Abstract

Emission spectra in the 2401100  nm wavelength region as well as the temporally resolved decay of Yb3+ and point defect spontaneous emission have been recorded when aluminosilicate optical fibers doped with Yb are irradiated with 160  fs laser pulses having a central wavelength of 250  nm (ω=5  eV). Photoexcitation of the fibers in this region of the deep ultraviolet (UV) provides access simultaneously to the Type II Si oxygen deficiency center (ODC), the non-bridging oxygen hole center (NBOHC: an oxygen-excess defect), and the Ge ODC. Emission from all of these defects in the ultraviolet and/or visible is observed, as is intense fluorescence at 976 nm from Yb3+. Absorption measurements conducted in the 230265  nm region with a sequence of UV light-emitting diodes reveal a continuum peaking at 248 nm and having a spectral width of 18  nm (FWHM), confirming that the 250 nm laser pump is photoexciting predominantly the ODC. The temporal histories of the optically active defect and rare earth ion emission waveforms, in combination with time-integrated spectra, suggest that the Si ODC(II) triplet state directly excites Yb3+ as well as at least one other intrinsic defect in the silica network. Prolonged exposure of the Yb-doped fibers to 250 nm radiation yields increased Yb3+, NBOHC, and Si ODC(II) singlet emission which is accompanied by a decline in Si ODC(II) triplet fluorescence, thus reinforcing the conclusion—drawn on the basis of luminescence decay constants—that the triplet state of Si ODC(II) is the immediate precursor to the NBOHC and is partially responsible for Yb ion emission at 976 nm. This conclusion is consistent with the observation that exposure of fiber to 5 eV radiation slightly suppresses ODC absorption in the 240255  nm region while simultaneously introducing an absorption continuum extending from 260 nm to below 235 nm (ω5.28  eV). These results suggest that ODCE center conversion assumes a role in excitation transfer to Yb3+.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Amossov and A. O. Rybaltovsky, “Oxygen-deficient centers in silica glasses: a review of their properties and structure,” J. Non-Cryst. Solids 179, 75–83 (1994).
    [CrossRef]
  2. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998).
    [CrossRef]
  3. J. J. Koponen, M. J. Soderlund, H. J. Hoffman, and S. K. T. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 14, 11539–11544 (2006).
    [CrossRef] [PubMed]
  4. I. Manek-Hönninger, J. Boullet, T. Cardinal, F. Guillen, S. Ermeneux, M. Podgorski, R. Bello Doua, and F. Salin, “Photodarkening and photobleaching of an ytterbium-doped silica double-clad LMA fiber,” Opt. Express 15, 1606–1611 (2007).
    [CrossRef] [PubMed]
  5. S. Jetschke, S. Unger, U. Ropke, and J. Kirchhof, “Photodarkening in Yb doped fibers: Experimental evidence of equilibrium states depending on the pump power,” Opt. Express 15, 14838–14843 (2007).
    [CrossRef] [PubMed]
  6. S. Yoo, C. Basu, A. J. Boyland, C. Sones, J. Nilsson, J. K. Sahu, and D. Payne, “Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation,” Opt. Lett. 32, 1626–1628 (2007).
    [CrossRef] [PubMed]
  7. M. Engholm, L. Norin, and D. Åberg, “Strong UV absorption and visible luminescence in ytterbium-doped aluminosilicate glass under UV excitation,” Opt. Lett. 32, 3352–3354 (2007).
    [CrossRef] [PubMed]
  8. M. Engholm and L. Norin, “Preventing photodarkening in ytterbium-doped high power fiber lasers: correlation to the UV-transparency of the core glass,” Opt. Express 16, 1260–1268 (2008).
    [CrossRef] [PubMed]
  9. V. B. Neustruev, “Colour centers in germanosilicate glass and optical fibers,” J. Phys. Condens. Matter 6, 6901–6936 (1994).
    [CrossRef]
  10. F. Meinardi and A. Paleari, “Native and radiation-induced photoluminescent defects in SiO2: Role of impurities,” Phys. Rev. B 58, 3511–3514 (1998).
    [CrossRef]
  11. A. Trukhin, J. Jansons, and K. Truhins, “Luminescence of silica glass containing aluminum oxide,” J. Non-Cryst. Solids 347, 80–86 (2004).
    [CrossRef]
  12. P. D. Dragic, C. G. Carlson, and A. Croteau, “Characterization of defect center luminescence in Yb-doped silica fibers; Part I: NBOHC,” Opt. Express 16, 4688–4697 (2008).
    [CrossRef] [PubMed]
  13. M. Engholm and L. Norin, “Comment on ‘Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation’,” Opt. Lett. 33, 1216 (2008).
    [CrossRef] [PubMed]
  14. S. Yoo, C. Basu, A. J. Boyland, C. Sones, J. Nilsson, J. K. Sahu, and D. Payne, “Reply to comment on ‘Photodarkening in Yb-doped aluminosilicate fibers induced by 488 nm irradiation’,” Opt. Lett. 33, 1217–1218 (2008).
    [CrossRef]
  15. A. J. Cohen, “Neutron specific color center in fused silica and an impurity band of identical wavelength,” Phys. Rev. 105, 1151–1155 (1957).
    [CrossRef]
  16. V. A. Gritsenko, A. V. Shaposhnikov, G. M. Zhidomirov, and M. Roger, “Two fold coordinated silicon atom: a hole trap in SiO2,” Solid State Commun. 121, 301–304 (2002).
    [CrossRef]
  17. J. Garapon, L. Favaro, and B. Poumellec, “Computed paramagnetic properties for an E′ center produced from the twofold coordinated Si or Ge in silica,” J. Non-Cryst. Solids 353, 605–609 (2007).
    [CrossRef]
  18. A. V. Kir'yanov, Y. O. Barmenkov, I. L. Martinez, A. S. Kurkov, and E. M. Dianov, “Cooperative luminescence and absorption in ytterbium-doped silica fiber and the fiber nonlinear transmission coefficient at λ=980 nm with a regard to the ytterbium ion-pairs’ effect,” Opt. Express 14, 3981–3992 (2006).
    [CrossRef] [PubMed]
  19. K. Arai, H. Imai, J. Isoya, H. Hosono, Y. Abe, and H. Imagawa, “Evidence for pair generation of an E′ center and a nonbridging oxygen-hole center in γ-ray-irradiated fluorine-doped low-OH synthetic silica glasses,” Phys. Rev. B 45, 10818–10821 (1992).
    [CrossRef]
  20. H. Imai, K. Arai, J. Isoya, H. Hosono, Y. Abe, and H. Imagawa, “Generation of E′ centers and oxygen hole centers in synthetic silica glasses by γ irradiation,” Phys. Rev. B 48, 3116–3123 (1993).
    [CrossRef]
  21. J. Nishii, K. Fukumi, H. Yamanaka, K. Kawamura, H. Hosono, and H. Kawazoe, “Photochemical reactions in GeO2SiO2 glasses induced by ultraviolet irradiation: Comparison between Hg lamp and excimer laser,” Phys. Rev. B 52, 1661–1665 (1995).
    [CrossRef]
  22. H. Nishikawa, R. Nakamura, Y. Ohki, and Y. Hama, “Enhanced photogeneration of E′ centers from neutral oxygen vacancies in the presence of hydrogen in high-purity silica glass,” Phys. Rev. B 48, 2968–2973 (1993).
    [CrossRef]
  23. J. Stone and C. A. Burrus, “Neodymium-doped silica lasers in end-pumped fiber geometry,” Appl. Phys. Lett. 23, 388–389 (1973).
    [CrossRef]
  24. K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59, 3430–3436 (1986).
    [CrossRef]
  25. S. Magne, Y. Ouerdane, M. Druetta, J. P. Goure, P. Ferdinand, and G. Monnom, “Cooperative luminescence in an ytterbium-doped silica fibre,” Opt. Commun. 111, 310–316 (1994).
    [CrossRef]
  26. J.-W. Lee, G. H. Sigel, and J. Li, “Processing-induced defects in optical waveguide materials,” J. Non-Cryst. Solids 239, 57–65 (1998).
    [CrossRef]

2008 (4)

2007 (5)

2006 (2)

2004 (1)

A. Trukhin, J. Jansons, and K. Truhins, “Luminescence of silica glass containing aluminum oxide,” J. Non-Cryst. Solids 347, 80–86 (2004).
[CrossRef]

2002 (1)

V. A. Gritsenko, A. V. Shaposhnikov, G. M. Zhidomirov, and M. Roger, “Two fold coordinated silicon atom: a hole trap in SiO2,” Solid State Commun. 121, 301–304 (2002).
[CrossRef]

1998 (3)

F. Meinardi and A. Paleari, “Native and radiation-induced photoluminescent defects in SiO2: Role of impurities,” Phys. Rev. B 58, 3511–3514 (1998).
[CrossRef]

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998).
[CrossRef]

J.-W. Lee, G. H. Sigel, and J. Li, “Processing-induced defects in optical waveguide materials,” J. Non-Cryst. Solids 239, 57–65 (1998).
[CrossRef]

1995 (1)

J. Nishii, K. Fukumi, H. Yamanaka, K. Kawamura, H. Hosono, and H. Kawazoe, “Photochemical reactions in GeO2SiO2 glasses induced by ultraviolet irradiation: Comparison between Hg lamp and excimer laser,” Phys. Rev. B 52, 1661–1665 (1995).
[CrossRef]

1994 (3)

S. Magne, Y. Ouerdane, M. Druetta, J. P. Goure, P. Ferdinand, and G. Monnom, “Cooperative luminescence in an ytterbium-doped silica fibre,” Opt. Commun. 111, 310–316 (1994).
[CrossRef]

A. V. Amossov and A. O. Rybaltovsky, “Oxygen-deficient centers in silica glasses: a review of their properties and structure,” J. Non-Cryst. Solids 179, 75–83 (1994).
[CrossRef]

V. B. Neustruev, “Colour centers in germanosilicate glass and optical fibers,” J. Phys. Condens. Matter 6, 6901–6936 (1994).
[CrossRef]

1993 (2)

H. Imai, K. Arai, J. Isoya, H. Hosono, Y. Abe, and H. Imagawa, “Generation of E′ centers and oxygen hole centers in synthetic silica glasses by γ irradiation,” Phys. Rev. B 48, 3116–3123 (1993).
[CrossRef]

H. Nishikawa, R. Nakamura, Y. Ohki, and Y. Hama, “Enhanced photogeneration of E′ centers from neutral oxygen vacancies in the presence of hydrogen in high-purity silica glass,” Phys. Rev. B 48, 2968–2973 (1993).
[CrossRef]

1992 (1)

K. Arai, H. Imai, J. Isoya, H. Hosono, Y. Abe, and H. Imagawa, “Evidence for pair generation of an E′ center and a nonbridging oxygen-hole center in γ-ray-irradiated fluorine-doped low-OH synthetic silica glasses,” Phys. Rev. B 45, 10818–10821 (1992).
[CrossRef]

1986 (1)

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59, 3430–3436 (1986).
[CrossRef]

1973 (1)

J. Stone and C. A. Burrus, “Neodymium-doped silica lasers in end-pumped fiber geometry,” Appl. Phys. Lett. 23, 388–389 (1973).
[CrossRef]

1957 (1)

A. J. Cohen, “Neutron specific color center in fused silica and an impurity band of identical wavelength,” Phys. Rev. 105, 1151–1155 (1957).
[CrossRef]

Abe, Y.

H. Imai, K. Arai, J. Isoya, H. Hosono, Y. Abe, and H. Imagawa, “Generation of E′ centers and oxygen hole centers in synthetic silica glasses by γ irradiation,” Phys. Rev. B 48, 3116–3123 (1993).
[CrossRef]

K. Arai, H. Imai, J. Isoya, H. Hosono, Y. Abe, and H. Imagawa, “Evidence for pair generation of an E′ center and a nonbridging oxygen-hole center in γ-ray-irradiated fluorine-doped low-OH synthetic silica glasses,” Phys. Rev. B 45, 10818–10821 (1992).
[CrossRef]

Åberg, D.

Amossov, A. V.

A. V. Amossov and A. O. Rybaltovsky, “Oxygen-deficient centers in silica glasses: a review of their properties and structure,” J. Non-Cryst. Solids 179, 75–83 (1994).
[CrossRef]

Arai, K.

H. Imai, K. Arai, J. Isoya, H. Hosono, Y. Abe, and H. Imagawa, “Generation of E′ centers and oxygen hole centers in synthetic silica glasses by γ irradiation,” Phys. Rev. B 48, 3116–3123 (1993).
[CrossRef]

K. Arai, H. Imai, J. Isoya, H. Hosono, Y. Abe, and H. Imagawa, “Evidence for pair generation of an E′ center and a nonbridging oxygen-hole center in γ-ray-irradiated fluorine-doped low-OH synthetic silica glasses,” Phys. Rev. B 45, 10818–10821 (1992).
[CrossRef]

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59, 3430–3436 (1986).
[CrossRef]

Barmenkov, Y. O.

Basu, C.

Bello Doua, R.

Boullet, J.

Boyland, A. J.

Burrus, C. A.

J. Stone and C. A. Burrus, “Neodymium-doped silica lasers in end-pumped fiber geometry,” Appl. Phys. Lett. 23, 388–389 (1973).
[CrossRef]

Cardinal, T.

Carlson, C. G.

Cohen, A. J.

A. J. Cohen, “Neutron specific color center in fused silica and an impurity band of identical wavelength,” Phys. Rev. 105, 1151–1155 (1957).
[CrossRef]

Croteau, A.

Dianov, E. M.

Dragic, P. D.

Druetta, M.

S. Magne, Y. Ouerdane, M. Druetta, J. P. Goure, P. Ferdinand, and G. Monnom, “Cooperative luminescence in an ytterbium-doped silica fibre,” Opt. Commun. 111, 310–316 (1994).
[CrossRef]

Engholm, M.

Ermeneux, S.

Favaro, L.

J. Garapon, L. Favaro, and B. Poumellec, “Computed paramagnetic properties for an E′ center produced from the twofold coordinated Si or Ge in silica,” J. Non-Cryst. Solids 353, 605–609 (2007).
[CrossRef]

Ferdinand, P.

S. Magne, Y. Ouerdane, M. Druetta, J. P. Goure, P. Ferdinand, and G. Monnom, “Cooperative luminescence in an ytterbium-doped silica fibre,” Opt. Commun. 111, 310–316 (1994).
[CrossRef]

Fukumi, K.

J. Nishii, K. Fukumi, H. Yamanaka, K. Kawamura, H. Hosono, and H. Kawazoe, “Photochemical reactions in GeO2SiO2 glasses induced by ultraviolet irradiation: Comparison between Hg lamp and excimer laser,” Phys. Rev. B 52, 1661–1665 (1995).
[CrossRef]

Garapon, J.

J. Garapon, L. Favaro, and B. Poumellec, “Computed paramagnetic properties for an E′ center produced from the twofold coordinated Si or Ge in silica,” J. Non-Cryst. Solids 353, 605–609 (2007).
[CrossRef]

Goure, J. P.

S. Magne, Y. Ouerdane, M. Druetta, J. P. Goure, P. Ferdinand, and G. Monnom, “Cooperative luminescence in an ytterbium-doped silica fibre,” Opt. Commun. 111, 310–316 (1994).
[CrossRef]

Gritsenko, V. A.

V. A. Gritsenko, A. V. Shaposhnikov, G. M. Zhidomirov, and M. Roger, “Two fold coordinated silicon atom: a hole trap in SiO2,” Solid State Commun. 121, 301–304 (2002).
[CrossRef]

Guillen, F.

Hama, Y.

H. Nishikawa, R. Nakamura, Y. Ohki, and Y. Hama, “Enhanced photogeneration of E′ centers from neutral oxygen vacancies in the presence of hydrogen in high-purity silica glass,” Phys. Rev. B 48, 2968–2973 (1993).
[CrossRef]

Handa, T.

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59, 3430–3436 (1986).
[CrossRef]

Hoffman, H. J.

Honda, T.

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59, 3430–3436 (1986).
[CrossRef]

Hosono, H.

J. Nishii, K. Fukumi, H. Yamanaka, K. Kawamura, H. Hosono, and H. Kawazoe, “Photochemical reactions in GeO2SiO2 glasses induced by ultraviolet irradiation: Comparison between Hg lamp and excimer laser,” Phys. Rev. B 52, 1661–1665 (1995).
[CrossRef]

H. Imai, K. Arai, J. Isoya, H. Hosono, Y. Abe, and H. Imagawa, “Generation of E′ centers and oxygen hole centers in synthetic silica glasses by γ irradiation,” Phys. Rev. B 48, 3116–3123 (1993).
[CrossRef]

K. Arai, H. Imai, J. Isoya, H. Hosono, Y. Abe, and H. Imagawa, “Evidence for pair generation of an E′ center and a nonbridging oxygen-hole center in γ-ray-irradiated fluorine-doped low-OH synthetic silica glasses,” Phys. Rev. B 45, 10818–10821 (1992).
[CrossRef]

Imagawa, H.

H. Imai, K. Arai, J. Isoya, H. Hosono, Y. Abe, and H. Imagawa, “Generation of E′ centers and oxygen hole centers in synthetic silica glasses by γ irradiation,” Phys. Rev. B 48, 3116–3123 (1993).
[CrossRef]

K. Arai, H. Imai, J. Isoya, H. Hosono, Y. Abe, and H. Imagawa, “Evidence for pair generation of an E′ center and a nonbridging oxygen-hole center in γ-ray-irradiated fluorine-doped low-OH synthetic silica glasses,” Phys. Rev. B 45, 10818–10821 (1992).
[CrossRef]

Imai, H.

H. Imai, K. Arai, J. Isoya, H. Hosono, Y. Abe, and H. Imagawa, “Generation of E′ centers and oxygen hole centers in synthetic silica glasses by γ irradiation,” Phys. Rev. B 48, 3116–3123 (1993).
[CrossRef]

K. Arai, H. Imai, J. Isoya, H. Hosono, Y. Abe, and H. Imagawa, “Evidence for pair generation of an E′ center and a nonbridging oxygen-hole center in γ-ray-irradiated fluorine-doped low-OH synthetic silica glasses,” Phys. Rev. B 45, 10818–10821 (1992).
[CrossRef]

Ishii, Y.

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59, 3430–3436 (1986).
[CrossRef]

Isoya, J.

H. Imai, K. Arai, J. Isoya, H. Hosono, Y. Abe, and H. Imagawa, “Generation of E′ centers and oxygen hole centers in synthetic silica glasses by γ irradiation,” Phys. Rev. B 48, 3116–3123 (1993).
[CrossRef]

K. Arai, H. Imai, J. Isoya, H. Hosono, Y. Abe, and H. Imagawa, “Evidence for pair generation of an E′ center and a nonbridging oxygen-hole center in γ-ray-irradiated fluorine-doped low-OH synthetic silica glasses,” Phys. Rev. B 45, 10818–10821 (1992).
[CrossRef]

Jansons, J.

A. Trukhin, J. Jansons, and K. Truhins, “Luminescence of silica glass containing aluminum oxide,” J. Non-Cryst. Solids 347, 80–86 (2004).
[CrossRef]

Jetschke, S.

Kawamura, K.

J. Nishii, K. Fukumi, H. Yamanaka, K. Kawamura, H. Hosono, and H. Kawazoe, “Photochemical reactions in GeO2SiO2 glasses induced by ultraviolet irradiation: Comparison between Hg lamp and excimer laser,” Phys. Rev. B 52, 1661–1665 (1995).
[CrossRef]

Kawazoe, H.

J. Nishii, K. Fukumi, H. Yamanaka, K. Kawamura, H. Hosono, and H. Kawazoe, “Photochemical reactions in GeO2SiO2 glasses induced by ultraviolet irradiation: Comparison between Hg lamp and excimer laser,” Phys. Rev. B 52, 1661–1665 (1995).
[CrossRef]

Kirchhof, J.

Kir'yanov, A. V.

Koponen, J. J.

Kumata, K.

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59, 3430–3436 (1986).
[CrossRef]

Kurkov, A. S.

Lee, J. -W.

J.-W. Lee, G. H. Sigel, and J. Li, “Processing-induced defects in optical waveguide materials,” J. Non-Cryst. Solids 239, 57–65 (1998).
[CrossRef]

Li, J.

J.-W. Lee, G. H. Sigel, and J. Li, “Processing-induced defects in optical waveguide materials,” J. Non-Cryst. Solids 239, 57–65 (1998).
[CrossRef]

Magne, S.

S. Magne, Y. Ouerdane, M. Druetta, J. P. Goure, P. Ferdinand, and G. Monnom, “Cooperative luminescence in an ytterbium-doped silica fibre,” Opt. Commun. 111, 310–316 (1994).
[CrossRef]

Manek-Hönninger, I.

Martinez, I. L.

Meinardi, F.

F. Meinardi and A. Paleari, “Native and radiation-induced photoluminescent defects in SiO2: Role of impurities,” Phys. Rev. B 58, 3511–3514 (1998).
[CrossRef]

Monnom, G.

S. Magne, Y. Ouerdane, M. Druetta, J. P. Goure, P. Ferdinand, and G. Monnom, “Cooperative luminescence in an ytterbium-doped silica fibre,” Opt. Commun. 111, 310–316 (1994).
[CrossRef]

Nakamura, R.

H. Nishikawa, R. Nakamura, Y. Ohki, and Y. Hama, “Enhanced photogeneration of E′ centers from neutral oxygen vacancies in the presence of hydrogen in high-purity silica glass,” Phys. Rev. B 48, 2968–2973 (1993).
[CrossRef]

Namikawa, H.

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59, 3430–3436 (1986).
[CrossRef]

Neustruev, V. B.

V. B. Neustruev, “Colour centers in germanosilicate glass and optical fibers,” J. Phys. Condens. Matter 6, 6901–6936 (1994).
[CrossRef]

Nilsson, J.

Nishii, J.

J. Nishii, K. Fukumi, H. Yamanaka, K. Kawamura, H. Hosono, and H. Kawazoe, “Photochemical reactions in GeO2SiO2 glasses induced by ultraviolet irradiation: Comparison between Hg lamp and excimer laser,” Phys. Rev. B 52, 1661–1665 (1995).
[CrossRef]

Nishikawa, H.

H. Nishikawa, R. Nakamura, Y. Ohki, and Y. Hama, “Enhanced photogeneration of E′ centers from neutral oxygen vacancies in the presence of hydrogen in high-purity silica glass,” Phys. Rev. B 48, 2968–2973 (1993).
[CrossRef]

Norin, L.

Ohki, Y.

H. Nishikawa, R. Nakamura, Y. Ohki, and Y. Hama, “Enhanced photogeneration of E′ centers from neutral oxygen vacancies in the presence of hydrogen in high-purity silica glass,” Phys. Rev. B 48, 2968–2973 (1993).
[CrossRef]

Ouerdane, Y.

S. Magne, Y. Ouerdane, M. Druetta, J. P. Goure, P. Ferdinand, and G. Monnom, “Cooperative luminescence in an ytterbium-doped silica fibre,” Opt. Commun. 111, 310–316 (1994).
[CrossRef]

Paleari, A.

F. Meinardi and A. Paleari, “Native and radiation-induced photoluminescent defects in SiO2: Role of impurities,” Phys. Rev. B 58, 3511–3514 (1998).
[CrossRef]

Payne, D.

Podgorski, M.

Poumellec, B.

J. Garapon, L. Favaro, and B. Poumellec, “Computed paramagnetic properties for an E′ center produced from the twofold coordinated Si or Ge in silica,” J. Non-Cryst. Solids 353, 605–609 (2007).
[CrossRef]

Roger, M.

V. A. Gritsenko, A. V. Shaposhnikov, G. M. Zhidomirov, and M. Roger, “Two fold coordinated silicon atom: a hole trap in SiO2,” Solid State Commun. 121, 301–304 (2002).
[CrossRef]

Ropke, U.

Rybaltovsky, A. O.

A. V. Amossov and A. O. Rybaltovsky, “Oxygen-deficient centers in silica glasses: a review of their properties and structure,” J. Non-Cryst. Solids 179, 75–83 (1994).
[CrossRef]

Sahu, J. K.

Salin, F.

Shaposhnikov, A. V.

V. A. Gritsenko, A. V. Shaposhnikov, G. M. Zhidomirov, and M. Roger, “Two fold coordinated silicon atom: a hole trap in SiO2,” Solid State Commun. 121, 301–304 (2002).
[CrossRef]

Sigel, G. H.

J.-W. Lee, G. H. Sigel, and J. Li, “Processing-induced defects in optical waveguide materials,” J. Non-Cryst. Solids 239, 57–65 (1998).
[CrossRef]

Skuja, L.

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998).
[CrossRef]

Soderlund, M. J.

Sones, C.

Stone, J.

J. Stone and C. A. Burrus, “Neodymium-doped silica lasers in end-pumped fiber geometry,” Appl. Phys. Lett. 23, 388–389 (1973).
[CrossRef]

Tammela, S. K. T.

Truhins, K.

A. Trukhin, J. Jansons, and K. Truhins, “Luminescence of silica glass containing aluminum oxide,” J. Non-Cryst. Solids 347, 80–86 (2004).
[CrossRef]

Trukhin, A.

A. Trukhin, J. Jansons, and K. Truhins, “Luminescence of silica glass containing aluminum oxide,” J. Non-Cryst. Solids 347, 80–86 (2004).
[CrossRef]

Unger, S.

Yamanaka, H.

J. Nishii, K. Fukumi, H. Yamanaka, K. Kawamura, H. Hosono, and H. Kawazoe, “Photochemical reactions in GeO2SiO2 glasses induced by ultraviolet irradiation: Comparison between Hg lamp and excimer laser,” Phys. Rev. B 52, 1661–1665 (1995).
[CrossRef]

Yoo, S.

Zhidomirov, G. M.

V. A. Gritsenko, A. V. Shaposhnikov, G. M. Zhidomirov, and M. Roger, “Two fold coordinated silicon atom: a hole trap in SiO2,” Solid State Commun. 121, 301–304 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

J. Stone and C. A. Burrus, “Neodymium-doped silica lasers in end-pumped fiber geometry,” Appl. Phys. Lett. 23, 388–389 (1973).
[CrossRef]

J. Appl. Phys. (1)

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59, 3430–3436 (1986).
[CrossRef]

J. Non-Cryst. Solids (5)

J. Garapon, L. Favaro, and B. Poumellec, “Computed paramagnetic properties for an E′ center produced from the twofold coordinated Si or Ge in silica,” J. Non-Cryst. Solids 353, 605–609 (2007).
[CrossRef]

A. V. Amossov and A. O. Rybaltovsky, “Oxygen-deficient centers in silica glasses: a review of their properties and structure,” J. Non-Cryst. Solids 179, 75–83 (1994).
[CrossRef]

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998).
[CrossRef]

A. Trukhin, J. Jansons, and K. Truhins, “Luminescence of silica glass containing aluminum oxide,” J. Non-Cryst. Solids 347, 80–86 (2004).
[CrossRef]

J.-W. Lee, G. H. Sigel, and J. Li, “Processing-induced defects in optical waveguide materials,” J. Non-Cryst. Solids 239, 57–65 (1998).
[CrossRef]

J. Phys. Condens. Matter (1)

V. B. Neustruev, “Colour centers in germanosilicate glass and optical fibers,” J. Phys. Condens. Matter 6, 6901–6936 (1994).
[CrossRef]

Opt. Commun. (1)

S. Magne, Y. Ouerdane, M. Druetta, J. P. Goure, P. Ferdinand, and G. Monnom, “Cooperative luminescence in an ytterbium-doped silica fibre,” Opt. Commun. 111, 310–316 (1994).
[CrossRef]

Opt. Express (6)

Opt. Lett. (4)

Phys. Rev. (1)

A. J. Cohen, “Neutron specific color center in fused silica and an impurity band of identical wavelength,” Phys. Rev. 105, 1151–1155 (1957).
[CrossRef]

Phys. Rev. B (5)

K. Arai, H. Imai, J. Isoya, H. Hosono, Y. Abe, and H. Imagawa, “Evidence for pair generation of an E′ center and a nonbridging oxygen-hole center in γ-ray-irradiated fluorine-doped low-OH synthetic silica glasses,” Phys. Rev. B 45, 10818–10821 (1992).
[CrossRef]

H. Imai, K. Arai, J. Isoya, H. Hosono, Y. Abe, and H. Imagawa, “Generation of E′ centers and oxygen hole centers in synthetic silica glasses by γ irradiation,” Phys. Rev. B 48, 3116–3123 (1993).
[CrossRef]

J. Nishii, K. Fukumi, H. Yamanaka, K. Kawamura, H. Hosono, and H. Kawazoe, “Photochemical reactions in GeO2SiO2 glasses induced by ultraviolet irradiation: Comparison between Hg lamp and excimer laser,” Phys. Rev. B 52, 1661–1665 (1995).
[CrossRef]

H. Nishikawa, R. Nakamura, Y. Ohki, and Y. Hama, “Enhanced photogeneration of E′ centers from neutral oxygen vacancies in the presence of hydrogen in high-purity silica glass,” Phys. Rev. B 48, 2968–2973 (1993).
[CrossRef]

F. Meinardi and A. Paleari, “Native and radiation-induced photoluminescent defects in SiO2: Role of impurities,” Phys. Rev. B 58, 3511–3514 (1998).
[CrossRef]

Solid State Commun. (1)

V. A. Gritsenko, A. V. Shaposhnikov, G. M. Zhidomirov, and M. Roger, “Two fold coordinated silicon atom: a hole trap in SiO2,” Solid State Commun. 121, 301–304 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the experimental arrangement for measuring the temporal histories of several emission bands (both intrinsic defects and Yb 3 + ) photoexcited in Yb-doped aluminosilicate fibers by a frequency-tripled Ti:sapphire laser system. The acronym APD represents a Si avalanche photodiode detector.

Fig. 2
Fig. 2

Representative emission spectrum for a Yb-doped aluminosilicate fiber photoexcited at 250 nm (third harmonic of Ti:sapphire at 750 nm). Prominent features are identified, virtually all of which emanate from intrinsic defects in silica.

Fig. 3
Fig. 3

Expanded view of the Yb 3 + photoluminescence spectrum observed between 915 nm and 1060   nm when the Yb-doped aluminosilicate fiber is excited at λ L = 250   nm .

Fig. 4
Fig. 4

Representative data illustrating the temporal decay of Yb 3 + fluorescence in response to photoexcitation of Yb-doped aluminosilicate fibers at 250 or 976 nm: (a) Yb 3 + emission at 976 nm produced by λ L 250   nm pumping; (b) Yb 3 + emission at 1030 nm, also generated by λ L 250   nm ; and (c) Yb 3 + emission at 1030 nm resulting from photoexcitation at λ L = 976   nm .

Fig. 5
Fig. 5

Spectra similar to that of Fig. 2 but illustrating the enhanced formation (or suppression) of optically active defects as a result of the prolonged exposure of the Yb-doped fibers to 250 nm radiation: (Black curve) Initial photoluminescence spectrum in the 250–110 nm region; (red curve) spectrum recorded after 70   min of continuous pumping of the fiber.

Fig. 6
Fig. 6

Absorption spectra in the 235–265 nm wavelength interval for the Yb-doped aluminosilicate fibers examined in these experiments. Measurements were made by coupling the output of a UV-emitting LED (out of a set of four) into the fiber cladding. The solid curve is that recorded initially for the fiber while the dashed curve was acquired after prolonged exposure of the fiber to the deep UV (λL = 250 nm) pump. Note the increase in absorption for λ < 250 nm in the UV-irradiated fiber.

Fig. 7
Fig. 7

Difference (△) between the spectra of Fig. 6. The dashed curve indicates the apparent variation of the UV radiation-induced absorption continuum in the 240–258 nm wavelength interval.

Fig. 8
Fig. 8

Comparison of the absorption spectrum for a fiber, 30 cm in length, in the 240–260 nm interval with the relative efficiency for generating Yb3+ photoluminescence at several discrete excitation wavelengths in the same spectral region. Estimated uncertainties are indicated for the photoluminescence data (represented by the open circles).

Tables (1)

Tables Icon

Table 1 Summary of Measured Emission Lifetimes for Various 110Optical Defects and Yb 3 + in Yb-doped Aluminosilicate Fibers

Metrics