Abstract

Using a simultaneous fitting technique to extract nonlinear absorption coefficients from data at two pulse widths, we measure two-photon and free-carrier absorption coefficients for Ge and GaSb at 2.05 and 2.5μm for the first time, to our knowledge. Results agreed well with published theory. Single-shot damage thresholds were also measured at 2.5μm and agreed well with modeled thresholds using experimentally determined parameters including nonlinear absorption coefficients and temperature dependent linear absorption. The damage threshold for a single-layer Al2O3 anti-reflective coating on Ge was 55% or 35% lower than the uncoated threshold for picosecond or nanosecond pulses, respectively.

© 2010 U.S. Government

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
    [CrossRef]
  2. S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4, 21–41 (2010).
    [CrossRef]
  3. M. Göppert-Mayer, “über Elementarakte mit zwei Quantensprüngen,” Ph.D. dissertation (University of Göttingen, 1931).
  4. W. Kaiser and C. G. B. Garrett, “Two-photon excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7, 229–231 (1961).
    [CrossRef]
  5. M. Sheik-Bahae and M. P. Hasselbeck, “Third-order optical nonlinearities,” in OSA Handbook of Optics (McGraw-Hill, 2001), Vol. 4, Chap. 17.
  6. D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photon. 2, 60–200 (2010).
    [CrossRef]
  7. B. S. Wherrett, “Scaling rules for multiphoton interband absorption in semiconductors,” J. Opt. Soc. Am. B 1, 67–72 (1984).
    [CrossRef]
  8. E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, “Energy band-gap dependence of two-photon absorption,” Opt. Lett. 10, 490–492 (1985).
    [CrossRef] [PubMed]
  9. E. Tuncel, J. L. Staehli, C. Coluzza, G. Margaritondo, J. T. McKinley, R. G. Albridge, A. V. Barnes, A. Ueda, X. Yang, and N. H. Tolk, “Free-electron laser studies of direct and indirect two-photon absorption in germanium,” Phys. Rev. Lett. 70, 4146–4149 (1993).
    [CrossRef] [PubMed]
  10. S. Krishnamurthy, SRI International, 333 Ravenswood Avenue, Menlo Park, Calif. (personal communication, 2010).
  11. S. Krishnamurthy, Z. G. Yu, S. Guha, and L. Gonzalez, “High irradiance light propagation in InAs,” Appl. Phys. Lett. 89, 161108 (2006).
    [CrossRef]
  12. B. V. Zubov, L. A. Kulevskii, V. P. Makarov, T. M. Murina, and A. M. Prokhorov, “Two-photon absorption in germanium,” J. Exp. Theor. Phys. 9, 130–132 (1969).
  13. R. G. Wenzel, G. P. Arnold, and N. R. Greiner, “Nonlinear loss in Ge in the 2.5–4-μm range,” Appl. Opt. 12, 2245–2247 (1973).
    [CrossRef] [PubMed]
  14. A. F. Gibson, C. B. Hatch, P. N. D. Maggs, D. R. Tilley, and A. C. Walker, “Two-photon absorption in indium antimonide and germanium,” J. Phys. C 9, 3259–3275 (1976).
    [CrossRef]
  15. C. Rauscher and R. Laenen, “Analysis of picoseconds mid-infrared pulses by two-photon absorption in germanium,” J. Appl. Phys. 81, 2818–2821 (1997).
    [CrossRef]
  16. A. G. Akmanov, B. V. Zhdanov, and B. G. Shakirov, “Two-photon absorption of IR radiation and its optical saturation in n-type gallium antimonide,” Quantum Electron. 26, 882–883 (1996).
    [CrossRef]
  17. M. D. Turner, W. B. Roh, and K. L. Schepler, “Nonlinear optical properties of GaSb and GaInAsSb and their application for phase conjugation in degenerate four-wave mixing,” J. Opt. Soc. Am. B 17, 790–804 (2000).
    [CrossRef]
  18. D. A. Reis, K. J. Gaffney, G. H. Gilmer, and B. Torralva, “Ultrafast dynamics of laser-excited solids,” MRS Bull. 31, 601–606 (2006).
    [CrossRef]
  19. G. E. Jellison, Jr., D. H. Lowndes, D. N. Mashburn, and R. F. Wood, “Time-resolved reflectivity measurements on silicon and germanium using a pulsed excimer KrF laser heating beam,” Phys. Rev. B 34, 2407–2415 (1986).
    [CrossRef]
  20. D. Seo, L. C. Feldman, N. H. Tolk, and P. I. Cohen, “Interaction of high-power infrared radiation with germanium,” Proc. SPIE 7132, 713216 (2008).
    [CrossRef]
  21. J. B. McKay, “Power scaling feasibility of chromium-doped II-VI laser sources and the demonstration of a chromium-doped zinc selenide disk Laser,” Ph.D. dissertation (Air Force Institute of Technology, 2002).
  22. T. J. Carrig, G. J. Wagner, W. J. Alford, and A. Zakel, “Chromium-doped chalcogenide lasers,” Proc. SPIE 5460, 74–82 (2004).
    [CrossRef]
  23. T. R. Harris, “Optical properties of Si, Ge, GaAs, GaSb, InAs, and InP at elevated temperatures,” Master’s thesis (Air Force Institute of Technology, 2010).
  24. R. N. Hall, “Electron-hole recombination in germanium,” Phys. Rev. 87, 387 (1952).
    [CrossRef]
  25. E. Marin, I. Riech, P. Diaz, J. J. Alvarado-Gil, R. Baquero, J. G. Mendoza-Alvarez, H. Vargas, A. Cruz-Orea, and M. Vargas, “Photoacoustic determination of non-radiative carrier lifetimes,” J. Appl. Phys. 83, 2604–2609 (1998).
    [CrossRef]
  26. M. Levinstein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters (World Scientific, 1996, 1999); available online at http://www.ioffe.ru/SVA/NSM/Semicond.
    [CrossRef]
  27. M. D. Dramićanin, P. M. Nikoli, Z. D. Ristovski, D. G. Vasiljevi, and D. M. Todorovi, “Photoacoustic investigation of transport in semiconductors: Theoretical and experimental study of a Ge single crystal,” Phys. Rev. B 51, 14226–14232 (1995).
    [CrossRef]
  28. P. S. Dutta, H. L. Bhat, and V. Kumar, “The physics and technology of gallium antimonide: An emerging optoelectronic material,” J. Appl. Phys. 81, 5821–5870 (1997).
    [CrossRef]
  29. R. A. Dragoset, C. W. Clark, W. C. Martin, P. J. Mohr, and B. N. Taylor, Periodic Table: Atomic Properties of the Elements (National Institute of Standards and Technology, 1999).
  30. J. C. Phillips and J. A. Van Vechten, “Dielectric classification of crystal structures, ionization potentials, and band structures,” Phys. Rev. Lett. 22, 705–708 (1969).
    [CrossRef]
  31. R. M. Wood, Laser-induced Damage of Optical Materials (Taylor & Francis, 2003), pp. 31–32.
    [CrossRef]
  32. S. J. Sheldon, L. V. Knight, and J. M. Thorne, “Laser-induced thermal lens effect: a new theoretical model,” Appl. Opt. 21, 1663–1669 (1982).
    [CrossRef] [PubMed]
  33. L. P. Gonzalez, J. M. Murray, V. M. Cowan, and S. Guha, “Measurement of the nonlinear optical properties of semiconductors using the irradiance scan technique,” Proc. SPIE 6875, 68750R (2008).
    [CrossRef]
  34. V. Nathan, A. H. Guenther, and S. S. Mitra, “Review of multiphoton absorption in crystalline solids,” J. Opt. Soc. Am. B 2, 294–316 (1985).
    [CrossRef]
  35. O. A. Louchev, Y. Urata, and S. Wada, “Numerical simulation and optimization of giant pulse generation in 2 microns Tm,Ho lasers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CThDD2.
    [PubMed]
  36. O. A. Louchev, Y. Urata, N. Saito, and S. Wada, “Computational model for operation of 2 μm co-doped Tm,Ho solid-state lasers,” Opt. Express 15, 11903–11912 (2007).
    [CrossRef] [PubMed]
  37. L. P. Gonzalez, J. M. Murray, S. Krishnamurthy, and S. Guha, “Wavelength dependence of two photon and free carrier absorptions in InP,” Opt. Express 17, 8741–8748 (2009).
    [CrossRef] [PubMed]
  38. T. J. Sloanes, “Measurement and application of optical nonlinearities in indium phosphide, cadmium mercury telleride and photonic crystal fibres,” Ph.D. dissertation (University of St. Andrews, 2009).
  39. International Organization for Standardization (IOS), Lasers and Laser-Related Equipment—Determination of Laser-Induced Damage Threshold of Optical Surfaces—Part 1: 1-on-1 Test (IOS, 2000).
    [PubMed]
  40. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
    [CrossRef] [PubMed]
  41. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).
  42. A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
    [CrossRef]
  43. A. Othonos, H. M. Van Driel, J. F. Young, and P. J. Kelly, “Correlation of hot-phonon and hot-carrier kinetics in Ge on a picosecond time scale,” Phys. Rev. B 43, 6682–6690 (1991).
    [CrossRef]

2010 (2)

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4, 21–41 (2010).
[CrossRef]

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photon. 2, 60–200 (2010).
[CrossRef]

2009 (1)

2008 (2)

L. P. Gonzalez, J. M. Murray, V. M. Cowan, and S. Guha, “Measurement of the nonlinear optical properties of semiconductors using the irradiance scan technique,” Proc. SPIE 6875, 68750R (2008).
[CrossRef]

D. Seo, L. C. Feldman, N. H. Tolk, and P. I. Cohen, “Interaction of high-power infrared radiation with germanium,” Proc. SPIE 7132, 713216 (2008).
[CrossRef]

2007 (1)

2006 (2)

S. Krishnamurthy, Z. G. Yu, S. Guha, and L. Gonzalez, “High irradiance light propagation in InAs,” Appl. Phys. Lett. 89, 161108 (2006).
[CrossRef]

D. A. Reis, K. J. Gaffney, G. H. Gilmer, and B. Torralva, “Ultrafast dynamics of laser-excited solids,” MRS Bull. 31, 601–606 (2006).
[CrossRef]

2004 (1)

T. J. Carrig, G. J. Wagner, W. J. Alford, and A. Zakel, “Chromium-doped chalcogenide lasers,” Proc. SPIE 5460, 74–82 (2004).
[CrossRef]

2003 (1)

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

2000 (1)

1998 (1)

E. Marin, I. Riech, P. Diaz, J. J. Alvarado-Gil, R. Baquero, J. G. Mendoza-Alvarez, H. Vargas, A. Cruz-Orea, and M. Vargas, “Photoacoustic determination of non-radiative carrier lifetimes,” J. Appl. Phys. 83, 2604–2609 (1998).
[CrossRef]

1997 (2)

P. S. Dutta, H. L. Bhat, and V. Kumar, “The physics and technology of gallium antimonide: An emerging optoelectronic material,” J. Appl. Phys. 81, 5821–5870 (1997).
[CrossRef]

C. Rauscher and R. Laenen, “Analysis of picoseconds mid-infrared pulses by two-photon absorption in germanium,” J. Appl. Phys. 81, 2818–2821 (1997).
[CrossRef]

1996 (1)

A. G. Akmanov, B. V. Zhdanov, and B. G. Shakirov, “Two-photon absorption of IR radiation and its optical saturation in n-type gallium antimonide,” Quantum Electron. 26, 882–883 (1996).
[CrossRef]

1995 (2)

M. D. Dramićanin, P. M. Nikoli, Z. D. Ristovski, D. G. Vasiljevi, and D. M. Todorovi, “Photoacoustic investigation of transport in semiconductors: Theoretical and experimental study of a Ge single crystal,” Phys. Rev. B 51, 14226–14232 (1995).
[CrossRef]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

1993 (1)

E. Tuncel, J. L. Staehli, C. Coluzza, G. Margaritondo, J. T. McKinley, R. G. Albridge, A. V. Barnes, A. Ueda, X. Yang, and N. H. Tolk, “Free-electron laser studies of direct and indirect two-photon absorption in germanium,” Phys. Rev. Lett. 70, 4146–4149 (1993).
[CrossRef] [PubMed]

1991 (1)

A. Othonos, H. M. Van Driel, J. F. Young, and P. J. Kelly, “Correlation of hot-phonon and hot-carrier kinetics in Ge on a picosecond time scale,” Phys. Rev. B 43, 6682–6690 (1991).
[CrossRef]

1986 (1)

G. E. Jellison, Jr., D. H. Lowndes, D. N. Mashburn, and R. F. Wood, “Time-resolved reflectivity measurements on silicon and germanium using a pulsed excimer KrF laser heating beam,” Phys. Rev. B 34, 2407–2415 (1986).
[CrossRef]

1985 (2)

1984 (1)

1982 (1)

1976 (1)

A. F. Gibson, C. B. Hatch, P. N. D. Maggs, D. R. Tilley, and A. C. Walker, “Two-photon absorption in indium antimonide and germanium,” J. Phys. C 9, 3259–3275 (1976).
[CrossRef]

1973 (1)

1969 (2)

B. V. Zubov, L. A. Kulevskii, V. P. Makarov, T. M. Murina, and A. M. Prokhorov, “Two-photon absorption in germanium,” J. Exp. Theor. Phys. 9, 130–132 (1969).

J. C. Phillips and J. A. Van Vechten, “Dielectric classification of crystal structures, ionization potentials, and band structures,” Phys. Rev. Lett. 22, 705–708 (1969).
[CrossRef]

1965 (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

1961 (1)

W. Kaiser and C. G. B. Garrett, “Two-photon excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7, 229–231 (1961).
[CrossRef]

1960 (1)

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
[CrossRef]

1952 (1)

R. N. Hall, “Electron-hole recombination in germanium,” Phys. Rev. 87, 387 (1952).
[CrossRef]

Akmanov, A. G.

A. G. Akmanov, B. V. Zhdanov, and B. G. Shakirov, “Two-photon absorption of IR radiation and its optical saturation in n-type gallium antimonide,” Quantum Electron. 26, 882–883 (1996).
[CrossRef]

Albridge, R. G.

E. Tuncel, J. L. Staehli, C. Coluzza, G. Margaritondo, J. T. McKinley, R. G. Albridge, A. V. Barnes, A. Ueda, X. Yang, and N. H. Tolk, “Free-electron laser studies of direct and indirect two-photon absorption in germanium,” Phys. Rev. Lett. 70, 4146–4149 (1993).
[CrossRef] [PubMed]

Alford, W. J.

T. J. Carrig, G. J. Wagner, W. J. Alford, and A. Zakel, “Chromium-doped chalcogenide lasers,” Proc. SPIE 5460, 74–82 (2004).
[CrossRef]

Alvarado-Gil, J. J.

E. Marin, I. Riech, P. Diaz, J. J. Alvarado-Gil, R. Baquero, J. G. Mendoza-Alvarez, H. Vargas, A. Cruz-Orea, and M. Vargas, “Photoacoustic determination of non-radiative carrier lifetimes,” J. Appl. Phys. 83, 2604–2609 (1998).
[CrossRef]

Arnold, G. P.

Baquero, R.

E. Marin, I. Riech, P. Diaz, J. J. Alvarado-Gil, R. Baquero, J. G. Mendoza-Alvarez, H. Vargas, A. Cruz-Orea, and M. Vargas, “Photoacoustic determination of non-radiative carrier lifetimes,” J. Appl. Phys. 83, 2604–2609 (1998).
[CrossRef]

Barnes, A. V.

E. Tuncel, J. L. Staehli, C. Coluzza, G. Margaritondo, J. T. McKinley, R. G. Albridge, A. V. Barnes, A. Ueda, X. Yang, and N. H. Tolk, “Free-electron laser studies of direct and indirect two-photon absorption in germanium,” Phys. Rev. Lett. 70, 4146–4149 (1993).
[CrossRef] [PubMed]

Bhat, H. L.

P. S. Dutta, H. L. Bhat, and V. Kumar, “The physics and technology of gallium antimonide: An emerging optoelectronic material,” J. Appl. Phys. 81, 5821–5870 (1997).
[CrossRef]

Carrig, T. J.

T. J. Carrig, G. J. Wagner, W. J. Alford, and A. Zakel, “Chromium-doped chalcogenide lasers,” Proc. SPIE 5460, 74–82 (2004).
[CrossRef]

Christodoulides, D. N.

Clark, C. W.

R. A. Dragoset, C. W. Clark, W. C. Martin, P. J. Mohr, and B. N. Taylor, Periodic Table: Atomic Properties of the Elements (National Institute of Standards and Technology, 1999).

Cohen, P. I.

D. Seo, L. C. Feldman, N. H. Tolk, and P. I. Cohen, “Interaction of high-power infrared radiation with germanium,” Proc. SPIE 7132, 713216 (2008).
[CrossRef]

Coluzza, C.

E. Tuncel, J. L. Staehli, C. Coluzza, G. Margaritondo, J. T. McKinley, R. G. Albridge, A. V. Barnes, A. Ueda, X. Yang, and N. H. Tolk, “Free-electron laser studies of direct and indirect two-photon absorption in germanium,” Phys. Rev. Lett. 70, 4146–4149 (1993).
[CrossRef] [PubMed]

Cowan, V. M.

L. P. Gonzalez, J. M. Murray, V. M. Cowan, and S. Guha, “Measurement of the nonlinear optical properties of semiconductors using the irradiance scan technique,” Proc. SPIE 6875, 68750R (2008).
[CrossRef]

Cruz-Orea, A.

E. Marin, I. Riech, P. Diaz, J. J. Alvarado-Gil, R. Baquero, J. G. Mendoza-Alvarez, H. Vargas, A. Cruz-Orea, and M. Vargas, “Photoacoustic determination of non-radiative carrier lifetimes,” J. Appl. Phys. 83, 2604–2609 (1998).
[CrossRef]

Diaz, P.

E. Marin, I. Riech, P. Diaz, J. J. Alvarado-Gil, R. Baquero, J. G. Mendoza-Alvarez, H. Vargas, A. Cruz-Orea, and M. Vargas, “Photoacoustic determination of non-radiative carrier lifetimes,” J. Appl. Phys. 83, 2604–2609 (1998).
[CrossRef]

Dragoset, R. A.

R. A. Dragoset, C. W. Clark, W. C. Martin, P. J. Mohr, and B. N. Taylor, Periodic Table: Atomic Properties of the Elements (National Institute of Standards and Technology, 1999).

Dramicanin, M. D.

M. D. Dramićanin, P. M. Nikoli, Z. D. Ristovski, D. G. Vasiljevi, and D. M. Todorovi, “Photoacoustic investigation of transport in semiconductors: Theoretical and experimental study of a Ge single crystal,” Phys. Rev. B 51, 14226–14232 (1995).
[CrossRef]

Dutta, P. S.

P. S. Dutta, H. L. Bhat, and V. Kumar, “The physics and technology of gallium antimonide: An emerging optoelectronic material,” J. Appl. Phys. 81, 5821–5870 (1997).
[CrossRef]

Fedorov, V.

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4, 21–41 (2010).
[CrossRef]

Feit, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

Feldman, L. C.

D. Seo, L. C. Feldman, N. H. Tolk, and P. I. Cohen, “Interaction of high-power infrared radiation with germanium,” Proc. SPIE 7132, 713216 (2008).
[CrossRef]

Gaffney, K. J.

D. A. Reis, K. J. Gaffney, G. H. Gilmer, and B. Torralva, “Ultrafast dynamics of laser-excited solids,” MRS Bull. 31, 601–606 (2006).
[CrossRef]

Garrett, C. G. B.

W. Kaiser and C. G. B. Garrett, “Two-photon excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7, 229–231 (1961).
[CrossRef]

Gibson, A. F.

A. F. Gibson, C. B. Hatch, P. N. D. Maggs, D. R. Tilley, and A. C. Walker, “Two-photon absorption in indium antimonide and germanium,” J. Phys. C 9, 3259–3275 (1976).
[CrossRef]

Gilmer, G. H.

D. A. Reis, K. J. Gaffney, G. H. Gilmer, and B. Torralva, “Ultrafast dynamics of laser-excited solids,” MRS Bull. 31, 601–606 (2006).
[CrossRef]

Gonzalez, L.

S. Krishnamurthy, Z. G. Yu, S. Guha, and L. Gonzalez, “High irradiance light propagation in InAs,” Appl. Phys. Lett. 89, 161108 (2006).
[CrossRef]

Gonzalez, L. P.

L. P. Gonzalez, J. M. Murray, S. Krishnamurthy, and S. Guha, “Wavelength dependence of two photon and free carrier absorptions in InP,” Opt. Express 17, 8741–8748 (2009).
[CrossRef] [PubMed]

L. P. Gonzalez, J. M. Murray, V. M. Cowan, and S. Guha, “Measurement of the nonlinear optical properties of semiconductors using the irradiance scan technique,” Proc. SPIE 6875, 68750R (2008).
[CrossRef]

Göppert-Mayer, M.

M. Göppert-Mayer, “über Elementarakte mit zwei Quantensprüngen,” Ph.D. dissertation (University of Göttingen, 1931).

Greiner, N. R.

Guenther, A. H.

Guha, S.

L. P. Gonzalez, J. M. Murray, S. Krishnamurthy, and S. Guha, “Wavelength dependence of two photon and free carrier absorptions in InP,” Opt. Express 17, 8741–8748 (2009).
[CrossRef] [PubMed]

L. P. Gonzalez, J. M. Murray, V. M. Cowan, and S. Guha, “Measurement of the nonlinear optical properties of semiconductors using the irradiance scan technique,” Proc. SPIE 6875, 68750R (2008).
[CrossRef]

S. Krishnamurthy, Z. G. Yu, S. Guha, and L. Gonzalez, “High irradiance light propagation in InAs,” Appl. Phys. Lett. 89, 161108 (2006).
[CrossRef]

Hall, R. N.

R. N. Hall, “Electron-hole recombination in germanium,” Phys. Rev. 87, 387 (1952).
[CrossRef]

Harris, T. R.

T. R. Harris, “Optical properties of Si, Ge, GaAs, GaSb, InAs, and InP at elevated temperatures,” Master’s thesis (Air Force Institute of Technology, 2010).

Hasselbeck, M. P.

M. Sheik-Bahae and M. P. Hasselbeck, “Third-order optical nonlinearities,” in OSA Handbook of Optics (McGraw-Hill, 2001), Vol. 4, Chap. 17.

Hatch, C. B.

A. F. Gibson, C. B. Hatch, P. N. D. Maggs, D. R. Tilley, and A. C. Walker, “Two-photon absorption in indium antimonide and germanium,” J. Phys. C 9, 3259–3275 (1976).
[CrossRef]

Hunt, A. J.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Jellison, G. E.

G. E. Jellison, Jr., D. H. Lowndes, D. N. Mashburn, and R. F. Wood, “Time-resolved reflectivity measurements on silicon and germanium using a pulsed excimer KrF laser heating beam,” Phys. Rev. B 34, 2407–2415 (1986).
[CrossRef]

Joglekar, A. P.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Kaiser, W.

W. Kaiser and C. G. B. Garrett, “Two-photon excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7, 229–231 (1961).
[CrossRef]

Keldysh, L. V.

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

Kelly, P. J.

A. Othonos, H. M. Van Driel, J. F. Young, and P. J. Kelly, “Correlation of hot-phonon and hot-carrier kinetics in Ge on a picosecond time scale,” Phys. Rev. B 43, 6682–6690 (1991).
[CrossRef]

Khoo, I. C.

Kim, C.

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4, 21–41 (2010).
[CrossRef]

Knight, L. V.

Krishnamurthy, S.

L. P. Gonzalez, J. M. Murray, S. Krishnamurthy, and S. Guha, “Wavelength dependence of two photon and free carrier absorptions in InP,” Opt. Express 17, 8741–8748 (2009).
[CrossRef] [PubMed]

S. Krishnamurthy, Z. G. Yu, S. Guha, and L. Gonzalez, “High irradiance light propagation in InAs,” Appl. Phys. Lett. 89, 161108 (2006).
[CrossRef]

S. Krishnamurthy, SRI International, 333 Ravenswood Avenue, Menlo Park, Calif. (personal communication, 2010).

Kulevskii, L. A.

B. V. Zubov, L. A. Kulevskii, V. P. Makarov, T. M. Murina, and A. M. Prokhorov, “Two-photon absorption in germanium,” J. Exp. Theor. Phys. 9, 130–132 (1969).

Kumar, V.

P. S. Dutta, H. L. Bhat, and V. Kumar, “The physics and technology of gallium antimonide: An emerging optoelectronic material,” J. Appl. Phys. 81, 5821–5870 (1997).
[CrossRef]

Laenen, R.

C. Rauscher and R. Laenen, “Analysis of picoseconds mid-infrared pulses by two-photon absorption in germanium,” J. Appl. Phys. 81, 2818–2821 (1997).
[CrossRef]

Levinstein, M.

M. Levinstein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters (World Scientific, 1996, 1999); available online at http://www.ioffe.ru/SVA/NSM/Semicond.
[CrossRef]

Liu, H.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Louchev, O. A.

O. A. Louchev, Y. Urata, N. Saito, and S. Wada, “Computational model for operation of 2 μm co-doped Tm,Ho solid-state lasers,” Opt. Express 15, 11903–11912 (2007).
[CrossRef] [PubMed]

O. A. Louchev, Y. Urata, and S. Wada, “Numerical simulation and optimization of giant pulse generation in 2 microns Tm,Ho lasers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CThDD2.
[PubMed]

Lowndes, D. H.

G. E. Jellison, Jr., D. H. Lowndes, D. N. Mashburn, and R. F. Wood, “Time-resolved reflectivity measurements on silicon and germanium using a pulsed excimer KrF laser heating beam,” Phys. Rev. B 34, 2407–2415 (1986).
[CrossRef]

Maggs, P. N. D.

A. F. Gibson, C. B. Hatch, P. N. D. Maggs, D. R. Tilley, and A. C. Walker, “Two-photon absorption in indium antimonide and germanium,” J. Phys. C 9, 3259–3275 (1976).
[CrossRef]

Maiman, T. H.

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
[CrossRef]

Makarov, V. P.

B. V. Zubov, L. A. Kulevskii, V. P. Makarov, T. M. Murina, and A. M. Prokhorov, “Two-photon absorption in germanium,” J. Exp. Theor. Phys. 9, 130–132 (1969).

Margaritondo, G.

E. Tuncel, J. L. Staehli, C. Coluzza, G. Margaritondo, J. T. McKinley, R. G. Albridge, A. V. Barnes, A. Ueda, X. Yang, and N. H. Tolk, “Free-electron laser studies of direct and indirect two-photon absorption in germanium,” Phys. Rev. Lett. 70, 4146–4149 (1993).
[CrossRef] [PubMed]

Marin, E.

E. Marin, I. Riech, P. Diaz, J. J. Alvarado-Gil, R. Baquero, J. G. Mendoza-Alvarez, H. Vargas, A. Cruz-Orea, and M. Vargas, “Photoacoustic determination of non-radiative carrier lifetimes,” J. Appl. Phys. 83, 2604–2609 (1998).
[CrossRef]

Martin, W. C.

R. A. Dragoset, C. W. Clark, W. C. Martin, P. J. Mohr, and B. N. Taylor, Periodic Table: Atomic Properties of the Elements (National Institute of Standards and Technology, 1999).

Martyshkin, D.

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4, 21–41 (2010).
[CrossRef]

Mashburn, D. N.

G. E. Jellison, Jr., D. H. Lowndes, D. N. Mashburn, and R. F. Wood, “Time-resolved reflectivity measurements on silicon and germanium using a pulsed excimer KrF laser heating beam,” Phys. Rev. B 34, 2407–2415 (1986).
[CrossRef]

McKay, J. B.

J. B. McKay, “Power scaling feasibility of chromium-doped II-VI laser sources and the demonstration of a chromium-doped zinc selenide disk Laser,” Ph.D. dissertation (Air Force Institute of Technology, 2002).

McKinley, J. T.

E. Tuncel, J. L. Staehli, C. Coluzza, G. Margaritondo, J. T. McKinley, R. G. Albridge, A. V. Barnes, A. Ueda, X. Yang, and N. H. Tolk, “Free-electron laser studies of direct and indirect two-photon absorption in germanium,” Phys. Rev. Lett. 70, 4146–4149 (1993).
[CrossRef] [PubMed]

Mendoza-Alvarez, J. G.

E. Marin, I. Riech, P. Diaz, J. J. Alvarado-Gil, R. Baquero, J. G. Mendoza-Alvarez, H. Vargas, A. Cruz-Orea, and M. Vargas, “Photoacoustic determination of non-radiative carrier lifetimes,” J. Appl. Phys. 83, 2604–2609 (1998).
[CrossRef]

Meyhöfer, E.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Mirov, S.

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4, 21–41 (2010).
[CrossRef]

Mitra, S. S.

Mohr, P. J.

R. A. Dragoset, C. W. Clark, W. C. Martin, P. J. Mohr, and B. N. Taylor, Periodic Table: Atomic Properties of the Elements (National Institute of Standards and Technology, 1999).

Moskalev, I.

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4, 21–41 (2010).
[CrossRef]

Mourou, G.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Murina, T. M.

B. V. Zubov, L. A. Kulevskii, V. P. Makarov, T. M. Murina, and A. M. Prokhorov, “Two-photon absorption in germanium,” J. Exp. Theor. Phys. 9, 130–132 (1969).

Murray, J. M.

L. P. Gonzalez, J. M. Murray, S. Krishnamurthy, and S. Guha, “Wavelength dependence of two photon and free carrier absorptions in InP,” Opt. Express 17, 8741–8748 (2009).
[CrossRef] [PubMed]

L. P. Gonzalez, J. M. Murray, V. M. Cowan, and S. Guha, “Measurement of the nonlinear optical properties of semiconductors using the irradiance scan technique,” Proc. SPIE 6875, 68750R (2008).
[CrossRef]

Nathan, V.

Nikoli, P. M.

M. D. Dramićanin, P. M. Nikoli, Z. D. Ristovski, D. G. Vasiljevi, and D. M. Todorovi, “Photoacoustic investigation of transport in semiconductors: Theoretical and experimental study of a Ge single crystal,” Phys. Rev. B 51, 14226–14232 (1995).
[CrossRef]

Othonos, A.

A. Othonos, H. M. Van Driel, J. F. Young, and P. J. Kelly, “Correlation of hot-phonon and hot-carrier kinetics in Ge on a picosecond time scale,” Phys. Rev. B 43, 6682–6690 (1991).
[CrossRef]

Perry, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

Phillips, J. C.

J. C. Phillips and J. A. Van Vechten, “Dielectric classification of crystal structures, ionization potentials, and band structures,” Phys. Rev. Lett. 22, 705–708 (1969).
[CrossRef]

Prokhorov, A. M.

B. V. Zubov, L. A. Kulevskii, V. P. Makarov, T. M. Murina, and A. M. Prokhorov, “Two-photon absorption in germanium,” J. Exp. Theor. Phys. 9, 130–132 (1969).

Rauscher, C.

C. Rauscher and R. Laenen, “Analysis of picoseconds mid-infrared pulses by two-photon absorption in germanium,” J. Appl. Phys. 81, 2818–2821 (1997).
[CrossRef]

Reis, D. A.

D. A. Reis, K. J. Gaffney, G. H. Gilmer, and B. Torralva, “Ultrafast dynamics of laser-excited solids,” MRS Bull. 31, 601–606 (2006).
[CrossRef]

Riech, I.

E. Marin, I. Riech, P. Diaz, J. J. Alvarado-Gil, R. Baquero, J. G. Mendoza-Alvarez, H. Vargas, A. Cruz-Orea, and M. Vargas, “Photoacoustic determination of non-radiative carrier lifetimes,” J. Appl. Phys. 83, 2604–2609 (1998).
[CrossRef]

Ristovski, Z. D.

M. D. Dramićanin, P. M. Nikoli, Z. D. Ristovski, D. G. Vasiljevi, and D. M. Todorovi, “Photoacoustic investigation of transport in semiconductors: Theoretical and experimental study of a Ge single crystal,” Phys. Rev. B 51, 14226–14232 (1995).
[CrossRef]

Roh, W. B.

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

Rumyantsev, S.

M. Levinstein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters (World Scientific, 1996, 1999); available online at http://www.ioffe.ru/SVA/NSM/Semicond.
[CrossRef]

Saito, N.

Salamo, G. J.

Schepler, K. L.

Seo, D.

D. Seo, L. C. Feldman, N. H. Tolk, and P. I. Cohen, “Interaction of high-power infrared radiation with germanium,” Proc. SPIE 7132, 713216 (2008).
[CrossRef]

Shakirov, B. G.

A. G. Akmanov, B. V. Zhdanov, and B. G. Shakirov, “Two-photon absorption of IR radiation and its optical saturation in n-type gallium antimonide,” Quantum Electron. 26, 882–883 (1996).
[CrossRef]

Sheik-Bahae, M.

M. Sheik-Bahae and M. P. Hasselbeck, “Third-order optical nonlinearities,” in OSA Handbook of Optics (McGraw-Hill, 2001), Vol. 4, Chap. 17.

Sheldon, S. J.

Shore, B. W.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

Shur, M.

M. Levinstein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters (World Scientific, 1996, 1999); available online at http://www.ioffe.ru/SVA/NSM/Semicond.
[CrossRef]

Sloanes, T. J.

T. J. Sloanes, “Measurement and application of optical nonlinearities in indium phosphide, cadmium mercury telleride and photonic crystal fibres,” Ph.D. dissertation (University of St. Andrews, 2009).

Soileau, M. J.

Spooner, G. J.

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Staehli, J. L.

E. Tuncel, J. L. Staehli, C. Coluzza, G. Margaritondo, J. T. McKinley, R. G. Albridge, A. V. Barnes, A. Ueda, X. Yang, and N. H. Tolk, “Free-electron laser studies of direct and indirect two-photon absorption in germanium,” Phys. Rev. Lett. 70, 4146–4149 (1993).
[CrossRef] [PubMed]

Stegeman, G. I.

Stuart, B. C.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

Taylor, B. N.

R. A. Dragoset, C. W. Clark, W. C. Martin, P. J. Mohr, and B. N. Taylor, Periodic Table: Atomic Properties of the Elements (National Institute of Standards and Technology, 1999).

Thorne, J. M.

Tilley, D. R.

A. F. Gibson, C. B. Hatch, P. N. D. Maggs, D. R. Tilley, and A. C. Walker, “Two-photon absorption in indium antimonide and germanium,” J. Phys. C 9, 3259–3275 (1976).
[CrossRef]

Todorovi, D. M.

M. D. Dramićanin, P. M. Nikoli, Z. D. Ristovski, D. G. Vasiljevi, and D. M. Todorovi, “Photoacoustic investigation of transport in semiconductors: Theoretical and experimental study of a Ge single crystal,” Phys. Rev. B 51, 14226–14232 (1995).
[CrossRef]

Tolk, N. H.

D. Seo, L. C. Feldman, N. H. Tolk, and P. I. Cohen, “Interaction of high-power infrared radiation with germanium,” Proc. SPIE 7132, 713216 (2008).
[CrossRef]

E. Tuncel, J. L. Staehli, C. Coluzza, G. Margaritondo, J. T. McKinley, R. G. Albridge, A. V. Barnes, A. Ueda, X. Yang, and N. H. Tolk, “Free-electron laser studies of direct and indirect two-photon absorption in germanium,” Phys. Rev. Lett. 70, 4146–4149 (1993).
[CrossRef] [PubMed]

Torralva, B.

D. A. Reis, K. J. Gaffney, G. H. Gilmer, and B. Torralva, “Ultrafast dynamics of laser-excited solids,” MRS Bull. 31, 601–606 (2006).
[CrossRef]

Tuncel, E.

E. Tuncel, J. L. Staehli, C. Coluzza, G. Margaritondo, J. T. McKinley, R. G. Albridge, A. V. Barnes, A. Ueda, X. Yang, and N. H. Tolk, “Free-electron laser studies of direct and indirect two-photon absorption in germanium,” Phys. Rev. Lett. 70, 4146–4149 (1993).
[CrossRef] [PubMed]

Turner, M. D.

Ueda, A.

E. Tuncel, J. L. Staehli, C. Coluzza, G. Margaritondo, J. T. McKinley, R. G. Albridge, A. V. Barnes, A. Ueda, X. Yang, and N. H. Tolk, “Free-electron laser studies of direct and indirect two-photon absorption in germanium,” Phys. Rev. Lett. 70, 4146–4149 (1993).
[CrossRef] [PubMed]

Urata, Y.

O. A. Louchev, Y. Urata, N. Saito, and S. Wada, “Computational model for operation of 2 μm co-doped Tm,Ho solid-state lasers,” Opt. Express 15, 11903–11912 (2007).
[CrossRef] [PubMed]

O. A. Louchev, Y. Urata, and S. Wada, “Numerical simulation and optimization of giant pulse generation in 2 microns Tm,Ho lasers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CThDD2.
[PubMed]

Van Driel, H. M.

A. Othonos, H. M. Van Driel, J. F. Young, and P. J. Kelly, “Correlation of hot-phonon and hot-carrier kinetics in Ge on a picosecond time scale,” Phys. Rev. B 43, 6682–6690 (1991).
[CrossRef]

Van Stryland, E. W.

Van Vechten, J. A.

J. C. Phillips and J. A. Van Vechten, “Dielectric classification of crystal structures, ionization potentials, and band structures,” Phys. Rev. Lett. 22, 705–708 (1969).
[CrossRef]

Vanherzeele, H.

Vargas, H.

E. Marin, I. Riech, P. Diaz, J. J. Alvarado-Gil, R. Baquero, J. G. Mendoza-Alvarez, H. Vargas, A. Cruz-Orea, and M. Vargas, “Photoacoustic determination of non-radiative carrier lifetimes,” J. Appl. Phys. 83, 2604–2609 (1998).
[CrossRef]

Vargas, M.

E. Marin, I. Riech, P. Diaz, J. J. Alvarado-Gil, R. Baquero, J. G. Mendoza-Alvarez, H. Vargas, A. Cruz-Orea, and M. Vargas, “Photoacoustic determination of non-radiative carrier lifetimes,” J. Appl. Phys. 83, 2604–2609 (1998).
[CrossRef]

Vasiljevi, D. G.

M. D. Dramićanin, P. M. Nikoli, Z. D. Ristovski, D. G. Vasiljevi, and D. M. Todorovi, “Photoacoustic investigation of transport in semiconductors: Theoretical and experimental study of a Ge single crystal,” Phys. Rev. B 51, 14226–14232 (1995).
[CrossRef]

Wada, S.

O. A. Louchev, Y. Urata, N. Saito, and S. Wada, “Computational model for operation of 2 μm co-doped Tm,Ho solid-state lasers,” Opt. Express 15, 11903–11912 (2007).
[CrossRef] [PubMed]

O. A. Louchev, Y. Urata, and S. Wada, “Numerical simulation and optimization of giant pulse generation in 2 microns Tm,Ho lasers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CThDD2.
[PubMed]

Wagner, G. J.

T. J. Carrig, G. J. Wagner, W. J. Alford, and A. Zakel, “Chromium-doped chalcogenide lasers,” Proc. SPIE 5460, 74–82 (2004).
[CrossRef]

Walker, A. C.

A. F. Gibson, C. B. Hatch, P. N. D. Maggs, D. R. Tilley, and A. C. Walker, “Two-photon absorption in indium antimonide and germanium,” J. Phys. C 9, 3259–3275 (1976).
[CrossRef]

Wenzel, R. G.

Wherrett, B. S.

Wood, R. F.

G. E. Jellison, Jr., D. H. Lowndes, D. N. Mashburn, and R. F. Wood, “Time-resolved reflectivity measurements on silicon and germanium using a pulsed excimer KrF laser heating beam,” Phys. Rev. B 34, 2407–2415 (1986).
[CrossRef]

Wood, R. M.

R. M. Wood, Laser-induced Damage of Optical Materials (Taylor & Francis, 2003), pp. 31–32.
[CrossRef]

Woodall, M. A.

Yang, X.

E. Tuncel, J. L. Staehli, C. Coluzza, G. Margaritondo, J. T. McKinley, R. G. Albridge, A. V. Barnes, A. Ueda, X. Yang, and N. H. Tolk, “Free-electron laser studies of direct and indirect two-photon absorption in germanium,” Phys. Rev. Lett. 70, 4146–4149 (1993).
[CrossRef] [PubMed]

Young, J. F.

A. Othonos, H. M. Van Driel, J. F. Young, and P. J. Kelly, “Correlation of hot-phonon and hot-carrier kinetics in Ge on a picosecond time scale,” Phys. Rev. B 43, 6682–6690 (1991).
[CrossRef]

Yu, Z. G.

S. Krishnamurthy, Z. G. Yu, S. Guha, and L. Gonzalez, “High irradiance light propagation in InAs,” Appl. Phys. Lett. 89, 161108 (2006).
[CrossRef]

Zakel, A.

T. J. Carrig, G. J. Wagner, W. J. Alford, and A. Zakel, “Chromium-doped chalcogenide lasers,” Proc. SPIE 5460, 74–82 (2004).
[CrossRef]

Zhdanov, B. V.

A. G. Akmanov, B. V. Zhdanov, and B. G. Shakirov, “Two-photon absorption of IR radiation and its optical saturation in n-type gallium antimonide,” Quantum Electron. 26, 882–883 (1996).
[CrossRef]

Zubov, B. V.

B. V. Zubov, L. A. Kulevskii, V. P. Makarov, T. M. Murina, and A. M. Prokhorov, “Two-photon absorption in germanium,” J. Exp. Theor. Phys. 9, 130–132 (1969).

Adv. Opt. Photon. (1)

Appl. Opt. (2)

Appl. Phys. B (1)

A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

S. Krishnamurthy, Z. G. Yu, S. Guha, and L. Gonzalez, “High irradiance light propagation in InAs,” Appl. Phys. Lett. 89, 161108 (2006).
[CrossRef]

J. Appl. Phys. (3)

E. Marin, I. Riech, P. Diaz, J. J. Alvarado-Gil, R. Baquero, J. G. Mendoza-Alvarez, H. Vargas, A. Cruz-Orea, and M. Vargas, “Photoacoustic determination of non-radiative carrier lifetimes,” J. Appl. Phys. 83, 2604–2609 (1998).
[CrossRef]

P. S. Dutta, H. L. Bhat, and V. Kumar, “The physics and technology of gallium antimonide: An emerging optoelectronic material,” J. Appl. Phys. 81, 5821–5870 (1997).
[CrossRef]

C. Rauscher and R. Laenen, “Analysis of picoseconds mid-infrared pulses by two-photon absorption in germanium,” J. Appl. Phys. 81, 2818–2821 (1997).
[CrossRef]

J. Exp. Theor. Phys. (1)

B. V. Zubov, L. A. Kulevskii, V. P. Makarov, T. M. Murina, and A. M. Prokhorov, “Two-photon absorption in germanium,” J. Exp. Theor. Phys. 9, 130–132 (1969).

J. Opt. Soc. Am. B (3)

J. Phys. C (1)

A. F. Gibson, C. B. Hatch, P. N. D. Maggs, D. R. Tilley, and A. C. Walker, “Two-photon absorption in indium antimonide and germanium,” J. Phys. C 9, 3259–3275 (1976).
[CrossRef]

Laser Photonics Rev. (1)

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4, 21–41 (2010).
[CrossRef]

MRS Bull. (1)

D. A. Reis, K. J. Gaffney, G. H. Gilmer, and B. Torralva, “Ultrafast dynamics of laser-excited solids,” MRS Bull. 31, 601–606 (2006).
[CrossRef]

Nature (1)

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. (1)

R. N. Hall, “Electron-hole recombination in germanium,” Phys. Rev. 87, 387 (1952).
[CrossRef]

Phys. Rev. B (3)

G. E. Jellison, Jr., D. H. Lowndes, D. N. Mashburn, and R. F. Wood, “Time-resolved reflectivity measurements on silicon and germanium using a pulsed excimer KrF laser heating beam,” Phys. Rev. B 34, 2407–2415 (1986).
[CrossRef]

M. D. Dramićanin, P. M. Nikoli, Z. D. Ristovski, D. G. Vasiljevi, and D. M. Todorovi, “Photoacoustic investigation of transport in semiconductors: Theoretical and experimental study of a Ge single crystal,” Phys. Rev. B 51, 14226–14232 (1995).
[CrossRef]

A. Othonos, H. M. Van Driel, J. F. Young, and P. J. Kelly, “Correlation of hot-phonon and hot-carrier kinetics in Ge on a picosecond time scale,” Phys. Rev. B 43, 6682–6690 (1991).
[CrossRef]

Phys. Rev. Lett. (4)

J. C. Phillips and J. A. Van Vechten, “Dielectric classification of crystal structures, ionization potentials, and band structures,” Phys. Rev. Lett. 22, 705–708 (1969).
[CrossRef]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[CrossRef] [PubMed]

W. Kaiser and C. G. B. Garrett, “Two-photon excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7, 229–231 (1961).
[CrossRef]

E. Tuncel, J. L. Staehli, C. Coluzza, G. Margaritondo, J. T. McKinley, R. G. Albridge, A. V. Barnes, A. Ueda, X. Yang, and N. H. Tolk, “Free-electron laser studies of direct and indirect two-photon absorption in germanium,” Phys. Rev. Lett. 70, 4146–4149 (1993).
[CrossRef] [PubMed]

Proc. SPIE (3)

T. J. Carrig, G. J. Wagner, W. J. Alford, and A. Zakel, “Chromium-doped chalcogenide lasers,” Proc. SPIE 5460, 74–82 (2004).
[CrossRef]

D. Seo, L. C. Feldman, N. H. Tolk, and P. I. Cohen, “Interaction of high-power infrared radiation with germanium,” Proc. SPIE 7132, 713216 (2008).
[CrossRef]

L. P. Gonzalez, J. M. Murray, V. M. Cowan, and S. Guha, “Measurement of the nonlinear optical properties of semiconductors using the irradiance scan technique,” Proc. SPIE 6875, 68750R (2008).
[CrossRef]

Quantum Electron. (1)

A. G. Akmanov, B. V. Zhdanov, and B. G. Shakirov, “Two-photon absorption of IR radiation and its optical saturation in n-type gallium antimonide,” Quantum Electron. 26, 882–883 (1996).
[CrossRef]

Sov. Phys. JETP (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).

Other (11)

T. J. Sloanes, “Measurement and application of optical nonlinearities in indium phosphide, cadmium mercury telleride and photonic crystal fibres,” Ph.D. dissertation (University of St. Andrews, 2009).

International Organization for Standardization (IOS), Lasers and Laser-Related Equipment—Determination of Laser-Induced Damage Threshold of Optical Surfaces—Part 1: 1-on-1 Test (IOS, 2000).
[PubMed]

R. M. Wood, Laser-induced Damage of Optical Materials (Taylor & Francis, 2003), pp. 31–32.
[CrossRef]

R. A. Dragoset, C. W. Clark, W. C. Martin, P. J. Mohr, and B. N. Taylor, Periodic Table: Atomic Properties of the Elements (National Institute of Standards and Technology, 1999).

J. B. McKay, “Power scaling feasibility of chromium-doped II-VI laser sources and the demonstration of a chromium-doped zinc selenide disk Laser,” Ph.D. dissertation (Air Force Institute of Technology, 2002).

M. Sheik-Bahae and M. P. Hasselbeck, “Third-order optical nonlinearities,” in OSA Handbook of Optics (McGraw-Hill, 2001), Vol. 4, Chap. 17.

M. Göppert-Mayer, “über Elementarakte mit zwei Quantensprüngen,” Ph.D. dissertation (University of Göttingen, 1931).

T. R. Harris, “Optical properties of Si, Ge, GaAs, GaSb, InAs, and InP at elevated temperatures,” Master’s thesis (Air Force Institute of Technology, 2010).

S. Krishnamurthy, SRI International, 333 Ravenswood Avenue, Menlo Park, Calif. (personal communication, 2010).

M. Levinstein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters (World Scientific, 1996, 1999); available online at http://www.ioffe.ru/SVA/NSM/Semicond.
[CrossRef]

O. A. Louchev, Y. Urata, and S. Wada, “Numerical simulation and optimization of giant pulse generation in 2 microns Tm,Ho lasers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CThDD2.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Gain-switched temporal profile (solid trace) with Gaussian best fit overlay (dotted trace).

Fig. 2
Fig. 2

2.5 μ m variation of linear transmission (left axis) and α (right axis) with temperature.

Fig. 3
Fig. 3

NLA and damage testing experimental setup.

Fig. 4
Fig. 4

Ge 2.05 μ m fitting routine. The left graph presents nanosecond NLA data (circles in left trace) and picosecond data (circles in right trace) along with FD model output using the best fit pair of β and σ. This pair is determined from the right graph in which the yellow star signifies the minimum error.

Fig. 5
Fig. 5

Wavelength dependence of β in present work, literature, and theory for Ge (left) and GaSb (right).

Fig. 6
Fig. 6

Evolution of ten shot per site damage in coated germanium at 2.5 μ m using picosecond pulses.

Fig. 7
Fig. 7

Picosecond LIDT measurement for uncoated GaSb, using ISO-11254-1 method.

Fig. 8
Fig. 8

Evolution of single shot damage in uncoated GaSb at 2.5 μ m using nanosecond pulses.

Fig. 9
Fig. 9

Predicted LIDT fluence for uncoated Ge and GaSb using measured NLA coefficients. Markers indicate experimentally determined LIDT fluences, solid lines are modeling that includes α ( T ) , and dotted lines model LIDT without α ( T ) .

Tables (5)

Tables Icon

Table 1 Survey of Nonlinear Studies for Germanium, Ordered by Wavelength a

Tables Icon

Table 2 Survey of Damage Studies for Germanium, Ordered By Wavelength

Tables Icon

Table 3 Material Properties for Ge and GaSb Samples

Tables Icon

Table 4 NLA Coefficient Measurements at Two Mid-IR Wavelengths for Ge and GaSb

Tables Icon

Table 5 Results from 2.5 μ m Damage Study, Including Key Parameters

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

β ( ω ) = K E p n 2 ( ω ) E g 3 F 2 ( h ν E g ) ,     where   F 2 ( x ) = ( 2 x 1 ) 1.5 ( 2 x ) 5 ,
x = h ν E g .
d I d z = α ( T ) I β I 2 σ ( N 0 + N ) I ,
d N d t = α ( T ) I h ν + β I 2 2 h ν N τ r ( N ) ,
d T d t = α ( T ) I ρ C + β I 2 ρ C + σ ( N 0 + N ) I ρ C ,
1 τ R = B radiative N ( r , z , t ) + C auger N ( r , z , t ) 2 .

Metrics