Abstract

A device capable of adjusting gap plasmon (GP) transmission and intensity is proposed. The structure consists of two metallic films: one is etched with a nanoslit, and the other below is movable. Between them is a horizontal air channel. Numerical simulations show that the GP sources can produce alternatively in ports A and B when the film below is moved together with a groove in the center; thus, a sawtooth-like waveform is observed, which is different from the sine-like case without a groove and can be explained well by Fourier series. In addition, with the optimized length of film below, the source intensity can be further enhanced for Fabry–Perot resonance producing in both channels A and B.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Woff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  2. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972–1974 (2001).
    [CrossRef]
  3. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light wave into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96, 097401 (2006).
    [CrossRef] [PubMed]
  4. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through slit apertures in metallic films,” Opt. Express 12, 6106–6121 (2004).
    [CrossRef] [PubMed]
  5. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
    [CrossRef] [PubMed]
  6. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
    [CrossRef] [PubMed]
  7. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  8. N. Murphy-DuBay, L. Wang, E. C. Kinzel, S. M. V. Uppuluri, and X. Xu, “Nanopattering using NSOM probe integrated with high transmission nanoscale bowtie aperture,” Opt. Express 16, 2584–2589 (2008).
    [CrossRef] [PubMed]
  9. X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).
    [CrossRef]
  10. Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957–961 (2005).
    [CrossRef] [PubMed]
  11. R. X. Yang, M. A. G. Abushagur, and Z. L. Lu, “Efficiently squeezing near infrared light into a 21 nm-by-24 nm nanospot,” Opt. Express 16, 20142–20148 (2008).
    [CrossRef] [PubMed]
  12. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filter with nanometeric sizes,” Opt. Lett. 33, 2874–2876 (2008).
    [CrossRef] [PubMed]
  13. Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type optical filter,” Opt. Express 17, 7549–7555 (2009).
    [CrossRef]
  14. X. S. Lin and X. G. Huang, “Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter,” J. Opt. Soc. Am. B 26, 1263–1268 (2009).
    [CrossRef]
  15. J. Tao, X. G. Huang, X. S. Lin, J. Chen, and Q. Zhang, “Systematical research on characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters,” J. Opt. Soc. Am. B 27, 323–327 (2010).
    [CrossRef]
  16. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
    [CrossRef]
  17. Y. K. Wang, X. R. Zhang, H. J. Tang, Y. X. Wang, Y. L. Song, T. H. Wei, and C. H. Wang, “A tunable unidirectional surface plasmon polaritons sources,” Opt. Express 17, 20457–20464 (2009).
    [CrossRef] [PubMed]
  18. J. L. Liu, G. Y. Fang, H. F. Zhao, Y. Zhan, and S. T. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D: Appl. Phys. 43, 055103 (2010).
    [CrossRef]
  19. G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9, 327–331 (2009).
    [CrossRef]
  20. X. Zhai, J. Q. Liu, M. D. He, L. L. Wang, S. C. Wen, and D. Y. Fan, “Adjust phase resonance in a compound metallic grating with perpendicular cuts,” Opt. Express 18, 6871–6876 (2010).
    [CrossRef] [PubMed]
  21. A. E. Cetin, K. Guven, and O. E. Mustecaplioglu, “Active control of focal length and beam deflection in a metallic nano-slits array lens with multiple sources,” Opt. Lett. 35, 1980–1982.
    [PubMed]
  22. R. Gordon and A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13, 1933–1938 (2005).
    [CrossRef] [PubMed]
  23. A. Taflove, “Computational eletrodynamics: the finite-difference time-domain method,” http://www.slac.stanford.edu/.
  24. Z. B. Li, Y. H. Yang, X. T. Kong, W. Y. Zhou, and J. G. Tian, “Fabry–Perot resonance in slit and grooves to enhance the transmission through a single subwavelength slit,” J. Opt. A, Pure Appl. Opt. 11, 105002 (2009).
    [CrossRef]

2010 (3)

2009 (5)

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9, 327–331 (2009).
[CrossRef]

Z. B. Li, Y. H. Yang, X. T. Kong, W. Y. Zhou, and J. G. Tian, “Fabry–Perot resonance in slit and grooves to enhance the transmission through a single subwavelength slit,” J. Opt. A, Pure Appl. Opt. 11, 105002 (2009).
[CrossRef]

Y. K. Wang, X. R. Zhang, H. J. Tang, Y. X. Wang, Y. L. Song, T. H. Wei, and C. H. Wang, “A tunable unidirectional surface plasmon polaritons sources,” Opt. Express 17, 20457–20464 (2009).
[CrossRef] [PubMed]

Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type optical filter,” Opt. Express 17, 7549–7555 (2009).
[CrossRef]

X. S. Lin and X. G. Huang, “Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter,” J. Opt. Soc. Am. B 26, 1263–1268 (2009).
[CrossRef]

2008 (4)

2007 (1)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

2006 (1)

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light wave into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef] [PubMed]

2005 (3)

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957–961 (2005).
[CrossRef] [PubMed]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

R. Gordon and A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13, 1933–1938 (2005).
[CrossRef] [PubMed]

2004 (2)

Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through slit apertures in metallic films,” Opt. Express 12, 6106–6121 (2004).
[CrossRef] [PubMed]

X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).
[CrossRef]

2001 (1)

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Woff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Abushagur, M. A. G.

Bartal, G.

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9, 327–331 (2009).
[CrossRef]

Brolo, A. G.

Cetin, A. E.

Chen, J.

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972–1974 (2001).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Woff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Fan, D. Y.

Fan, S.

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

Fang, G. Y.

J. L. Liu, G. Y. Fang, H. F. Zhao, Y. Zhan, and S. T. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D: Appl. Phys. 43, 055103 (2010).
[CrossRef]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Woff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Gordon, R.

Guven, K.

He, M. D.

Huang, X. G.

Ishihara, T.

X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).
[CrossRef]

Jin, X. P.

Kinzel, E. C.

Kong, X. T.

Z. B. Li, Y. H. Yang, X. T. Kong, W. Y. Zhou, and J. G. Tian, “Fabry–Perot resonance in slit and grooves to enhance the transmission through a single subwavelength slit,” J. Opt. A, Pure Appl. Opt. 11, 105002 (2009).
[CrossRef]

Kurokawa, Y.

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light wave into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef] [PubMed]

Lalanne, P.

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef] [PubMed]

Lerosey, G.

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9, 327–331 (2009).
[CrossRef]

Lezec, H. J.

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972–1974 (2001).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Woff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Li, Z. B.

Z. B. Li, Y. H. Yang, X. T. Kong, W. Y. Zhou, and J. G. Tian, “Fabry–Perot resonance in slit and grooves to enhance the transmission through a single subwavelength slit,” J. Opt. A, Pure Appl. Opt. 11, 105002 (2009).
[CrossRef]

Lin, X. S.

Linke, R. A.

Liu, H.

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef] [PubMed]

Liu, J. L.

J. L. Liu, G. Y. Fang, H. F. Zhao, Y. Zhan, and S. T. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D: Appl. Phys. 43, 055103 (2010).
[CrossRef]

Liu, J. Q.

Liu, S. T.

J. L. Liu, G. Y. Fang, H. F. Zhao, Y. Zhan, and S. T. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D: Appl. Phys. 43, 055103 (2010).
[CrossRef]

Liu, Z. W.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957–961 (2005).
[CrossRef] [PubMed]

Lu, Z. L.

Luo, X. G.

X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).
[CrossRef]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Mansuripur, M.

Matheu, P.

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9, 327–331 (2009).
[CrossRef]

Miyazaki, H. T.

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light wave into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef] [PubMed]

Moloney, J. V.

Murphy-DuBay, N.

Mustecaplioglu, O. E.

Pellerin, K. M.

Pile, D. F. P.

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9, 327–331 (2009).
[CrossRef]

Song, Y. L.

Taflove, A.

A. Taflove, “Computational eletrodynamics: the finite-difference time-domain method,” http://www.slac.stanford.edu/.

Tang, H. J.

Tao, J.

Thio, T.

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972–1974 (2001).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Woff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Tian, J. G.

Z. B. Li, Y. H. Yang, X. T. Kong, W. Y. Zhou, and J. G. Tian, “Fabry–Perot resonance in slit and grooves to enhance the transmission through a single subwavelength slit,” J. Opt. A, Pure Appl. Opt. 11, 105002 (2009).
[CrossRef]

Uppuluri, S. M. V.

Veronis, G.

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

Wang, C. H.

Wang, L.

Wang, L. L.

Wang, Y. K.

Wang, Y. X.

Wei, Q. H.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957–961 (2005).
[CrossRef] [PubMed]

Wei, T. H.

Wen, S. C.

Woff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Woff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Xie, Y.

Xu, X.

Yang, R. X.

Yang, Y. H.

Z. B. Li, Y. H. Yang, X. T. Kong, W. Y. Zhou, and J. G. Tian, “Fabry–Perot resonance in slit and grooves to enhance the transmission through a single subwavelength slit,” J. Opt. A, Pure Appl. Opt. 11, 105002 (2009).
[CrossRef]

Zakharian, A. R.

Zhai, X.

Zhan, Y.

J. L. Liu, G. Y. Fang, H. F. Zhao, Y. Zhan, and S. T. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D: Appl. Phys. 43, 055103 (2010).
[CrossRef]

Zhang, Q.

Zhang, X.

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9, 327–331 (2009).
[CrossRef]

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957–961 (2005).
[CrossRef] [PubMed]

Zhang, X. R.

Zhao, H. F.

J. L. Liu, G. Y. Fang, H. F. Zhao, Y. Zhan, and S. T. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D: Appl. Phys. 43, 055103 (2010).
[CrossRef]

Zhou, W. Y.

Z. B. Li, Y. H. Yang, X. T. Kong, W. Y. Zhou, and J. G. Tian, “Fabry–Perot resonance in slit and grooves to enhance the transmission through a single subwavelength slit,” J. Opt. A, Pure Appl. Opt. 11, 105002 (2009).
[CrossRef]

Appl. Phys. Lett. (2)

X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).
[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

Z. B. Li, Y. H. Yang, X. T. Kong, W. Y. Zhou, and J. G. Tian, “Fabry–Perot resonance in slit and grooves to enhance the transmission through a single subwavelength slit,” J. Opt. A, Pure Appl. Opt. 11, 105002 (2009).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. D: Appl. Phys. (1)

J. L. Liu, G. Y. Fang, H. F. Zhao, Y. Zhan, and S. T. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D: Appl. Phys. 43, 055103 (2010).
[CrossRef]

Nano Lett. (2)

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9, 327–331 (2009).
[CrossRef]

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957–961 (2005).
[CrossRef] [PubMed]

Nature (3)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Woff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008).
[CrossRef] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007).
[CrossRef] [PubMed]

Opt. Express (7)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light wave into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef] [PubMed]

Other (2)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

A. Taflove, “Computational eletrodynamics: the finite-difference time-domain method,” http://www.slac.stanford.edu/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the system.

Fig. 2
Fig. 2

(a) TE as a function of the film 2 length W p and (b) the relative displacement D between films 1 and 2.

Fig. 3
Fig. 3

Given fixed W p = 1750   nm , TE versus D for different L’s is shown in (a), while (b) presents the results of FFT ( D ) for L = 0 , 150 nm, and the case without groove.

Fig. 4
Fig. 4

Dependence of TE on D is shown in (a) for L = 0   nm and W p = 2150   nm . A vivid control of GP transmission and intensity in ports A and B is shown in (b).

Fig. 5
Fig. 5

(a) TE versus D for different L’s with W p = 2100   nm . (b) TE versus D for L = 0   nm with W p = 1750 , 2000, 2100, and 2150 nm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ε d k z 2 + ε m k z 1   coth ( i k z 1 w s / 2 ) = 0 ,
k z 1 2 = ε d k 0 2 β 2 , k z 2 2 = ε m k 0 2 β 2 ,
2 k 0   Re ( n eff ) L c + arg ( ρ 1 ρ 2 ) = 2 m π ,
T = T 1 T 2 1 R 1 R 2 + 4 R 1 R 2 sin 2 ( φ ) .
T = 2 π A m ( 1 ) n + 1 sin ( 2 π n f D ) / n ,     n = 1 , 2 , , ,

Metrics