, S. V. Krishnaswamy, L. R. Gilbert, and P. Swab, “Black a-Si selective absorber surfaces,” J. Appl. Phys. 51, 1611–1614 (1980).
[CrossRef]

J. Mod. Opt. (2)

F. Wang, A. Lakhtakia, and R. Messier, “On piezoelectric control of the optical response of sculptured thin films,” J. Mod. Opt. 50, 239–249 (2003).

J. P. Marangos, “Electromagnetically induced transparency,” J. Mod. Opt. 45, 471–503 (1998).
[CrossRef]

J. Nanophotonics (1)

H. Wanare, “Controlling electromagnetic metamaterials,” J. Nanophotonics 4, 040304 (2010).
[CrossRef]

J. Opt. (2)

A. Lakhtakia and S. A. Ramakrishna, “Narrowband enhancement of the circular Bragg phenomenon by stimulated Raman scattering,” J. Opt. 12, 085101 (2010).
[CrossRef]

A. Lakhtakia and S. A. Ramakrishna, “Erratum: Narrowband enhancement of the circular Bragg phenomenon by stimulated Raman scattering,” J. Opt. 12, 089802 (2010).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

J. Vac. Sci. Technol. (1)

P. Swab, S. V. Krishnaswamy, and R. Messier, “Characterization of black Ge solar selective absorbers,” J. Vac. Sci. Technol. 17, 362–365 (1980).
[CrossRef]

New J. Phys. (1)

H. Chen, C. T. Chan, S. Liu, and Z. Lin, “A simple route to a tunable electromagnetic gateway,” New J. Phys. 11, 083012 (2009).
[CrossRef]

Opt. Commun. (3)

T. G. Mackay and A. Lakhtakia, “On the application of homogenization formalisms to active dielectric composite materials,” Opt. Commun. 282, 2470–2475 (2009).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “A limitation of the Bruggeman formalism for homogenization,” Opt. Commun. 234, 35–42 (2004); Erratum: A limitiation of the Bruggeman formalism for homogenization 282, 4028–4028 (2009).
[CrossRef]

A. J. Duncan, T. G. Mackay, and A. Lakhtakia, “On the Bergman–Milton bounds for the homogenization of dielectric composite materials,” Opt. Commun. 271, 470–474 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Opt. Photonics News (1)

W. Park and J.-B. Lee, “Mechanically tunable photonic crystals,” Opt. Photonics News 20(1), 40–45 (2009).
[CrossRef]

Phys. Lett. A (1)

P. Jiang, C. Ding, X. Hu, and Q. Gong, “Tunable double-channel filter based on two-dimensional ferroelectric photonic crystals,” Phys. Lett. A 363, 332–336 (2007).
[CrossRef]

Phys. Rev. A (1)

A. E. Serebryannikov and T. Magath, “Controlling location of opaque ranges in transmission of metallic photonic crystals,” Phys. Rev. A 76, 033828 (2007).
[CrossRef]

Phys. Rev. B (4)

A. Figotin, Y. A. Godin, and I. Vitebsky, “Two-dimensional tunable photonic crystals,” Phys. Rev. B 57, 2841–2848 (1998).
[CrossRef]

F. Wang and A. Lakhtakia, “Magnetically controllable intra-Brillouin-zone band gaps in one-dimensional helicoidal magnetophotonic crystals,” Phys. Rev. B 79, 193102 (2009).
[CrossRef]

H. Takeda and K. Yoshino, “Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature semiconductors,” Phys. Rev. B 67, 245109 (2003).
[CrossRef]

C. Xu, X. Hu, Z. Li, X. Liu, R. Fu, and J. Zi, “Semiconductor-based tunable photonic crystals by means of an external magnetic field,” Phys. Rev. B 68, 193201 (2003).
[CrossRef]

Phys. Rev. E (2)

A. E. Serebryannikov, T. Magath, and K. Schuenemann, “Bragg transmittance of s-polarized waves through finite-thickness photonic crystals with a periodically corrugated interface,” Phys. Rev. E 74, 066607 (2006).
[CrossRef]

C. Fourn and C. Brosseau, “Electrostatic resonances of heterostructures with negative permittivity: Homogenization formalisms versus finite-element modeling,” Phys. Rev. E 77, 016603 (2008).
[CrossRef]

Phys. Rev. Lett. (3)

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef] [PubMed]

K. J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
[CrossRef] [PubMed]

K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970 (1999).
[CrossRef]

Phys. Status Solidi A (1)

F. Glöckler, S. Peters, U. Lemmer, and M. Gerken, “Tunable superprism effect in photonic crystals,” Phys. Status Solidi A 204, 3790–3804 (2007).
[CrossRef]

Other (5)

D.Maystre, ed., Selected Papers on Diffraction Gratings (SPIE, 1993).

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U. Press, 1997), Sec. 7.3.

We thank the authors of for supplying us typical data on helium used in this paper.

K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2005).

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980), Sec. 7.6.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic of the boundary-value problem considered here. An s-polarized plane wave is normally incident on a 2D PC comprising parallel rods of infinite length, which are immersed in a CAG confined to the region 0 < y < D .

Fig. 2
Fig. 2

Spectra of the real (blue solid line) and imaginary (green dashed line) parts of the relative permittivity of the CAG ε h for Ω c = 2 π × 10 10 s 1 , κ = 5 π × 10 10 s 1 , ω 1 = 5.54 π × 10 14 s 1 , Γ = 2 π × 10 9 s 1 , and ω 1 a / c = 4.7 .

Fig. 3
Fig. 3

Spectra of T (black solid line), R (red dashed line), and A (blue dotted line) for a PC made of metallic rods. Whereas P = 8 , d / a = 0.4 , ω p = 4.34 π × 10 15 s 1 , and γ / ω p = 0.01 , the CAG properties are the same as in Fig. 2; ω 1 a / c = 4.7 . New mini passbands are denoted by “1” and “2,” and the asterisks denote the high-absorbance bands with A 1 .

Fig. 4
Fig. 4

Magnified fragment of Fig. 3 showing the second mini passband in detail.

Fig. 5
Fig. 5

Same as Fig. 3, but for P = 5 .

Fig. 6
Fig. 6

Same as Fig. 3, but for P = 5 and ω 1 a / c = 4.3 .

Fig. 7
Fig. 7

Spectra of T for four values of ω 1 a / c : 4.7 (blue solid line), 4.3 (red dashed line), 2.4 (green dashed-dotted line), and 1.8 (black dotted line). The other parameters are the same as in Fig. 3.

Fig. 8
Fig. 8

Dependences of T (dark-blue solid line), R (red dashed line), and A (violet dotted line) on Ω c a / c for a PC immersed in a CAG; P = 8 , d / a = 0.4 , ω p = 4.34 π × 10 15 s 1 , γ / ω p = 0.01 , κ = 5 π × 10 10 s 1 , Γ = 2 π × 10 9 s 1 , ω 1 a / c = 4.3 , and k a = 4.300 01 . Note that Ω c = 2 π × 10 10 s 1 corresponds to Ω c a / c = 1.552 × 10 4 .

Fig. 9
Fig. 9

Real (blue solid line) and imaginary (green dashed line) parts of the relative permittivity ε h for the same parameters as used in Fig. 8.

Fig. 10
Fig. 10

Dependences of T (black solid line), R (red dashed line), and A (blue dotted line) on Ω c a / c for a PC immersed in a CAG; P = 5 , d / a = 0.4 , ω p = 4.34 π × 10 15 s 1 , γ / ω p = 0.01 , κ = 5 π × 10 10 s 1 , Γ = 2 π × 10 9 s 1 , ω 1 a / c = 4.3 , and k a = 4.30001 . Note that Ω c = 2 π × 10 10 s 1 corresponds to Ω c a / c = 1.552 × 10 4 .

Fig. 11
Fig. 11

Dependence of T on Ω c a / c for three values of k a : 4.300 01 (blue solid line) which is the same as in Fig. 8, k a = 4.2996 (red dashed line), k a = 4.2994 (green dashed-dotted line), and k a = 4.2998 (black dotted line). All other parameters are the same as in Fig. 8. T 0 at k a = 4.2998 .

Fig. 12
Fig. 12

Dependence of A on Ω c a / c for three values of k a : 4.300 01 (violet solid line) which is the same as in Fig. 8, k a = 4.2996 (red dashed line), k a = 4.2994 (green dashed-dotted line), and k a = 4.2998 (blue dotted line). All other parameters are the same as in Fig. 8.

Fig. 13
Fig. 13

Dependences of T (black solid line), R (red dashed line), and A (blue dotted line) on κ a / c for a PC immersed in a CAG; P = 8 , d / a = 0.4 , ω p = 4.34 π × 10 15 s 1 , γ / ω p = 0.01 , Ω c = 2 π × 10 10 s 1 , Γ = 2 π × 10 9 s 1 , ω 1 a / c = 4.7 , and k a = 4.700 01 .

Fig. 14
Fig. 14

Dependence of T on κ a / c for ω 1 a / c = 4.7 and k a = 4.700 01 (blue solid line), ω 1 a / c = 4.7 and k a = 4.699 (red dashed line), ω 1 a / c = 4.3 and k a = 4.30001 (green dashed-dotted line), and ω 1 a / c = 4.3 and k a = 4.2996 (black dotted line). Other parameters are as follows: P = 8 , d / a = 0.4 , ω p = 4.34 π × 10 15 s 1 , γ / ω p = 0.01 , Ω c = 2 π × 10 10 s 1 , and Γ = 2 π × 10 9 s 1 . Note that κ = 5 π × 10 10 s 1 corresponds to κ a / c = 3.88 × 10 4 at ω 1 a / c = 4.3 , and κ a / c = 4.242 × 10 4 at ω 1 a / c = 4.7 .

Fig. 15
Fig. 15

Same as Fig. 14, but for P = 5 .

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E ( x , y ) = exp ( i η 0 y ) + n = ρ n   exp ( i α n x + i η n y ) ,     y D ,
E ( x , y ) = n = τ n   exp ( i α n x i η n y ) ,     y 0.
R n = | ρ n | 2 Re ( η n ) / Re ( η 0 ) ,
T n = | τ n | 2 Re ( η n ) / Re ( η 0 ) ,
R = n = R n ,
T = n = T n ,
ε h ( ω ) = 1 + κ Δ Δ 2 ( Ω c / 2 ) 2 i Γ Δ ,
ε r ( ω ) = 1 ω p 2 ω ( ω + i γ ) ,
T slab = ( 1 ρ ̂ ) 2 ( 1 ρ ̂ ) 2 + 4 ρ ̂ sin 2 ( n slab k D   cos   θ slab ) ,
ρ ̂ = sin 2 ( θ inc θ slab ) sin 2 ( θ inc + θ slab ) ,
sin   θ slab = n slab 1   sin   θ inc .
n slab = π | k ( p ) k ( q ) | D .

Metrics