Abstract

Operation regimes of a two section monolithic quantum dot (QD) mode-locked laser are studied experimentally with InGaAs lasers and theoretically, using a model that takes into account carrier exchange between QD ground state and two-dimensional reservoir of a QD-in-a-well structure. It is shown analytically and numerically that, when the absorber section is long enough, the laser exhibits bistability between laser off state and different mode-locking regimes. The Q-switching instability leading to slow modulation of the mode-locked pulse peak intensity is completely eliminated in this case. When, on the contrary, the absorber length is rather short, in addition to usual Q-switched mode-locking, pure Q-switching regimes are predicted theoretically and observed experimentally.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. Jiang, E. P. Ippen, and H. Yokoyama, “Semiconductor mode-locked lasers as pulse sources for high bit rate data transmission” in Ultrahigh-Speed Optical Transmission Technology (Springer, 2007), pp. 21–51.
    [CrossRef]
  2. B. Hüttl, R. Kaiser, C. Kindel, S. Fidorra, W. Rehbein, H. Stolpe, G. Sahin, U. Bandelow, M. Radziunas, A. G. Vladimirov, and H. Heidrich, “Monolithic 40 GHz mqw mode-locked lasers on GaInAsP/InP with low pulse widths and controlled Q-switching,” Appl. Phys. Lett. 88, 221104 (2006).
    [CrossRef]
  3. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1, 395–401 (2007).
    [CrossRef]
  4. Y. Chu, R. V. Penty, and I. H. White, “Measurement of the linewidth enhancement factor of quantum dot lasers using external light injection,” in Pacific Rim Conference on Lasers and Electro-Optics (2005), pp. 59-60.
    [CrossRef]
  5. M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85, 843 (2004).
    [CrossRef]
  6. L. Shi, Y. H. Chen, B. Xu, Z. C. Wang, Y. H. Jiao, and Z. G. Wang, “Status and trends of short pulse generation using mode-locked lasers based on advanced quantum-dot active media,” J. Phys. D: Appl. Phys. 40, R307–R318 (2007).
    [CrossRef]
  7. E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section modelocked quantum-dot laser,” Appl. Phys. Lett. 87, 081107 (2005).
    [CrossRef]
  8. M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
    [CrossRef]
  9. V. M. Ustinov, A. E. Zhukov, A. Y. Egorov, and N. A. Maleev, Quantum Dot Lasers (Oxford U. Press, 2003).
    [CrossRef]
  10. J. Gomis-Bresco, S. Dommers, V. V. Temnov, U. Woggon, J. Martinez-Pastor, M. Laemmlin, and D. Bimberg, “InGaAs quantum dots coupled to a reservoir of nonequilibrium free carriers,” IEEE J. Quantum Electron. 45, 1121–1128 (2009).
    [CrossRef]
  11. A. Markus, J. X. Chen, O. Gauthier-Lafaye, J.-G. Provost, C. Paranthën, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 9, 1308–1314 (2003).
    [CrossRef]
  12. A. Markus, M. Rossetti, V. Calligari, D. Chek-Al-Kar, J. X. Chen, A. Fiore, and R. Scollo, “Two-state switching and dynamics in quantum dot two-section lasers,” J. Appl. Phys. 100, 113104 (2006).
    [CrossRef]
  13. D. O’Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov, “Sensitivity of quantum-dot semiconductor lasers to optical feedback,” Opt. Lett. 29, 1–3 (2004).
    [CrossRef]
  14. E. Viktorov, P. Mandel, A. G. Vladimirov, and U. Bandelow, “A model for mode-locking in quantum dot lasers,” Appl. Phys. Lett. 88, 201102 (2006).
    [CrossRef]
  15. A. Vladimirov, D. Turaev, and G. Kozyreff, “Delay differential equations for mode-locked semiconductor lasers,” Opt. Lett. 29, 1221–1223 (2004).
    [CrossRef] [PubMed]
  16. A. Vladimirov and D. Turaev, “Model for passive mode-locking in semiconductor lasers,” Phys. Rev. A 72, 033808 (2005).
    [CrossRef]
  17. D. Rachinskii, A. Vladimirov, U. Bandelow, B. Hüttl, and R. Kaiser, “Q-switching instability in a mode-locked semiconductor laser,” J. Opt. Soc. Am. B 23, 663–670 (2006).
    [CrossRef]
  18. U. Bandelow, H. Wenzel, and H. Wünsche, “Influence of inhomogeneous injection on sidemode suppression in strongly coupled DFB semiconductor lasers,” Electron. Lett. 28, 1324–1326 (1992).
    [CrossRef]
  19. U. Bandelow, M. Radziunas, A. G. Vladimirov, B. Hüttl, and R. Kaiser, “40 GHz modelocked semiconductor lasers: Theory, simulations and experiment,” Opt. Quantum Electron. 38, 495–512 (2006).
    [CrossRef]
  20. A. G. Vladimirov, A. S. Pimenov, and D. Rachinskii, “Numerical study of dynamical regimes in a monolithic passively mode-locked semiconductor laser,” IEEE J. Quantum Electron. 45, 462–468 (2009).
    [CrossRef]
  21. A. Vladimirov and D. Turaev, “New model for mode-locking in semiconductor lasers,” Radiophys. Quantum Electron. 47, 769–776 (2004).
    [CrossRef]
  22. K. Engelborghs, T. Luzyanina, and G. Samaey, DDE-BIFTOOL V. 2.00: A Matlab Package for Bifurcation Analysis of Delay Differential Equations, Tech. Rep. TW-330 (Department of Computer Science, K.U. Leuven, 2001).
  23. N. Guglielmi and E. Hairer, Users’ Guide for the Code RADAR5, version 2.1, Tech. Rep. (Università dell' Aquila, 2005).
  24. T. Erneux, E. A. Viktorov, P. Mandel, T. Piwonski, G. Huyet, and J. Houlihan, “The fast recovery dynamics of a quantum dot semiconductor optical amplifier,” Appl. Phys. Lett. 94, 113501 (2009).
    [CrossRef]
  25. E. A. Viktorov, T. Erneux, P. Mandel, T. Piwonski, G. Madden, J. Pulka, G. Huyet, and J. Houlihan, “Recovery time scales in a reversed-biased quantum dot absorber,” Appl. Phys. Lett. 94, 263502 (2009).
    [CrossRef]
  26. E. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A. G. Vladimirov, and M. Wolfrum, “Stability of the modelocked regime in quantum dot lasers,” Appl. Phys. Lett. 91, 231116 (2007).
    [CrossRef]
  27. F. X. Kärtner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers––what is the difference?” IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998).
    [CrossRef]
  28. G. Fiol, D. Arsenijević, D. Bimberg, A. G. Vladimirov, M. Wolfrum, E. A. Viktorov, and P. Mandel, “Hybrid mode-locking in a 40 GHz monolithic quantum dot laser,” Appl. Phys. Lett. 96, 011104 (2010).
    [CrossRef]
  29. D. Bimberg, “Quantum dot based nanophotonics and nanoelectronics,” Electron. Lett. 44(3), 168–170 (2008).
    [CrossRef]
  30. A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 μm range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
    [CrossRef]
  31. M. Kuntz, G. Fiol, M. Laemmlin, C. Meuer, and D. Bimberg, “High-speed mode-locked quantum-dot lasers and optical amplifiers,” Proc. IEEE 95, 1767–1778 (2007).
    [CrossRef]
  32. G. Fiol, C. Meuer, H. Schmeckebier, D. Arsenijević, S. Liebich, M. Laemmlin, M. Kuntz, and D. Bimberg, “Quantum-dot semiconductor mode-locked lasers and amplifiers at 40 GHz,” IEEE J. Quantum Electron. 45, 1429–1435 (2009).
    [CrossRef]
  33. H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, and D. Bimberg, “Complete pulse characterization of quantum-dot mode-locked lasers suitable for optical communication up to 160 Gbit/s,” Opt. Express 18, 3415–3425 (2010).
    [CrossRef] [PubMed]

2010 (2)

G. Fiol, D. Arsenijević, D. Bimberg, A. G. Vladimirov, M. Wolfrum, E. A. Viktorov, and P. Mandel, “Hybrid mode-locking in a 40 GHz monolithic quantum dot laser,” Appl. Phys. Lett. 96, 011104 (2010).
[CrossRef]

H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, and D. Bimberg, “Complete pulse characterization of quantum-dot mode-locked lasers suitable for optical communication up to 160 Gbit/s,” Opt. Express 18, 3415–3425 (2010).
[CrossRef] [PubMed]

2009 (5)

A. G. Vladimirov, A. S. Pimenov, and D. Rachinskii, “Numerical study of dynamical regimes in a monolithic passively mode-locked semiconductor laser,” IEEE J. Quantum Electron. 45, 462–468 (2009).
[CrossRef]

G. Fiol, C. Meuer, H. Schmeckebier, D. Arsenijević, S. Liebich, M. Laemmlin, M. Kuntz, and D. Bimberg, “Quantum-dot semiconductor mode-locked lasers and amplifiers at 40 GHz,” IEEE J. Quantum Electron. 45, 1429–1435 (2009).
[CrossRef]

J. Gomis-Bresco, S. Dommers, V. V. Temnov, U. Woggon, J. Martinez-Pastor, M. Laemmlin, and D. Bimberg, “InGaAs quantum dots coupled to a reservoir of nonequilibrium free carriers,” IEEE J. Quantum Electron. 45, 1121–1128 (2009).
[CrossRef]

T. Erneux, E. A. Viktorov, P. Mandel, T. Piwonski, G. Huyet, and J. Houlihan, “The fast recovery dynamics of a quantum dot semiconductor optical amplifier,” Appl. Phys. Lett. 94, 113501 (2009).
[CrossRef]

E. A. Viktorov, T. Erneux, P. Mandel, T. Piwonski, G. Madden, J. Pulka, G. Huyet, and J. Houlihan, “Recovery time scales in a reversed-biased quantum dot absorber,” Appl. Phys. Lett. 94, 263502 (2009).
[CrossRef]

2008 (1)

D. Bimberg, “Quantum dot based nanophotonics and nanoelectronics,” Electron. Lett. 44(3), 168–170 (2008).
[CrossRef]

2007 (4)

M. Kuntz, G. Fiol, M. Laemmlin, C. Meuer, and D. Bimberg, “High-speed mode-locked quantum-dot lasers and optical amplifiers,” Proc. IEEE 95, 1767–1778 (2007).
[CrossRef]

E. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A. G. Vladimirov, and M. Wolfrum, “Stability of the modelocked regime in quantum dot lasers,” Appl. Phys. Lett. 91, 231116 (2007).
[CrossRef]

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1, 395–401 (2007).
[CrossRef]

L. Shi, Y. H. Chen, B. Xu, Z. C. Wang, Y. H. Jiao, and Z. G. Wang, “Status and trends of short pulse generation using mode-locked lasers based on advanced quantum-dot active media,” J. Phys. D: Appl. Phys. 40, R307–R318 (2007).
[CrossRef]

2006 (6)

B. Hüttl, R. Kaiser, C. Kindel, S. Fidorra, W. Rehbein, H. Stolpe, G. Sahin, U. Bandelow, M. Radziunas, A. G. Vladimirov, and H. Heidrich, “Monolithic 40 GHz mqw mode-locked lasers on GaInAsP/InP with low pulse widths and controlled Q-switching,” Appl. Phys. Lett. 88, 221104 (2006).
[CrossRef]

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

A. Markus, M. Rossetti, V. Calligari, D. Chek-Al-Kar, J. X. Chen, A. Fiore, and R. Scollo, “Two-state switching and dynamics in quantum dot two-section lasers,” J. Appl. Phys. 100, 113104 (2006).
[CrossRef]

E. Viktorov, P. Mandel, A. G. Vladimirov, and U. Bandelow, “A model for mode-locking in quantum dot lasers,” Appl. Phys. Lett. 88, 201102 (2006).
[CrossRef]

U. Bandelow, M. Radziunas, A. G. Vladimirov, B. Hüttl, and R. Kaiser, “40 GHz modelocked semiconductor lasers: Theory, simulations and experiment,” Opt. Quantum Electron. 38, 495–512 (2006).
[CrossRef]

D. Rachinskii, A. Vladimirov, U. Bandelow, B. Hüttl, and R. Kaiser, “Q-switching instability in a mode-locked semiconductor laser,” J. Opt. Soc. Am. B 23, 663–670 (2006).
[CrossRef]

2005 (2)

A. Vladimirov and D. Turaev, “Model for passive mode-locking in semiconductor lasers,” Phys. Rev. A 72, 033808 (2005).
[CrossRef]

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section modelocked quantum-dot laser,” Appl. Phys. Lett. 87, 081107 (2005).
[CrossRef]

2004 (4)

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85, 843 (2004).
[CrossRef]

D. O’Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov, “Sensitivity of quantum-dot semiconductor lasers to optical feedback,” Opt. Lett. 29, 1–3 (2004).
[CrossRef]

A. Vladimirov, D. Turaev, and G. Kozyreff, “Delay differential equations for mode-locked semiconductor lasers,” Opt. Lett. 29, 1221–1223 (2004).
[CrossRef] [PubMed]

A. Vladimirov and D. Turaev, “New model for mode-locking in semiconductor lasers,” Radiophys. Quantum Electron. 47, 769–776 (2004).
[CrossRef]

2003 (2)

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 μm range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[CrossRef]

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J.-G. Provost, C. Paranthën, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 9, 1308–1314 (2003).
[CrossRef]

1998 (1)

F. X. Kärtner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers––what is the difference?” IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998).
[CrossRef]

1992 (1)

U. Bandelow, H. Wenzel, and H. Wünsche, “Influence of inhomogeneous injection on sidemode suppression in strongly coupled DFB semiconductor lasers,” Electron. Lett. 28, 1324–1326 (1992).
[CrossRef]

Alferov, Z. I.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 μm range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[CrossRef]

Arsenijevic, D.

G. Fiol, D. Arsenijević, D. Bimberg, A. G. Vladimirov, M. Wolfrum, E. A. Viktorov, and P. Mandel, “Hybrid mode-locking in a 40 GHz monolithic quantum dot laser,” Appl. Phys. Lett. 96, 011104 (2010).
[CrossRef]

H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, and D. Bimberg, “Complete pulse characterization of quantum-dot mode-locked lasers suitable for optical communication up to 160 Gbit/s,” Opt. Express 18, 3415–3425 (2010).
[CrossRef] [PubMed]

G. Fiol, C. Meuer, H. Schmeckebier, D. Arsenijević, S. Liebich, M. Laemmlin, M. Kuntz, and D. Bimberg, “Quantum-dot semiconductor mode-locked lasers and amplifiers at 40 GHz,” IEEE J. Quantum Electron. 45, 1429–1435 (2009).
[CrossRef]

Bandelow, U.

E. Viktorov, P. Mandel, A. G. Vladimirov, and U. Bandelow, “A model for mode-locking in quantum dot lasers,” Appl. Phys. Lett. 88, 201102 (2006).
[CrossRef]

D. Rachinskii, A. Vladimirov, U. Bandelow, B. Hüttl, and R. Kaiser, “Q-switching instability in a mode-locked semiconductor laser,” J. Opt. Soc. Am. B 23, 663–670 (2006).
[CrossRef]

B. Hüttl, R. Kaiser, C. Kindel, S. Fidorra, W. Rehbein, H. Stolpe, G. Sahin, U. Bandelow, M. Radziunas, A. G. Vladimirov, and H. Heidrich, “Monolithic 40 GHz mqw mode-locked lasers on GaInAsP/InP with low pulse widths and controlled Q-switching,” Appl. Phys. Lett. 88, 221104 (2006).
[CrossRef]

U. Bandelow, M. Radziunas, A. G. Vladimirov, B. Hüttl, and R. Kaiser, “40 GHz modelocked semiconductor lasers: Theory, simulations and experiment,” Opt. Quantum Electron. 38, 495–512 (2006).
[CrossRef]

U. Bandelow, H. Wenzel, and H. Wünsche, “Influence of inhomogeneous injection on sidemode suppression in strongly coupled DFB semiconductor lasers,” Electron. Lett. 28, 1324–1326 (1992).
[CrossRef]

Bimberg, D.

H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, and D. Bimberg, “Complete pulse characterization of quantum-dot mode-locked lasers suitable for optical communication up to 160 Gbit/s,” Opt. Express 18, 3415–3425 (2010).
[CrossRef] [PubMed]

G. Fiol, D. Arsenijević, D. Bimberg, A. G. Vladimirov, M. Wolfrum, E. A. Viktorov, and P. Mandel, “Hybrid mode-locking in a 40 GHz monolithic quantum dot laser,” Appl. Phys. Lett. 96, 011104 (2010).
[CrossRef]

J. Gomis-Bresco, S. Dommers, V. V. Temnov, U. Woggon, J. Martinez-Pastor, M. Laemmlin, and D. Bimberg, “InGaAs quantum dots coupled to a reservoir of nonequilibrium free carriers,” IEEE J. Quantum Electron. 45, 1121–1128 (2009).
[CrossRef]

G. Fiol, C. Meuer, H. Schmeckebier, D. Arsenijević, S. Liebich, M. Laemmlin, M. Kuntz, and D. Bimberg, “Quantum-dot semiconductor mode-locked lasers and amplifiers at 40 GHz,” IEEE J. Quantum Electron. 45, 1429–1435 (2009).
[CrossRef]

D. Bimberg, “Quantum dot based nanophotonics and nanoelectronics,” Electron. Lett. 44(3), 168–170 (2008).
[CrossRef]

E. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A. G. Vladimirov, and M. Wolfrum, “Stability of the modelocked regime in quantum dot lasers,” Appl. Phys. Lett. 91, 231116 (2007).
[CrossRef]

M. Kuntz, G. Fiol, M. Laemmlin, C. Meuer, and D. Bimberg, “High-speed mode-locked quantum-dot lasers and optical amplifiers,” Proc. IEEE 95, 1767–1778 (2007).
[CrossRef]

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85, 843 (2004).
[CrossRef]

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 μm range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[CrossRef]

Calligari, V.

A. Markus, M. Rossetti, V. Calligari, D. Chek-Al-Kar, J. X. Chen, A. Fiore, and R. Scollo, “Two-state switching and dynamics in quantum dot two-section lasers,” J. Appl. Phys. 100, 113104 (2006).
[CrossRef]

Cataluna, M. A.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1, 395–401 (2007).
[CrossRef]

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section modelocked quantum-dot laser,” Appl. Phys. Lett. 87, 081107 (2005).
[CrossRef]

Chek-Al-Kar, D.

A. Markus, M. Rossetti, V. Calligari, D. Chek-Al-Kar, J. X. Chen, A. Fiore, and R. Scollo, “Two-state switching and dynamics in quantum dot two-section lasers,” J. Appl. Phys. 100, 113104 (2006).
[CrossRef]

Chen, J. X.

A. Markus, M. Rossetti, V. Calligari, D. Chek-Al-Kar, J. X. Chen, A. Fiore, and R. Scollo, “Two-state switching and dynamics in quantum dot two-section lasers,” J. Appl. Phys. 100, 113104 (2006).
[CrossRef]

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J.-G. Provost, C. Paranthën, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 9, 1308–1314 (2003).
[CrossRef]

Chen, Y. H.

L. Shi, Y. H. Chen, B. Xu, Z. C. Wang, Y. H. Jiao, and Z. G. Wang, “Status and trends of short pulse generation using mode-locked lasers based on advanced quantum-dot active media,” J. Phys. D: Appl. Phys. 40, R307–R318 (2007).
[CrossRef]

Chu, Y.

Y. Chu, R. V. Penty, and I. H. White, “Measurement of the linewidth enhancement factor of quantum dot lasers using external light injection,” in Pacific Rim Conference on Lasers and Electro-Optics (2005), pp. 59-60.
[CrossRef]

der Au, J. A.

F. X. Kärtner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers––what is the difference?” IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998).
[CrossRef]

Dommers, S.

J. Gomis-Bresco, S. Dommers, V. V. Temnov, U. Woggon, J. Martinez-Pastor, M. Laemmlin, and D. Bimberg, “InGaAs quantum dots coupled to a reservoir of nonequilibrium free carriers,” IEEE J. Quantum Electron. 45, 1121–1128 (2009).
[CrossRef]

Egorov, A. Y.

V. M. Ustinov, A. E. Zhukov, A. Y. Egorov, and N. A. Maleev, Quantum Dot Lasers (Oxford U. Press, 2003).
[CrossRef]

Engelborghs, K.

K. Engelborghs, T. Luzyanina, and G. Samaey, DDE-BIFTOOL V. 2.00: A Matlab Package for Bifurcation Analysis of Delay Differential Equations, Tech. Rep. TW-330 (Department of Computer Science, K.U. Leuven, 2001).

Erneux, T.

T. Erneux, E. A. Viktorov, P. Mandel, T. Piwonski, G. Huyet, and J. Houlihan, “The fast recovery dynamics of a quantum dot semiconductor optical amplifier,” Appl. Phys. Lett. 94, 113501 (2009).
[CrossRef]

E. A. Viktorov, T. Erneux, P. Mandel, T. Piwonski, G. Madden, J. Pulka, G. Huyet, and J. Houlihan, “Recovery time scales in a reversed-biased quantum dot absorber,” Appl. Phys. Lett. 94, 263502 (2009).
[CrossRef]

Fidorra, S.

B. Hüttl, R. Kaiser, C. Kindel, S. Fidorra, W. Rehbein, H. Stolpe, G. Sahin, U. Bandelow, M. Radziunas, A. G. Vladimirov, and H. Heidrich, “Monolithic 40 GHz mqw mode-locked lasers on GaInAsP/InP with low pulse widths and controlled Q-switching,” Appl. Phys. Lett. 88, 221104 (2006).
[CrossRef]

Fiol, G.

G. Fiol, D. Arsenijević, D. Bimberg, A. G. Vladimirov, M. Wolfrum, E. A. Viktorov, and P. Mandel, “Hybrid mode-locking in a 40 GHz monolithic quantum dot laser,” Appl. Phys. Lett. 96, 011104 (2010).
[CrossRef]

H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, and D. Bimberg, “Complete pulse characterization of quantum-dot mode-locked lasers suitable for optical communication up to 160 Gbit/s,” Opt. Express 18, 3415–3425 (2010).
[CrossRef] [PubMed]

G. Fiol, C. Meuer, H. Schmeckebier, D. Arsenijević, S. Liebich, M. Laemmlin, M. Kuntz, and D. Bimberg, “Quantum-dot semiconductor mode-locked lasers and amplifiers at 40 GHz,” IEEE J. Quantum Electron. 45, 1429–1435 (2009).
[CrossRef]

M. Kuntz, G. Fiol, M. Laemmlin, C. Meuer, and D. Bimberg, “High-speed mode-locked quantum-dot lasers and optical amplifiers,” Proc. IEEE 95, 1767–1778 (2007).
[CrossRef]

E. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A. G. Vladimirov, and M. Wolfrum, “Stability of the modelocked regime in quantum dot lasers,” Appl. Phys. Lett. 91, 231116 (2007).
[CrossRef]

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85, 843 (2004).
[CrossRef]

Fiore, A.

A. Markus, M. Rossetti, V. Calligari, D. Chek-Al-Kar, J. X. Chen, A. Fiore, and R. Scollo, “Two-state switching and dynamics in quantum dot two-section lasers,” J. Appl. Phys. 100, 113104 (2006).
[CrossRef]

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J.-G. Provost, C. Paranthën, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 9, 1308–1314 (2003).
[CrossRef]

Gauthier-Lafaye, O.

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J.-G. Provost, C. Paranthën, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 9, 1308–1314 (2003).
[CrossRef]

Gomis-Bresco, J.

J. Gomis-Bresco, S. Dommers, V. V. Temnov, U. Woggon, J. Martinez-Pastor, M. Laemmlin, and D. Bimberg, “InGaAs quantum dots coupled to a reservoir of nonequilibrium free carriers,” IEEE J. Quantum Electron. 45, 1121–1128 (2009).
[CrossRef]

Guglielmi, N.

N. Guglielmi and E. Hairer, Users’ Guide for the Code RADAR5, version 2.1, Tech. Rep. (Università dell' Aquila, 2005).

Hairer, E.

N. Guglielmi and E. Hairer, Users’ Guide for the Code RADAR5, version 2.1, Tech. Rep. (Università dell' Aquila, 2005).

Hegarty, S. P.

D. O’Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov, “Sensitivity of quantum-dot semiconductor lasers to optical feedback,” Opt. Lett. 29, 1–3 (2004).
[CrossRef]

Heidrich, H.

B. Hüttl, R. Kaiser, C. Kindel, S. Fidorra, W. Rehbein, H. Stolpe, G. Sahin, U. Bandelow, M. Radziunas, A. G. Vladimirov, and H. Heidrich, “Monolithic 40 GHz mqw mode-locked lasers on GaInAsP/InP with low pulse widths and controlled Q-switching,” Appl. Phys. Lett. 88, 221104 (2006).
[CrossRef]

Houlihan, J.

E. A. Viktorov, T. Erneux, P. Mandel, T. Piwonski, G. Madden, J. Pulka, G. Huyet, and J. Houlihan, “Recovery time scales in a reversed-biased quantum dot absorber,” Appl. Phys. Lett. 94, 263502 (2009).
[CrossRef]

T. Erneux, E. A. Viktorov, P. Mandel, T. Piwonski, G. Huyet, and J. Houlihan, “The fast recovery dynamics of a quantum dot semiconductor optical amplifier,” Appl. Phys. Lett. 94, 113501 (2009).
[CrossRef]

Hüttl, B.

B. Hüttl, R. Kaiser, C. Kindel, S. Fidorra, W. Rehbein, H. Stolpe, G. Sahin, U. Bandelow, M. Radziunas, A. G. Vladimirov, and H. Heidrich, “Monolithic 40 GHz mqw mode-locked lasers on GaInAsP/InP with low pulse widths and controlled Q-switching,” Appl. Phys. Lett. 88, 221104 (2006).
[CrossRef]

U. Bandelow, M. Radziunas, A. G. Vladimirov, B. Hüttl, and R. Kaiser, “40 GHz modelocked semiconductor lasers: Theory, simulations and experiment,” Opt. Quantum Electron. 38, 495–512 (2006).
[CrossRef]

D. Rachinskii, A. Vladimirov, U. Bandelow, B. Hüttl, and R. Kaiser, “Q-switching instability in a mode-locked semiconductor laser,” J. Opt. Soc. Am. B 23, 663–670 (2006).
[CrossRef]

Huyet, G.

T. Erneux, E. A. Viktorov, P. Mandel, T. Piwonski, G. Huyet, and J. Houlihan, “The fast recovery dynamics of a quantum dot semiconductor optical amplifier,” Appl. Phys. Lett. 94, 113501 (2009).
[CrossRef]

E. A. Viktorov, T. Erneux, P. Mandel, T. Piwonski, G. Madden, J. Pulka, G. Huyet, and J. Houlihan, “Recovery time scales in a reversed-biased quantum dot absorber,” Appl. Phys. Lett. 94, 263502 (2009).
[CrossRef]

D. O’Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov, “Sensitivity of quantum-dot semiconductor lasers to optical feedback,” Opt. Lett. 29, 1–3 (2004).
[CrossRef]

Il’inskaya, N. D.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section modelocked quantum-dot laser,” Appl. Phys. Lett. 87, 081107 (2005).
[CrossRef]

Ippen, E. P.

L. A. Jiang, E. P. Ippen, and H. Yokoyama, “Semiconductor mode-locked lasers as pulse sources for high bit rate data transmission” in Ultrahigh-Speed Optical Transmission Technology (Springer, 2007), pp. 21–51.
[CrossRef]

Jiang, L. A.

L. A. Jiang, E. P. Ippen, and H. Yokoyama, “Semiconductor mode-locked lasers as pulse sources for high bit rate data transmission” in Ultrahigh-Speed Optical Transmission Technology (Springer, 2007), pp. 21–51.
[CrossRef]

Jiao, Y. H.

L. Shi, Y. H. Chen, B. Xu, Z. C. Wang, Y. H. Jiao, and Z. G. Wang, “Status and trends of short pulse generation using mode-locked lasers based on advanced quantum-dot active media,” J. Phys. D: Appl. Phys. 40, R307–R318 (2007).
[CrossRef]

Kaiser, R.

D. Rachinskii, A. Vladimirov, U. Bandelow, B. Hüttl, and R. Kaiser, “Q-switching instability in a mode-locked semiconductor laser,” J. Opt. Soc. Am. B 23, 663–670 (2006).
[CrossRef]

U. Bandelow, M. Radziunas, A. G. Vladimirov, B. Hüttl, and R. Kaiser, “40 GHz modelocked semiconductor lasers: Theory, simulations and experiment,” Opt. Quantum Electron. 38, 495–512 (2006).
[CrossRef]

B. Hüttl, R. Kaiser, C. Kindel, S. Fidorra, W. Rehbein, H. Stolpe, G. Sahin, U. Bandelow, M. Radziunas, A. G. Vladimirov, and H. Heidrich, “Monolithic 40 GHz mqw mode-locked lasers on GaInAsP/InP with low pulse widths and controlled Q-switching,” Appl. Phys. Lett. 88, 221104 (2006).
[CrossRef]

Kärtner, F. X.

F. X. Kärtner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers––what is the difference?” IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998).
[CrossRef]

Keller, U.

F. X. Kärtner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers––what is the difference?” IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998).
[CrossRef]

Kindel, C.

B. Hüttl, R. Kaiser, C. Kindel, S. Fidorra, W. Rehbein, H. Stolpe, G. Sahin, U. Bandelow, M. Radziunas, A. G. Vladimirov, and H. Heidrich, “Monolithic 40 GHz mqw mode-locked lasers on GaInAsP/InP with low pulse widths and controlled Q-switching,” Appl. Phys. Lett. 88, 221104 (2006).
[CrossRef]

Kovsh, A. R.

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section modelocked quantum-dot laser,” Appl. Phys. Lett. 87, 081107 (2005).
[CrossRef]

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85, 843 (2004).
[CrossRef]

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 μm range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[CrossRef]

Kozyreff, G.

Krestnikov, I. L.

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

Kuntz, M.

G. Fiol, C. Meuer, H. Schmeckebier, D. Arsenijević, S. Liebich, M. Laemmlin, M. Kuntz, and D. Bimberg, “Quantum-dot semiconductor mode-locked lasers and amplifiers at 40 GHz,” IEEE J. Quantum Electron. 45, 1429–1435 (2009).
[CrossRef]

M. Kuntz, G. Fiol, M. Laemmlin, C. Meuer, and D. Bimberg, “High-speed mode-locked quantum-dot lasers and optical amplifiers,” Proc. IEEE 95, 1767–1778 (2007).
[CrossRef]

E. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A. G. Vladimirov, and M. Wolfrum, “Stability of the modelocked regime in quantum dot lasers,” Appl. Phys. Lett. 91, 231116 (2007).
[CrossRef]

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85, 843 (2004).
[CrossRef]

Laemmlin, M.

G. Fiol, C. Meuer, H. Schmeckebier, D. Arsenijević, S. Liebich, M. Laemmlin, M. Kuntz, and D. Bimberg, “Quantum-dot semiconductor mode-locked lasers and amplifiers at 40 GHz,” IEEE J. Quantum Electron. 45, 1429–1435 (2009).
[CrossRef]

J. Gomis-Bresco, S. Dommers, V. V. Temnov, U. Woggon, J. Martinez-Pastor, M. Laemmlin, and D. Bimberg, “InGaAs quantum dots coupled to a reservoir of nonequilibrium free carriers,” IEEE J. Quantum Electron. 45, 1121–1128 (2009).
[CrossRef]

M. Kuntz, G. Fiol, M. Laemmlin, C. Meuer, and D. Bimberg, “High-speed mode-locked quantum-dot lasers and optical amplifiers,” Proc. IEEE 95, 1767–1778 (2007).
[CrossRef]

Lämmlin, M.

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85, 843 (2004).
[CrossRef]

Ledentsov, N. N.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section modelocked quantum-dot laser,” Appl. Phys. Lett. 87, 081107 (2005).
[CrossRef]

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 μm range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[CrossRef]

Liebich, S.

G. Fiol, C. Meuer, H. Schmeckebier, D. Arsenijević, S. Liebich, M. Laemmlin, M. Kuntz, and D. Bimberg, “Quantum-dot semiconductor mode-locked lasers and amplifiers at 40 GHz,” IEEE J. Quantum Electron. 45, 1429–1435 (2009).
[CrossRef]

Livshits, D. A.

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section modelocked quantum-dot laser,” Appl. Phys. Lett. 87, 081107 (2005).
[CrossRef]

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 μm range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[CrossRef]

Luzyanina, T.

K. Engelborghs, T. Luzyanina, and G. Samaey, DDE-BIFTOOL V. 2.00: A Matlab Package for Bifurcation Analysis of Delay Differential Equations, Tech. Rep. TW-330 (Department of Computer Science, K.U. Leuven, 2001).

Madden, G.

E. A. Viktorov, T. Erneux, P. Mandel, T. Piwonski, G. Madden, J. Pulka, G. Huyet, and J. Houlihan, “Recovery time scales in a reversed-biased quantum dot absorber,” Appl. Phys. Lett. 94, 263502 (2009).
[CrossRef]

Maleev, N. A.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 μm range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[CrossRef]

V. M. Ustinov, A. E. Zhukov, A. Y. Egorov, and N. A. Maleev, Quantum Dot Lasers (Oxford U. Press, 2003).
[CrossRef]

Mandel, P.

G. Fiol, D. Arsenijević, D. Bimberg, A. G. Vladimirov, M. Wolfrum, E. A. Viktorov, and P. Mandel, “Hybrid mode-locking in a 40 GHz monolithic quantum dot laser,” Appl. Phys. Lett. 96, 011104 (2010).
[CrossRef]

E. A. Viktorov, T. Erneux, P. Mandel, T. Piwonski, G. Madden, J. Pulka, G. Huyet, and J. Houlihan, “Recovery time scales in a reversed-biased quantum dot absorber,” Appl. Phys. Lett. 94, 263502 (2009).
[CrossRef]

T. Erneux, E. A. Viktorov, P. Mandel, T. Piwonski, G. Huyet, and J. Houlihan, “The fast recovery dynamics of a quantum dot semiconductor optical amplifier,” Appl. Phys. Lett. 94, 113501 (2009).
[CrossRef]

E. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A. G. Vladimirov, and M. Wolfrum, “Stability of the modelocked regime in quantum dot lasers,” Appl. Phys. Lett. 91, 231116 (2007).
[CrossRef]

E. Viktorov, P. Mandel, A. G. Vladimirov, and U. Bandelow, “A model for mode-locking in quantum dot lasers,” Appl. Phys. Lett. 88, 201102 (2006).
[CrossRef]

Marinelli, C.

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85, 843 (2004).
[CrossRef]

Markus, A.

A. Markus, M. Rossetti, V. Calligari, D. Chek-Al-Kar, J. X. Chen, A. Fiore, and R. Scollo, “Two-state switching and dynamics in quantum dot two-section lasers,” J. Appl. Phys. 100, 113104 (2006).
[CrossRef]

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J.-G. Provost, C. Paranthën, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 9, 1308–1314 (2003).
[CrossRef]

Martinez-Pastor, J.

J. Gomis-Bresco, S. Dommers, V. V. Temnov, U. Woggon, J. Martinez-Pastor, M. Laemmlin, and D. Bimberg, “InGaAs quantum dots coupled to a reservoir of nonequilibrium free carriers,” IEEE J. Quantum Electron. 45, 1121–1128 (2009).
[CrossRef]

Maximov, M. V.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 μm range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[CrossRef]

Meuer, C.

H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, and D. Bimberg, “Complete pulse characterization of quantum-dot mode-locked lasers suitable for optical communication up to 160 Gbit/s,” Opt. Express 18, 3415–3425 (2010).
[CrossRef] [PubMed]

G. Fiol, C. Meuer, H. Schmeckebier, D. Arsenijević, S. Liebich, M. Laemmlin, M. Kuntz, and D. Bimberg, “Quantum-dot semiconductor mode-locked lasers and amplifiers at 40 GHz,” IEEE J. Quantum Electron. 45, 1429–1435 (2009).
[CrossRef]

M. Kuntz, G. Fiol, M. Laemmlin, C. Meuer, and D. Bimberg, “High-speed mode-locked quantum-dot lasers and optical amplifiers,” Proc. IEEE 95, 1767–1778 (2007).
[CrossRef]

Mikhrin, S. S.

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 μm range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[CrossRef]

O’Brien, D.

D. O’Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov, “Sensitivity of quantum-dot semiconductor lasers to optical feedback,” Opt. Lett. 29, 1–3 (2004).
[CrossRef]

Paranthën, C.

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J.-G. Provost, C. Paranthën, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 9, 1308–1314 (2003).
[CrossRef]

Penty, R.

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

Penty, R. V.

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85, 843 (2004).
[CrossRef]

Y. Chu, R. V. Penty, and I. H. White, “Measurement of the linewidth enhancement factor of quantum dot lasers using external light injection,” in Pacific Rim Conference on Lasers and Electro-Optics (2005), pp. 59-60.
[CrossRef]

Pimenov, A. S.

A. G. Vladimirov, A. S. Pimenov, and D. Rachinskii, “Numerical study of dynamical regimes in a monolithic passively mode-locked semiconductor laser,” IEEE J. Quantum Electron. 45, 462–468 (2009).
[CrossRef]

Piwonski, T.

T. Erneux, E. A. Viktorov, P. Mandel, T. Piwonski, G. Huyet, and J. Houlihan, “The fast recovery dynamics of a quantum dot semiconductor optical amplifier,” Appl. Phys. Lett. 94, 113501 (2009).
[CrossRef]

E. A. Viktorov, T. Erneux, P. Mandel, T. Piwonski, G. Madden, J. Pulka, G. Huyet, and J. Houlihan, “Recovery time scales in a reversed-biased quantum dot absorber,” Appl. Phys. Lett. 94, 263502 (2009).
[CrossRef]

Provost, J. -G.

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J.-G. Provost, C. Paranthën, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 9, 1308–1314 (2003).
[CrossRef]

Pulka, J.

E. A. Viktorov, T. Erneux, P. Mandel, T. Piwonski, G. Madden, J. Pulka, G. Huyet, and J. Houlihan, “Recovery time scales in a reversed-biased quantum dot absorber,” Appl. Phys. Lett. 94, 263502 (2009).
[CrossRef]

Rachinskii, D.

A. G. Vladimirov, A. S. Pimenov, and D. Rachinskii, “Numerical study of dynamical regimes in a monolithic passively mode-locked semiconductor laser,” IEEE J. Quantum Electron. 45, 462–468 (2009).
[CrossRef]

D. Rachinskii, A. Vladimirov, U. Bandelow, B. Hüttl, and R. Kaiser, “Q-switching instability in a mode-locked semiconductor laser,” J. Opt. Soc. Am. B 23, 663–670 (2006).
[CrossRef]

Radziunas, M.

U. Bandelow, M. Radziunas, A. G. Vladimirov, B. Hüttl, and R. Kaiser, “40 GHz modelocked semiconductor lasers: Theory, simulations and experiment,” Opt. Quantum Electron. 38, 495–512 (2006).
[CrossRef]

B. Hüttl, R. Kaiser, C. Kindel, S. Fidorra, W. Rehbein, H. Stolpe, G. Sahin, U. Bandelow, M. Radziunas, A. G. Vladimirov, and H. Heidrich, “Monolithic 40 GHz mqw mode-locked lasers on GaInAsP/InP with low pulse widths and controlled Q-switching,” Appl. Phys. Lett. 88, 221104 (2006).
[CrossRef]

Rae, A.

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

Rafailov, E. U.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1, 395–401 (2007).
[CrossRef]

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section modelocked quantum-dot laser,” Appl. Phys. Lett. 87, 081107 (2005).
[CrossRef]

Rehbein, W.

B. Hüttl, R. Kaiser, C. Kindel, S. Fidorra, W. Rehbein, H. Stolpe, G. Sahin, U. Bandelow, M. Radziunas, A. G. Vladimirov, and H. Heidrich, “Monolithic 40 GHz mqw mode-locked lasers on GaInAsP/InP with low pulse widths and controlled Q-switching,” Appl. Phys. Lett. 88, 221104 (2006).
[CrossRef]

Rossetti, M.

A. Markus, M. Rossetti, V. Calligari, D. Chek-Al-Kar, J. X. Chen, A. Fiore, and R. Scollo, “Two-state switching and dynamics in quantum dot two-section lasers,” J. Appl. Phys. 100, 113104 (2006).
[CrossRef]

Sahin, G.

B. Hüttl, R. Kaiser, C. Kindel, S. Fidorra, W. Rehbein, H. Stolpe, G. Sahin, U. Bandelow, M. Radziunas, A. G. Vladimirov, and H. Heidrich, “Monolithic 40 GHz mqw mode-locked lasers on GaInAsP/InP with low pulse widths and controlled Q-switching,” Appl. Phys. Lett. 88, 221104 (2006).
[CrossRef]

Samaey, G.

K. Engelborghs, T. Luzyanina, and G. Samaey, DDE-BIFTOOL V. 2.00: A Matlab Package for Bifurcation Analysis of Delay Differential Equations, Tech. Rep. TW-330 (Department of Computer Science, K.U. Leuven, 2001).

Schmeckebier, H.

H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, and D. Bimberg, “Complete pulse characterization of quantum-dot mode-locked lasers suitable for optical communication up to 160 Gbit/s,” Opt. Express 18, 3415–3425 (2010).
[CrossRef] [PubMed]

G. Fiol, C. Meuer, H. Schmeckebier, D. Arsenijević, S. Liebich, M. Laemmlin, M. Kuntz, and D. Bimberg, “Quantum-dot semiconductor mode-locked lasers and amplifiers at 40 GHz,” IEEE J. Quantum Electron. 45, 1429–1435 (2009).
[CrossRef]

Scollo, R.

A. Markus, M. Rossetti, V. Calligari, D. Chek-Al-Kar, J. X. Chen, A. Fiore, and R. Scollo, “Two-state switching and dynamics in quantum dot two-section lasers,” J. Appl. Phys. 100, 113104 (2006).
[CrossRef]

Sellin, R. L.

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

Semenova, E. A.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 μm range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[CrossRef]

Shernyakov, Y. M.

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85, 843 (2004).
[CrossRef]

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 μm range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[CrossRef]

Shi, L.

L. Shi, Y. H. Chen, B. Xu, Z. C. Wang, Y. H. Jiao, and Z. G. Wang, “Status and trends of short pulse generation using mode-locked lasers based on advanced quantum-dot active media,” J. Phys. D: Appl. Phys. 40, R307–R318 (2007).
[CrossRef]

Sibbett, W.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1, 395–401 (2007).
[CrossRef]

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section modelocked quantum-dot laser,” Appl. Phys. Lett. 87, 081107 (2005).
[CrossRef]

Stolpe, H.

B. Hüttl, R. Kaiser, C. Kindel, S. Fidorra, W. Rehbein, H. Stolpe, G. Sahin, U. Bandelow, M. Radziunas, A. G. Vladimirov, and H. Heidrich, “Monolithic 40 GHz mqw mode-locked lasers on GaInAsP/InP with low pulse widths and controlled Q-switching,” Appl. Phys. Lett. 88, 221104 (2006).
[CrossRef]

Tan, K. T.

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85, 843 (2004).
[CrossRef]

Temnov, V. V.

J. Gomis-Bresco, S. Dommers, V. V. Temnov, U. Woggon, J. Martinez-Pastor, M. Laemmlin, and D. Bimberg, “InGaAs quantum dots coupled to a reservoir of nonequilibrium free carriers,” IEEE J. Quantum Electron. 45, 1121–1128 (2009).
[CrossRef]

Thompson, M. G.

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85, 843 (2004).
[CrossRef]

Turaev, D.

A. Vladimirov and D. Turaev, “Model for passive mode-locking in semiconductor lasers,” Phys. Rev. A 72, 033808 (2005).
[CrossRef]

A. Vladimirov, D. Turaev, and G. Kozyreff, “Delay differential equations for mode-locked semiconductor lasers,” Opt. Lett. 29, 1221–1223 (2004).
[CrossRef] [PubMed]

A. Vladimirov and D. Turaev, “New model for mode-locking in semiconductor lasers,” Radiophys. Quantum Electron. 47, 769–776 (2004).
[CrossRef]

Uskov, A. V.

D. O’Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov, “Sensitivity of quantum-dot semiconductor lasers to optical feedback,” Opt. Lett. 29, 1–3 (2004).
[CrossRef]

Ustinov, V. M.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section modelocked quantum-dot laser,” Appl. Phys. Lett. 87, 081107 (2005).
[CrossRef]

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85, 843 (2004).
[CrossRef]

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 μm range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[CrossRef]

V. M. Ustinov, A. E. Zhukov, A. Y. Egorov, and N. A. Maleev, Quantum Dot Lasers (Oxford U. Press, 2003).
[CrossRef]

Vasil’ev, A. P.

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 μm range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[CrossRef]

Viktorov, E.

E. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A. G. Vladimirov, and M. Wolfrum, “Stability of the modelocked regime in quantum dot lasers,” Appl. Phys. Lett. 91, 231116 (2007).
[CrossRef]

E. Viktorov, P. Mandel, A. G. Vladimirov, and U. Bandelow, “A model for mode-locking in quantum dot lasers,” Appl. Phys. Lett. 88, 201102 (2006).
[CrossRef]

Viktorov, E. A.

G. Fiol, D. Arsenijević, D. Bimberg, A. G. Vladimirov, M. Wolfrum, E. A. Viktorov, and P. Mandel, “Hybrid mode-locking in a 40 GHz monolithic quantum dot laser,” Appl. Phys. Lett. 96, 011104 (2010).
[CrossRef]

E. A. Viktorov, T. Erneux, P. Mandel, T. Piwonski, G. Madden, J. Pulka, G. Huyet, and J. Houlihan, “Recovery time scales in a reversed-biased quantum dot absorber,” Appl. Phys. Lett. 94, 263502 (2009).
[CrossRef]

T. Erneux, E. A. Viktorov, P. Mandel, T. Piwonski, G. Huyet, and J. Houlihan, “The fast recovery dynamics of a quantum dot semiconductor optical amplifier,” Appl. Phys. Lett. 94, 113501 (2009).
[CrossRef]

Vladimirov, A.

D. Rachinskii, A. Vladimirov, U. Bandelow, B. Hüttl, and R. Kaiser, “Q-switching instability in a mode-locked semiconductor laser,” J. Opt. Soc. Am. B 23, 663–670 (2006).
[CrossRef]

A. Vladimirov and D. Turaev, “Model for passive mode-locking in semiconductor lasers,” Phys. Rev. A 72, 033808 (2005).
[CrossRef]

A. Vladimirov, D. Turaev, and G. Kozyreff, “Delay differential equations for mode-locked semiconductor lasers,” Opt. Lett. 29, 1221–1223 (2004).
[CrossRef] [PubMed]

A. Vladimirov and D. Turaev, “New model for mode-locking in semiconductor lasers,” Radiophys. Quantum Electron. 47, 769–776 (2004).
[CrossRef]

Vladimirov, A. G.

G. Fiol, D. Arsenijević, D. Bimberg, A. G. Vladimirov, M. Wolfrum, E. A. Viktorov, and P. Mandel, “Hybrid mode-locking in a 40 GHz monolithic quantum dot laser,” Appl. Phys. Lett. 96, 011104 (2010).
[CrossRef]

A. G. Vladimirov, A. S. Pimenov, and D. Rachinskii, “Numerical study of dynamical regimes in a monolithic passively mode-locked semiconductor laser,” IEEE J. Quantum Electron. 45, 462–468 (2009).
[CrossRef]

E. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A. G. Vladimirov, and M. Wolfrum, “Stability of the modelocked regime in quantum dot lasers,” Appl. Phys. Lett. 91, 231116 (2007).
[CrossRef]

E. Viktorov, P. Mandel, A. G. Vladimirov, and U. Bandelow, “A model for mode-locking in quantum dot lasers,” Appl. Phys. Lett. 88, 201102 (2006).
[CrossRef]

U. Bandelow, M. Radziunas, A. G. Vladimirov, B. Hüttl, and R. Kaiser, “40 GHz modelocked semiconductor lasers: Theory, simulations and experiment,” Opt. Quantum Electron. 38, 495–512 (2006).
[CrossRef]

B. Hüttl, R. Kaiser, C. Kindel, S. Fidorra, W. Rehbein, H. Stolpe, G. Sahin, U. Bandelow, M. Radziunas, A. G. Vladimirov, and H. Heidrich, “Monolithic 40 GHz mqw mode-locked lasers on GaInAsP/InP with low pulse widths and controlled Q-switching,” Appl. Phys. Lett. 88, 221104 (2006).
[CrossRef]

Wang, Z. C.

L. Shi, Y. H. Chen, B. Xu, Z. C. Wang, Y. H. Jiao, and Z. G. Wang, “Status and trends of short pulse generation using mode-locked lasers based on advanced quantum-dot active media,” J. Phys. D: Appl. Phys. 40, R307–R318 (2007).
[CrossRef]

Wang, Z. G.

L. Shi, Y. H. Chen, B. Xu, Z. C. Wang, Y. H. Jiao, and Z. G. Wang, “Status and trends of short pulse generation using mode-locked lasers based on advanced quantum-dot active media,” J. Phys. D: Appl. Phys. 40, R307–R318 (2007).
[CrossRef]

Wenzel, H.

U. Bandelow, H. Wenzel, and H. Wünsche, “Influence of inhomogeneous injection on sidemode suppression in strongly coupled DFB semiconductor lasers,” Electron. Lett. 28, 1324–1326 (1992).
[CrossRef]

White, I. H.

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85, 843 (2004).
[CrossRef]

Y. Chu, R. V. Penty, and I. H. White, “Measurement of the linewidth enhancement factor of quantum dot lasers using external light injection,” in Pacific Rim Conference on Lasers and Electro-Optics (2005), pp. 59-60.
[CrossRef]

Woggon, U.

J. Gomis-Bresco, S. Dommers, V. V. Temnov, U. Woggon, J. Martinez-Pastor, M. Laemmlin, and D. Bimberg, “InGaAs quantum dots coupled to a reservoir of nonequilibrium free carriers,” IEEE J. Quantum Electron. 45, 1121–1128 (2009).
[CrossRef]

Wolfrum, M.

G. Fiol, D. Arsenijević, D. Bimberg, A. G. Vladimirov, M. Wolfrum, E. A. Viktorov, and P. Mandel, “Hybrid mode-locking in a 40 GHz monolithic quantum dot laser,” Appl. Phys. Lett. 96, 011104 (2010).
[CrossRef]

E. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A. G. Vladimirov, and M. Wolfrum, “Stability of the modelocked regime in quantum dot lasers,” Appl. Phys. Lett. 91, 231116 (2007).
[CrossRef]

Wünsche, H.

U. Bandelow, H. Wenzel, and H. Wünsche, “Influence of inhomogeneous injection on sidemode suppression in strongly coupled DFB semiconductor lasers,” Electron. Lett. 28, 1324–1326 (1992).
[CrossRef]

Xu, B.

L. Shi, Y. H. Chen, B. Xu, Z. C. Wang, Y. H. Jiao, and Z. G. Wang, “Status and trends of short pulse generation using mode-locked lasers based on advanced quantum-dot active media,” J. Phys. D: Appl. Phys. 40, R307–R318 (2007).
[CrossRef]

Yokoyama, H.

L. A. Jiang, E. P. Ippen, and H. Yokoyama, “Semiconductor mode-locked lasers as pulse sources for high bit rate data transmission” in Ultrahigh-Speed Optical Transmission Technology (Springer, 2007), pp. 21–51.
[CrossRef]

Zadiranov, Y.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section modelocked quantum-dot laser,” Appl. Phys. Lett. 87, 081107 (2005).
[CrossRef]

Zhukov, A. E.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section modelocked quantum-dot laser,” Appl. Phys. Lett. 87, 081107 (2005).
[CrossRef]

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85, 843 (2004).
[CrossRef]

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 μm range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[CrossRef]

V. M. Ustinov, A. E. Zhukov, A. Y. Egorov, and N. A. Maleev, Quantum Dot Lasers (Oxford U. Press, 2003).
[CrossRef]

Appl. Phys. Lett. (9)

T. Erneux, E. A. Viktorov, P. Mandel, T. Piwonski, G. Huyet, and J. Houlihan, “The fast recovery dynamics of a quantum dot semiconductor optical amplifier,” Appl. Phys. Lett. 94, 113501 (2009).
[CrossRef]

E. A. Viktorov, T. Erneux, P. Mandel, T. Piwonski, G. Madden, J. Pulka, G. Huyet, and J. Houlihan, “Recovery time scales in a reversed-biased quantum dot absorber,” Appl. Phys. Lett. 94, 263502 (2009).
[CrossRef]

E. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A. G. Vladimirov, and M. Wolfrum, “Stability of the modelocked regime in quantum dot lasers,” Appl. Phys. Lett. 91, 231116 (2007).
[CrossRef]

G. Fiol, D. Arsenijević, D. Bimberg, A. G. Vladimirov, M. Wolfrum, E. A. Viktorov, and P. Mandel, “Hybrid mode-locking in a 40 GHz monolithic quantum dot laser,” Appl. Phys. Lett. 96, 011104 (2010).
[CrossRef]

B. Hüttl, R. Kaiser, C. Kindel, S. Fidorra, W. Rehbein, H. Stolpe, G. Sahin, U. Bandelow, M. Radziunas, A. G. Vladimirov, and H. Heidrich, “Monolithic 40 GHz mqw mode-locked lasers on GaInAsP/InP with low pulse widths and controlled Q-switching,” Appl. Phys. Lett. 88, 221104 (2006).
[CrossRef]

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85, 843 (2004).
[CrossRef]

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section modelocked quantum-dot laser,” Appl. Phys. Lett. 87, 081107 (2005).
[CrossRef]

M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006).
[CrossRef]

E. Viktorov, P. Mandel, A. G. Vladimirov, and U. Bandelow, “A model for mode-locking in quantum dot lasers,” Appl. Phys. Lett. 88, 201102 (2006).
[CrossRef]

Electron. Lett. (2)

D. Bimberg, “Quantum dot based nanophotonics and nanoelectronics,” Electron. Lett. 44(3), 168–170 (2008).
[CrossRef]

U. Bandelow, H. Wenzel, and H. Wünsche, “Influence of inhomogeneous injection on sidemode suppression in strongly coupled DFB semiconductor lasers,” Electron. Lett. 28, 1324–1326 (1992).
[CrossRef]

IEEE J. Quantum Electron. (3)

G. Fiol, C. Meuer, H. Schmeckebier, D. Arsenijević, S. Liebich, M. Laemmlin, M. Kuntz, and D. Bimberg, “Quantum-dot semiconductor mode-locked lasers and amplifiers at 40 GHz,” IEEE J. Quantum Electron. 45, 1429–1435 (2009).
[CrossRef]

A. G. Vladimirov, A. S. Pimenov, and D. Rachinskii, “Numerical study of dynamical regimes in a monolithic passively mode-locked semiconductor laser,” IEEE J. Quantum Electron. 45, 462–468 (2009).
[CrossRef]

J. Gomis-Bresco, S. Dommers, V. V. Temnov, U. Woggon, J. Martinez-Pastor, M. Laemmlin, and D. Bimberg, “InGaAs quantum dots coupled to a reservoir of nonequilibrium free carriers,” IEEE J. Quantum Electron. 45, 1121–1128 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

A. Markus, J. X. Chen, O. Gauthier-Lafaye, J.-G. Provost, C. Paranthën, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 9, 1308–1314 (2003).
[CrossRef]

F. X. Kärtner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers––what is the difference?” IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998).
[CrossRef]

J. Appl. Phys. (1)

A. Markus, M. Rossetti, V. Calligari, D. Chek-Al-Kar, J. X. Chen, A. Fiore, and R. Scollo, “Two-state switching and dynamics in quantum dot two-section lasers,” J. Appl. Phys. 100, 113104 (2006).
[CrossRef]

J. Cryst. Growth (1)

A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 μm range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

L. Shi, Y. H. Chen, B. Xu, Z. C. Wang, Y. H. Jiao, and Z. G. Wang, “Status and trends of short pulse generation using mode-locked lasers based on advanced quantum-dot active media,” J. Phys. D: Appl. Phys. 40, R307–R318 (2007).
[CrossRef]

Nat. Photonics (1)

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1, 395–401 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

A. Vladimirov, D. Turaev, and G. Kozyreff, “Delay differential equations for mode-locked semiconductor lasers,” Opt. Lett. 29, 1221–1223 (2004).
[CrossRef] [PubMed]

D. O’Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov, “Sensitivity of quantum-dot semiconductor lasers to optical feedback,” Opt. Lett. 29, 1–3 (2004).
[CrossRef]

Opt. Quantum Electron. (1)

U. Bandelow, M. Radziunas, A. G. Vladimirov, B. Hüttl, and R. Kaiser, “40 GHz modelocked semiconductor lasers: Theory, simulations and experiment,” Opt. Quantum Electron. 38, 495–512 (2006).
[CrossRef]

Phys. Rev. A (1)

A. Vladimirov and D. Turaev, “Model for passive mode-locking in semiconductor lasers,” Phys. Rev. A 72, 033808 (2005).
[CrossRef]

Proc. IEEE (1)

M. Kuntz, G. Fiol, M. Laemmlin, C. Meuer, and D. Bimberg, “High-speed mode-locked quantum-dot lasers and optical amplifiers,” Proc. IEEE 95, 1767–1778 (2007).
[CrossRef]

Radiophys. Quantum Electron. (1)

A. Vladimirov and D. Turaev, “New model for mode-locking in semiconductor lasers,” Radiophys. Quantum Electron. 47, 769–776 (2004).
[CrossRef]

Other (5)

K. Engelborghs, T. Luzyanina, and G. Samaey, DDE-BIFTOOL V. 2.00: A Matlab Package for Bifurcation Analysis of Delay Differential Equations, Tech. Rep. TW-330 (Department of Computer Science, K.U. Leuven, 2001).

N. Guglielmi and E. Hairer, Users’ Guide for the Code RADAR5, version 2.1, Tech. Rep. (Università dell' Aquila, 2005).

L. A. Jiang, E. P. Ippen, and H. Yokoyama, “Semiconductor mode-locked lasers as pulse sources for high bit rate data transmission” in Ultrahigh-Speed Optical Transmission Technology (Springer, 2007), pp. 21–51.
[CrossRef]

V. M. Ustinov, A. E. Zhukov, A. Y. Egorov, and N. A. Maleev, Quantum Dot Lasers (Oxford U. Press, 2003).
[CrossRef]

Y. Chu, R. V. Penty, and I. H. White, “Measurement of the linewidth enhancement factor of quantum dot lasers using external light injection,” in Pacific Rim Conference on Lasers and Electro-Optics (2005), pp. 59-60.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Left: Dependence of the integral carrier density in the 2D reservoir N g and occupation probability in QDs P g in the gain section on the injection parameter g 0 for the solution with zero laser intensity. Right: Dependence of the laser intensity on the injection parameter g 0 . 1—monostable behavior, short absorber section l g = 0.9   mm , l q = 0.1   mm . 2—bistable behavior, longer absorber section, l g = 0.8   mm , l q = 0.2   mm . Other parameters are T = 25   ps , s = 15 , Γ 1 = 0.4   ps , κ = 0.3 , γ g 1 = 1   ns , γ q 1 = 1   ns , δ g 1 = 1   ns , δ q 1 = 10   ps , g g = 4 mm 1 , g q = 10 mm 1 , b g 1 = 5   ps , b q 1 = 5   ps , r g 1 = 100   ps , r q 1 = 10   ps .

Fig. 2
Fig. 2

Bifurcation diagram illustrating the sequence of dynamical regimes that takes place with the increase in the injection parameter g 0 Stable (unstable) solutions are shown by solid (dotted) lines. cw, ml, and ml2 correspond to continuous wave, fundamental ML, and harmonic ML regimes, respectively. ml 2 indicates the harmonic ML regime with two different pulses. The gray dots indicate the extrema of the absolute value of the electric field amplitude | A | obtained by means of direct numerical simulation of Eqs. (4, 5, 6, 7, 8). Arrows indicate jumps between different regimes; Γ 1 = 0.5   ps . (a) l g = 0.8   mm , l q = 0.2   mm , g g = 2.22 mm 1 , g q = 20 mm 1 , δ q 1 = 10   ps , b g 1 = 1   ps , b q 1 = 20   ps , r g 1 = 1   ns , r q 1 = 10   ps . (b) l g = 0.9   mm , l q = 0.1   mm , g g = 4 mm 1 , g q = 20 mm 1 , δ q 1 = 5   ps , r g 1 = 250   ps , r q 1 = 6.67   ps . Other parameters are the same as for Fig. 1b.

Fig. 3
Fig. 3

(a) Bifurcation tree obtained by numerical simulation of Eqs. (1, 2, 3). Black dots correspond to maxima of intensity time traces calculated at different values of the injection parameter g 0 = η g l g . Period-doubling bifurcations of the harmonic ML regime are labeled PD. (b) Harmonic ML regime with two pulses having different peak intensities and separations calculated for g 0 = η g l g = 0.5 . l g = 1.125   mm , l q = 0.125   mm , Γ 1 = 0.25   ps , κ 1 , 2 = 0.55 , β g = β q = 0 , g g = 2 mm 1 , g q = 9 mm 1 , r g 1 = 20   ps , r q 1 = 1   ns , γ g 1 = γ q 1 = 1   ns , δ g 1 = 1   ns , δ q 1 = 10   ps .

Fig. 4
Fig. 4

Field amplitude time traces (top) and power spectra (bottom) illustrating dynamical regimes shown in Fig. 2b. (a) Fundamental ML; (b) Q-switched ML; (c) pure Q-switching (qs).

Fig. 5
Fig. 5

Regions of different dynamical states in the plane of two parameters, the injection parameter g 0 and the capture rate b g (escape rate r g ) in the gain section are shown in the left (right) panel. Different laser operation regimes are indicated by different levels of gray color. White, light gray, dark gray, gray, and black areas indicate, respectively, laser off, continuous wave (cw), fundamental ML (ml), harmonic ML (ml2), and Q-switching (qs) regimes. The gray area between fundamental ML and Q-switching domains corresponds to Q-switched ML regime (qsml); s = 15 , γ q 1 = 10   ps . Left (right) panel corresponds to r g 1 = 250   ps and r q 1 = 5   ps ( b g 1 = 5   ps and r q 1 = 2.5   ps ). Other parameters are the same as in Fig. 1b.

Fig. 6
Fig. 6

Diagrams similar to those in Fig. 5 obtained by changing the capture rate b q (left) and the escape rate r g (right) in the absorber section; b g 1 = 5   ps , r g 1 = 250   ps . Left (right) panel corresponds to r q 1 = 5   ps ( b q 1 = 5   ps ) . Other parameters are the same as in Fig. 5.

Fig. 7
Fig. 7

Regions of different dynamical states in the plane of two parameters, injection parameter g 0 and absorber 2D reservoir relaxation rate δ q . The notation is similar to that in Fig. 5: ml, fundamental ML regime; ml2, harmonic ML with approximately twice higher repetition rate; qs, Q-switching; qsml, Q-switched ML; cw, continuous wave regime. Parameters are the same as in Fig. 6.

Fig. 8
Fig. 8

Transition from Q-switching to fundamental ML regime. Top: ESA traces for three different currents at −4 V reverse bias. The offsets of the 23 and 24 mA traces have been shifted for better visibility. qs, Q-switching; qsml, Q-switched ML; ml, fundamental ML. Bottom: Different gray levels indicate the difference of the Q-switching spectral peak amplitude and the amplitude of the ML peak. Areas where no lasing or fundamental ML takes place are gray striped and labeled. The black region denotes pure Q-switching. The thin black line marks the value “0,” where Q-switching and ML spectral peaks have equal amplitudes.

Fig. 9
Fig. 9

Experimentally measured evolution of the pulse peak amplitude and pulse width with the increase in the injection current. Top: Autocorrelator traces obtained for currents ranging from 30 to 100 mA at a fixed absorber voltage of −8 V. Bottom: Evolution of the peak amplitude with injection current extracted from the autocorrelator traces presented in the top figure. The operating regimes shown in Fig. 8 are marked using numbered grayscale bars.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E ± d t ± E ± z = β g , q 2 E ± + g g , q 2 ( 2 ρ 1 ) E ± ,
ρ t = γ g , q ρ r g , q ρ + b g , q n ( 1 ρ ) g g , q ( 2 ρ 1 ) ( | E + | 2 + | E | 2 ) ,
n t = η g , q δ g , q n + 2 r g , q ρ 2 b g , q n ( 1 ρ ) .
Γ 1 d A d t + A = κ e G ( t T ) / 2 + Q ( t T ) / 2 A ( t T ) ,
d P g d t = ( γ g + r g ) P g + b g N g ( 1 P g ) e Q ( e G 1 ) | A | 2 ,
d P q d t = ( γ q + r q ) P q + b q N q ( 1 P q ) s ( e Q 1 ) | A | 2 ,
d N g d t = δ g ( g 0 N g ) + 2 r g P g 2 b g N g ( 1 P g ) ,
d N q d t = δ q N q + 2 r q P q 2 b q N q ( 1 P q ) .
A = 0 ,     P g = P g 0 ,     N g = N g 0 ,     P q = N q = 0 ,
g g l g g q l q + ln   κ < 0 ,

Metrics