Abstract

The suggestive idea of “cloaking” an electromagnetic sensor, i.e., strongly reducing its visibility (scattering) while maintaining its field-sensing (absorption) capabilities, has recently been proposed in the literature, based on scattering-cancellation, Fano-resonance, or transformation-optics approaches. In this paper, we explore an alternative transformation-optics-based route, which relies on the recently introduced concept of “anti-cloaking.” More specifically, our proposed approach relies on a suitable tailoring of the competing cloaking and anti-cloaking mechanisms, interacting in a two-dimensional cylindrical scenario. Via analytical and parametric studies, we illustrate the underlying phenomenology, identify the critical design parameters, and address the relevant optimality and trade-off issues, taking also into account the effect of material losses. Our results confirm the envisaged potentials of the proposed transformation-optics approach as an attractive alternative route to sensor cloaking.

© 2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cloak/anti-cloak interactions

Giuseppe Castaldi, Ilaria Gallina, Vincenzo Galdi, Andrea Alù, and Nader Engheta
Opt. Express 17(5) 3101-3114 (2009)

A 3D tunable and multi-frequency graphene plasmonic cloak

Mohamed Farhat, Carsten Rockstuhl, and Hakan Bağcı
Opt. Express 21(10) 12592-12603 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription