Abstract

This work both numerically and experimentally investigates reflectance spectra from a metallic compound grating and its alternative sets of componential gratings at wavelengths between 2.5 and 25μm. The numerical algorithm is based on the rigorous coupled-wave analysis, and the specular reflectance is measured with Fourier-transform infrared spectrometry. The impact dominance of each componential grating on the compound grating reflectance is thoroughly discussed considering the incidence polarization, grating geometry, and rules for profile synthesis. Tailored spectra by individual Wood’s anomaly and their interplay associated with the profile synthesis are also studied.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W.-C. Tan, J. R. Sambles, and T. W. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61, 13177–13182 (2000).
    [CrossRef]
  2. A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating,” Appl. Phys. Lett. 80, 2410–2412 (2002).
    [CrossRef]
  3. S. I. Grosz, D. C. Skigin, and A. N. Fantino, “Resonant effects in compound diffraction gratings: Influence of the geometrical parameters of the surface,” Phys. Rev. E 65, 056619 (2002).
    [CrossRef]
  4. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Low angular-dispersion microwave absorption of a dual-pitch nondiffracting metal bigrating,” Appl. Phys. Lett. 83, 806–808 (2003).
    [CrossRef]
  5. A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006).
    [CrossRef] [PubMed]
  6. D. C. Skigin and R. A. Depine, “Resonances on metallic compound transmission gratings with subwavelength wires and slits,” Opt. Commun. 262, 270–275 (2006).
    [CrossRef]
  7. D. C. Skigin and R. A. Depine, “Diffraction by dual-period gratings,” Appl. Opt. 46, 1385–1391 (2007).
    [CrossRef] [PubMed]
  8. M. Navarro-Cía, D. C. Skigin, M. Beruete, and M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94, 091107 (2009).
    [CrossRef]
  9. I. Balin, N. Dahan, V. Kleiner, and E. Hasman, “Bandgap structure of thermally excited surface phonon polaritons,” Appl. Phys. Lett. 96, 071911 (2010).
    [CrossRef]
  10. B. E. N. Keeler, D. W. Carr, J. P. Sullivan, T. A. Friedmann, and J. R. Wendt, “Experimental demonstration of a laterally deformable optical nanoelectromechanical system grating transducer,” Opt. Lett. 29, 1182–1184 (2004).
    [CrossRef] [PubMed]
  11. D. Crouse, “Numerical modeling and electromagnetic resonant modes in complex grating structures and optoelectronic device applications,” IEEE Trans. Electron Devices 52, 2365–2373 (2005).
    [CrossRef]
  12. Y.-B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269, 411–417 (2007).
    [CrossRef]
  13. Y.-B. Chen and Z. M. Zhang, “Heavily doped silicon complex gratings as wavelength-selective absorbing surfaces,” J. Phys. D: Appl. Phys. 41, 095406 (2008).
    [CrossRef]
  14. A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965).
    [CrossRef]
  15. A. Sharon, D. Rosenblatt, and A. A. Friesem, “Resonant grating waveguide structures for visible and near-infrared radiation,” J. Opt. Soc. Am. A 14, 2985–2993 (1997).
    [CrossRef]
  16. C. Kappel, A. Selle, M. A. Bader, and G. Marowsky, “Resonant double-grating waveguide structures as inverted Fabry–Perot interferometers,” J. Opt. Soc. Am. B 21, 1127–1136 (2004).
    [CrossRef]
  17. Y.-B. Chen, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of submicron metallic slits,” J. Heat Transfer 130, 082404 (2008).
    [CrossRef]
  18. E. D. Palik, Handbook of Optical Constants of Solids III (Academic, 1998).
  19. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).
  20. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).
    [CrossRef]
  21. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings—enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).
    [CrossRef]
  22. B. J. Lee, V. P. Khuu, and Z. M. Zhang, “Partially coherent spectral transmittance of dielectric thin films with rough surfaces,” J. Thermophys. Heat Transfer 19, 360–366 (2005).
    [CrossRef]
  23. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  24. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983).
    [CrossRef] [PubMed]
  25. B. J. Lee, Y.-B. Chen, and Z. M. Zhang, “Confinement of infrared radiation to nanometer scales through metallic slit arrays,” J. Quant. Spectrosc. Radiat. Transf. 109, 608–619 (2008).
    [CrossRef]
  26. S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” J. Heat Transfer 132, 023301 (2010).
    [CrossRef]

2010 (2)

I. Balin, N. Dahan, V. Kleiner, and E. Hasman, “Bandgap structure of thermally excited surface phonon polaritons,” Appl. Phys. Lett. 96, 071911 (2010).
[CrossRef]

S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” J. Heat Transfer 132, 023301 (2010).
[CrossRef]

2009 (1)

M. Navarro-Cía, D. C. Skigin, M. Beruete, and M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94, 091107 (2009).
[CrossRef]

2008 (3)

Y.-B. Chen and Z. M. Zhang, “Heavily doped silicon complex gratings as wavelength-selective absorbing surfaces,” J. Phys. D: Appl. Phys. 41, 095406 (2008).
[CrossRef]

B. J. Lee, Y.-B. Chen, and Z. M. Zhang, “Confinement of infrared radiation to nanometer scales through metallic slit arrays,” J. Quant. Spectrosc. Radiat. Transf. 109, 608–619 (2008).
[CrossRef]

Y.-B. Chen, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of submicron metallic slits,” J. Heat Transfer 130, 082404 (2008).
[CrossRef]

2007 (2)

Y.-B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269, 411–417 (2007).
[CrossRef]

D. C. Skigin and R. A. Depine, “Diffraction by dual-period gratings,” Appl. Opt. 46, 1385–1391 (2007).
[CrossRef] [PubMed]

2006 (2)

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006).
[CrossRef] [PubMed]

D. C. Skigin and R. A. Depine, “Resonances on metallic compound transmission gratings with subwavelength wires and slits,” Opt. Commun. 262, 270–275 (2006).
[CrossRef]

2005 (2)

D. Crouse, “Numerical modeling and electromagnetic resonant modes in complex grating structures and optoelectronic device applications,” IEEE Trans. Electron Devices 52, 2365–2373 (2005).
[CrossRef]

B. J. Lee, V. P. Khuu, and Z. M. Zhang, “Partially coherent spectral transmittance of dielectric thin films with rough surfaces,” J. Thermophys. Heat Transfer 19, 360–366 (2005).
[CrossRef]

2004 (2)

2003 (1)

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Low angular-dispersion microwave absorption of a dual-pitch nondiffracting metal bigrating,” Appl. Phys. Lett. 83, 806–808 (2003).
[CrossRef]

2002 (2)

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating,” Appl. Phys. Lett. 80, 2410–2412 (2002).
[CrossRef]

S. I. Grosz, D. C. Skigin, and A. N. Fantino, “Resonant effects in compound diffraction gratings: Influence of the geometrical parameters of the surface,” Phys. Rev. E 65, 056619 (2002).
[CrossRef]

2000 (1)

W.-C. Tan, J. R. Sambles, and T. W. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61, 13177–13182 (2000).
[CrossRef]

1997 (1)

1995 (1)

1983 (1)

1981 (1)

1965 (1)

1902 (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).

Alexander, R. W.

Bader, M. A.

Balin, I.

I. Balin, N. Dahan, V. Kleiner, and E. Hasman, “Bandgap structure of thermally excited surface phonon polaritons,” Appl. Phys. Lett. 96, 071911 (2010).
[CrossRef]

Basu, S.

S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” J. Heat Transfer 132, 023301 (2010).
[CrossRef]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Beruete, M.

M. Navarro-Cía, D. C. Skigin, M. Beruete, and M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94, 091107 (2009).
[CrossRef]

Carr, D. W.

Chen, Y. -B.

Y.-B. Chen, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of submicron metallic slits,” J. Heat Transfer 130, 082404 (2008).
[CrossRef]

Y.-B. Chen and Z. M. Zhang, “Heavily doped silicon complex gratings as wavelength-selective absorbing surfaces,” J. Phys. D: Appl. Phys. 41, 095406 (2008).
[CrossRef]

B. J. Lee, Y.-B. Chen, and Z. M. Zhang, “Confinement of infrared radiation to nanometer scales through metallic slit arrays,” J. Quant. Spectrosc. Radiat. Transf. 109, 608–619 (2008).
[CrossRef]

Y.-B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269, 411–417 (2007).
[CrossRef]

Crouse, D.

D. Crouse, “Numerical modeling and electromagnetic resonant modes in complex grating structures and optoelectronic device applications,” IEEE Trans. Electron Devices 52, 2365–2373 (2005).
[CrossRef]

Dahan, N.

I. Balin, N. Dahan, V. Kleiner, and E. Hasman, “Bandgap structure of thermally excited surface phonon polaritons,” Appl. Phys. Lett. 96, 071911 (2010).
[CrossRef]

Depine, R. A.

D. C. Skigin and R. A. Depine, “Diffraction by dual-period gratings,” Appl. Opt. 46, 1385–1391 (2007).
[CrossRef] [PubMed]

D. C. Skigin and R. A. Depine, “Resonances on metallic compound transmission gratings with subwavelength wires and slits,” Opt. Commun. 262, 270–275 (2006).
[CrossRef]

Fantino, A. N.

S. I. Grosz, D. C. Skigin, and A. N. Fantino, “Resonant effects in compound diffraction gratings: Influence of the geometrical parameters of the surface,” Phys. Rev. E 65, 056619 (2002).
[CrossRef]

Friedmann, T. A.

Friesem, A. A.

Gaylord, T. K.

Grann, E. B.

Grosz, S. I.

S. I. Grosz, D. C. Skigin, and A. N. Fantino, “Resonant effects in compound diffraction gratings: Influence of the geometrical parameters of the surface,” Phys. Rev. E 65, 056619 (2002).
[CrossRef]

Hasman, E.

I. Balin, N. Dahan, V. Kleiner, and E. Hasman, “Bandgap structure of thermally excited surface phonon polaritons,” Appl. Phys. Lett. 96, 071911 (2010).
[CrossRef]

Hessel, A.

Hibbins, A. P.

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006).
[CrossRef] [PubMed]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Low angular-dispersion microwave absorption of a dual-pitch nondiffracting metal bigrating,” Appl. Phys. Lett. 83, 806–808 (2003).
[CrossRef]

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating,” Appl. Phys. Lett. 80, 2410–2412 (2002).
[CrossRef]

Hooper, I. R.

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006).
[CrossRef] [PubMed]

Kappel, C.

Keeler, B. E. N.

Khuu, V. P.

B. J. Lee, V. P. Khuu, and Z. M. Zhang, “Partially coherent spectral transmittance of dielectric thin films with rough surfaces,” J. Thermophys. Heat Transfer 19, 360–366 (2005).
[CrossRef]

Kleiner, V.

I. Balin, N. Dahan, V. Kleiner, and E. Hasman, “Bandgap structure of thermally excited surface phonon polaritons,” Appl. Phys. Lett. 96, 071911 (2010).
[CrossRef]

Lawrence, C. R.

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Low angular-dispersion microwave absorption of a dual-pitch nondiffracting metal bigrating,” Appl. Phys. Lett. 83, 806–808 (2003).
[CrossRef]

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating,” Appl. Phys. Lett. 80, 2410–2412 (2002).
[CrossRef]

Lee, B. J.

S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” J. Heat Transfer 132, 023301 (2010).
[CrossRef]

B. J. Lee, Y.-B. Chen, and Z. M. Zhang, “Confinement of infrared radiation to nanometer scales through metallic slit arrays,” J. Quant. Spectrosc. Radiat. Transf. 109, 608–619 (2008).
[CrossRef]

Y.-B. Chen, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of submicron metallic slits,” J. Heat Transfer 130, 082404 (2008).
[CrossRef]

B. J. Lee, V. P. Khuu, and Z. M. Zhang, “Partially coherent spectral transmittance of dielectric thin films with rough surfaces,” J. Thermophys. Heat Transfer 19, 360–366 (2005).
[CrossRef]

Lockyear, M. J.

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006).
[CrossRef] [PubMed]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Low angular-dispersion microwave absorption of a dual-pitch nondiffracting metal bigrating,” Appl. Phys. Lett. 83, 806–808 (2003).
[CrossRef]

Long, L. L.

Marowsky, G.

Moharam, M. G.

Navarro-Cía, M.

M. Navarro-Cía, D. C. Skigin, M. Beruete, and M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94, 091107 (2009).
[CrossRef]

Oliner, A. A.

Ordal, M. A.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

E. D. Palik, Handbook of Optical Constants of Solids III (Academic, 1998).

Pommet, D. A.

Preist, T. W.

W.-C. Tan, J. R. Sambles, and T. W. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61, 13177–13182 (2000).
[CrossRef]

Rosenblatt, D.

Sambles, J. R.

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006).
[CrossRef] [PubMed]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Low angular-dispersion microwave absorption of a dual-pitch nondiffracting metal bigrating,” Appl. Phys. Lett. 83, 806–808 (2003).
[CrossRef]

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating,” Appl. Phys. Lett. 80, 2410–2412 (2002).
[CrossRef]

W.-C. Tan, J. R. Sambles, and T. W. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61, 13177–13182 (2000).
[CrossRef]

Selle, A.

Sharon, A.

Skigin, D. C.

M. Navarro-Cía, D. C. Skigin, M. Beruete, and M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94, 091107 (2009).
[CrossRef]

D. C. Skigin and R. A. Depine, “Diffraction by dual-period gratings,” Appl. Opt. 46, 1385–1391 (2007).
[CrossRef] [PubMed]

D. C. Skigin and R. A. Depine, “Resonances on metallic compound transmission gratings with subwavelength wires and slits,” Opt. Commun. 262, 270–275 (2006).
[CrossRef]

S. I. Grosz, D. C. Skigin, and A. N. Fantino, “Resonant effects in compound diffraction gratings: Influence of the geometrical parameters of the surface,” Phys. Rev. E 65, 056619 (2002).
[CrossRef]

Sorolla, M.

M. Navarro-Cía, D. C. Skigin, M. Beruete, and M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94, 091107 (2009).
[CrossRef]

Sullivan, J. P.

Tan, W. -C.

W.-C. Tan, J. R. Sambles, and T. W. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61, 13177–13182 (2000).
[CrossRef]

Ward, C. A.

Wendt, J. R.

Wood, R. W.

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).

Zhang, Z. M.

S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” J. Heat Transfer 132, 023301 (2010).
[CrossRef]

B. J. Lee, Y.-B. Chen, and Z. M. Zhang, “Confinement of infrared radiation to nanometer scales through metallic slit arrays,” J. Quant. Spectrosc. Radiat. Transf. 109, 608–619 (2008).
[CrossRef]

Y.-B. Chen, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of submicron metallic slits,” J. Heat Transfer 130, 082404 (2008).
[CrossRef]

Y.-B. Chen and Z. M. Zhang, “Heavily doped silicon complex gratings as wavelength-selective absorbing surfaces,” J. Phys. D: Appl. Phys. 41, 095406 (2008).
[CrossRef]

Y.-B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269, 411–417 (2007).
[CrossRef]

B. J. Lee, V. P. Khuu, and Z. M. Zhang, “Partially coherent spectral transmittance of dielectric thin films with rough surfaces,” J. Thermophys. Heat Transfer 19, 360–366 (2005).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (4)

M. Navarro-Cía, D. C. Skigin, M. Beruete, and M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94, 091107 (2009).
[CrossRef]

I. Balin, N. Dahan, V. Kleiner, and E. Hasman, “Bandgap structure of thermally excited surface phonon polaritons,” Appl. Phys. Lett. 96, 071911 (2010).
[CrossRef]

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating,” Appl. Phys. Lett. 80, 2410–2412 (2002).
[CrossRef]

M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Low angular-dispersion microwave absorption of a dual-pitch nondiffracting metal bigrating,” Appl. Phys. Lett. 83, 806–808 (2003).
[CrossRef]

IEEE Trans. Electron Devices (1)

D. Crouse, “Numerical modeling and electromagnetic resonant modes in complex grating structures and optoelectronic device applications,” IEEE Trans. Electron Devices 52, 2365–2373 (2005).
[CrossRef]

J. Heat Transfer (2)

Y.-B. Chen, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of submicron metallic slits,” J. Heat Transfer 130, 082404 (2008).
[CrossRef]

S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” J. Heat Transfer 132, 023301 (2010).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

Y.-B. Chen and Z. M. Zhang, “Heavily doped silicon complex gratings as wavelength-selective absorbing surfaces,” J. Phys. D: Appl. Phys. 41, 095406 (2008).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (1)

B. J. Lee, Y.-B. Chen, and Z. M. Zhang, “Confinement of infrared radiation to nanometer scales through metallic slit arrays,” J. Quant. Spectrosc. Radiat. Transf. 109, 608–619 (2008).
[CrossRef]

J. Thermophys. Heat Transfer (1)

B. J. Lee, V. P. Khuu, and Z. M. Zhang, “Partially coherent spectral transmittance of dielectric thin films with rough surfaces,” J. Thermophys. Heat Transfer 19, 360–366 (2005).
[CrossRef]

Opt. Commun. (2)

Y.-B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269, 411–417 (2007).
[CrossRef]

D. C. Skigin and R. A. Depine, “Resonances on metallic compound transmission gratings with subwavelength wires and slits,” Opt. Commun. 262, 270–275 (2006).
[CrossRef]

Opt. Lett. (1)

Philos. Mag. (1)

R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).

Phys. Rev. B (1)

W.-C. Tan, J. R. Sambles, and T. W. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61, 13177–13182 (2000).
[CrossRef]

Phys. Rev. E (1)

S. I. Grosz, D. C. Skigin, and A. N. Fantino, “Resonant effects in compound diffraction gratings: Influence of the geometrical parameters of the surface,” Phys. Rev. E 65, 056619 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006).
[CrossRef] [PubMed]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids III (Academic, 1998).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Cross-sectional profiles of the selected CG and its alternative three componential simple gratings (SG_1, SG_2, and SG_3). The profile synthesizing rules are explained with italic numbers 0 and 1, representing grooves and metallic lamellae, respectively. Grooves (0) of CG are formed when both numbers of componential gratings in a set at the same location are 0; on the other hand, lamellae (1) of CG result from the lamella of either SG. (b) Scanning electron microscope (SEM) images of all gratings.

Fig. 2
Fig. 2

Linearly polarized plane wave incidence on gratings with both reflected diffractions ( R ) in free space and transmitted diffractions ( T ) within a semi-transparent silicon substrate. The subscript numbers of R and T are the diffraction order such that R 0 is the specular reflected wave. The plane of incidence is on the x - z plane, and the angle of incidence is θ inc = 30 ° . The same wavevector magnitude of the incidence and reflected diffractions is k = 2 π / λ , while that of transmitted diffractions is multiplied by the refractive index of silicon n Si . Lateral components of each wavevector differ by multiples of Δ k x = 2 π / Λ . (a) The TE wave incidence on a short-period grating; (b) the TM wave incidence on a long-period grating.

Fig. 3
Fig. 3

(a) Fabrication process of all gratings; (b) the specular reflectance measurement setup. The fabrication includes four major steps, exposure, development, deposition, and liftoff. The measurement setup at θ inc = 30 ° is composed of two wire-grid polarizers, an IR source, an IR detector, and an accessory of the FT-IR spectrometry.

Fig. 4
Fig. 4

R 0 and R all spectra from SG_1: (a) TE wave incidence; (b) TM wave incidence. The dotted line with square marks, solid line, and short-dashed line represent R 0 from experiments (Exp.), R 0 from the RCWA, and R all from RCWA, respectively. Marks corresponding to Wood’s anomalies also specify the transition wavelengths of nonzeroth diffraction orders switching from propagating waves (at shorter wavelengths) to evanescent ones (at longer wavelengths).

Fig. 5
Fig. 5

R 0 and R all spectra from SG_2: (a) TE wave incidence; (b) TM wave incidence.

Fig. 6
Fig. 6

R 0 and R all spectra from SG_3 and CS: (a) TE wave incidence; (b) TM wave incidence. Lines with square marks, center lines, and long-dashed lines with triangle marks represent R 0 from experiments, R 0 from RCWA, and R all from RCWA, respectively.

Fig. 7
Fig. 7

Measured R 0 spectra from SG_1, SG_2, SG_3, and CG: (a) TE wave incidence; (b) TM wave incidence. SG_1, SG_2, SG_3, and CS spectra are plotted in red, green, blue, and black, respectively.

Tables (2)

Tables Icon

Table 1 Lateral Dimensions of the Selected CG and Its Componential Simple Gratings (SG_1, SG_2, and SG_3) in This Work

Tables Icon

Table 2 Wavelengths and Arrow Marks Corresponding to Wood’s Anomaly of Each Grating Attributed to Four Diffraction Orders ( R + 1 , R 1 , T + 1 , and T 1 ) a

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n FS   sin   θ R j = n FS   sin   θ inc + j λ Λ ,
n Si   sin   θ T j = n FS   sin   θ inc + j λ Λ ,
ε ( ω ) = ε ω p 2 ω 2 + i ω γ ,

Metrics