Abstract

In this paper, a parallel-plate ladder waveguide (PPLWG) is proposed for terahertz waveguiding. A modal analysis of the proposed structure is performed by the use of the generalized multipole technique and is verified using both the mode matching technique and the finite-element method. It is shown that guided modes of this waveguide are TEym even modes. The dispersion diagram, mode field distribution, and attenuation constant of the dominant mode are also presented. It is shown that by a proper choice of PPLWG dimensions, its mode confinement and dispersion profile can be adapted to typical requirements. Moreover, the field distribution of the dominant mode of a PPLWG can be matched to the TE1 mode of a parallel-plate waveguide which is of practical importance.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Wang and D. Mittleman, “Guided propagation of terahertz pulses on metal wires,” J. Opt. Soc. Am. B 22, 2001–2008 (2005).
    [CrossRef]
  2. R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24, 1431–1433 (1999).
    [CrossRef]
  3. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851–863 (2000).
    [CrossRef]
  4. S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987–1989 (2000).
    [CrossRef]
  5. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88, 4449–4451 (2000).
    [CrossRef]
  6. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26, 846–848 (2001).
    [CrossRef]
  7. R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11, 444–446 (2001).
    [CrossRef]
  8. A. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguide,” Appl. Phys. Lett. 87, 051101 (2005).
    [CrossRef]
  9. T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006).
    [CrossRef]
  10. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
    [CrossRef]
  11. T.-I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines,” Appl. Phys. Lett. 85, 6092–6094 (2004).
    [CrossRef]
  12. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
    [CrossRef] [PubMed]
  13. T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
    [CrossRef]
  14. S. A. Maier, S. R. Andrews, L. M. Moreno, and F. J. Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
    [CrossRef] [PubMed]
  15. S. Atakaramians, S. Afshar, B. Fischer, D. Abbott, and T. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16, 8845–8854 (2008).
    [CrossRef] [PubMed]
  16. D. Chen and H. Chen, “A novel low-loss terahertz waveguide: polymer tube,” Opt. Express 18, 3762–3767 (2010).
    [CrossRef] [PubMed]
  17. R. Mendis and D. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express 17, 14839–14850 (2009).
    [CrossRef] [PubMed]
  18. A. F. Harvey, “Periodic and guiding structures at microwave frequencies,” IRE Trans. Microwave Theory Tech. 8, 30–61 (1960).
    [CrossRef]
  19. R. F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, 1987).
  20. C. Hafner, Generalized Multipole Technique for Computational Electromagnetics (Artech House, 1990).
  21. N. Talebi and M. Shahabadi, “Application of generalized multipole technique to the analysis of discontinuities in substrate integrated waveguides,” PIER 69, 227–235 (2007).
    [CrossRef]
  22. N. Talebi, A. Mahjoubfar, and M. Shahabadi, “Plasmonic ring resonator,” J. Opt. Soc. Am. B 25, 2116–2122 (2008).
    [CrossRef]
  23. F. Xu and K. Wu, “Guided-wave and leakage characteristics of substrate integrated waveguide,” IEEE Trans. Microwave Theory Tech. 53, 66–73 (2005).
    [CrossRef]

2010 (1)

2009 (1)

2008 (2)

2007 (1)

N. Talebi and M. Shahabadi, “Application of generalized multipole technique to the analysis of discontinuities in substrate integrated waveguides,” PIER 69, 227–235 (2007).
[CrossRef]

2006 (2)

S. A. Maier, S. R. Andrews, L. M. Moreno, and F. J. Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006).
[CrossRef]

2005 (4)

K. Wang and D. Mittleman, “Guided propagation of terahertz pulses on metal wires,” J. Opt. Soc. Am. B 22, 2001–2008 (2005).
[CrossRef]

A. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguide,” Appl. Phys. Lett. 87, 051101 (2005).
[CrossRef]

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

F. Xu and K. Wu, “Guided-wave and leakage characteristics of substrate integrated waveguide,” IEEE Trans. Microwave Theory Tech. 53, 66–73 (2005).
[CrossRef]

2004 (2)

T.-I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines,” Appl. Phys. Lett. 85, 6092–6094 (2004).
[CrossRef]

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[CrossRef] [PubMed]

2002 (1)

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

2001 (2)

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26, 846–848 (2001).
[CrossRef]

R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11, 444–446 (2001).
[CrossRef]

2000 (3)

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851–863 (2000).
[CrossRef]

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987–1989 (2000).
[CrossRef]

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88, 4449–4451 (2000).
[CrossRef]

1999 (1)

1960 (1)

A. F. Harvey, “Periodic and guiding structures at microwave frequencies,” IRE Trans. Microwave Theory Tech. 8, 30–61 (1960).
[CrossRef]

Abbott, D.

Afshar, S.

Andrews, S. R.

S. A. Maier, S. R. Andrews, L. M. Moreno, and F. J. Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Atakaramians, S.

Bingham, A.

A. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguide,” Appl. Phys. Lett. 87, 051101 (2005).
[CrossRef]

Chen, D.

Chen, H.

Cho, M.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

Fischer, B.

Gallot, G.

Grischkowsky, D.

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006).
[CrossRef]

A. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguide,” Appl. Phys. Lett. 87, 051101 (2005).
[CrossRef]

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

T.-I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines,” Appl. Phys. Lett. 85, 6092–6094 (2004).
[CrossRef]

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26, 846–848 (2001).
[CrossRef]

R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11, 444–446 (2001).
[CrossRef]

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987–1989 (2000).
[CrossRef]

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88, 4449–4451 (2000).
[CrossRef]

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851–863 (2000).
[CrossRef]

R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24, 1431–1433 (1999).
[CrossRef]

Hafner, C.

C. Hafner, Generalized Multipole Technique for Computational Electromagnetics (Artech House, 1990).

Han, H.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

Harrington, R. F.

R. F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, 1987).

Harvey, A. F.

A. F. Harvey, “Periodic and guiding structures at microwave frequencies,” IRE Trans. Microwave Theory Tech. 8, 30–61 (1960).
[CrossRef]

Jamison, S. P.

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987–1989 (2000).
[CrossRef]

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851–863 (2000).
[CrossRef]

Jeon, T. -I.

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006).
[CrossRef]

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

T.-I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines,” Appl. Phys. Lett. 85, 6092–6094 (2004).
[CrossRef]

Kim, J.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

Mahjoubfar, A.

Maier, S. A.

S. A. Maier, S. R. Andrews, L. M. Moreno, and F. J. Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

McGowan, R. W.

Mendis, R.

Mittleman, D.

Mittleman, D. M.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[CrossRef] [PubMed]

Monro, T.

Moreno, L. M.

S. A. Maier, S. R. Andrews, L. M. Moreno, and F. J. Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Park, H.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

Shahabadi, M.

N. Talebi, A. Mahjoubfar, and M. Shahabadi, “Plasmonic ring resonator,” J. Opt. Soc. Am. B 25, 2116–2122 (2008).
[CrossRef]

N. Talebi and M. Shahabadi, “Application of generalized multipole technique to the analysis of discontinuities in substrate integrated waveguides,” PIER 69, 227–235 (2007).
[CrossRef]

Talebi, N.

N. Talebi, A. Mahjoubfar, and M. Shahabadi, “Plasmonic ring resonator,” J. Opt. Soc. Am. B 25, 2116–2122 (2008).
[CrossRef]

N. Talebi and M. Shahabadi, “Application of generalized multipole technique to the analysis of discontinuities in substrate integrated waveguides,” PIER 69, 227–235 (2007).
[CrossRef]

Vidal, F. J.

S. A. Maier, S. R. Andrews, L. M. Moreno, and F. J. Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

Wang, K.

Wu, K.

F. Xu and K. Wu, “Guided-wave and leakage characteristics of substrate integrated waveguide,” IEEE Trans. Microwave Theory Tech. 53, 66–73 (2005).
[CrossRef]

Xu, F.

F. Xu and K. Wu, “Guided-wave and leakage characteristics of substrate integrated waveguide,” IEEE Trans. Microwave Theory Tech. 53, 66–73 (2005).
[CrossRef]

Zhang, J.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

Zhao, Y.

A. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguide,” Appl. Phys. Lett. 87, 051101 (2005).
[CrossRef]

Appl. Phys. Lett. (6)

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987–1989 (2000).
[CrossRef]

A. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguide,” Appl. Phys. Lett. 87, 051101 (2005).
[CrossRef]

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006).
[CrossRef]

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

T.-I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines,” Appl. Phys. Lett. 85, 6092–6094 (2004).
[CrossRef]

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett. (1)

R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11, 444–446 (2001).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

F. Xu and K. Wu, “Guided-wave and leakage characteristics of substrate integrated waveguide,” IEEE Trans. Microwave Theory Tech. 53, 66–73 (2005).
[CrossRef]

IRE Trans. Microwave Theory Tech. (1)

A. F. Harvey, “Periodic and guiding structures at microwave frequencies,” IRE Trans. Microwave Theory Tech. 8, 30–61 (1960).
[CrossRef]

J. Appl. Phys. (1)

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88, 4449–4451 (2000).
[CrossRef]

J. Opt. Soc. Am. B (3)

Nature (1)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

S. A. Maier, S. R. Andrews, L. M. Moreno, and F. J. Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006).
[CrossRef] [PubMed]

PIER (1)

N. Talebi and M. Shahabadi, “Application of generalized multipole technique to the analysis of discontinuities in substrate integrated waveguides,” PIER 69, 227–235 (2007).
[CrossRef]

Other (2)

R. F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, 1987).

C. Hafner, Generalized Multipole Technique for Computational Electromagnetics (Artech House, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Proposed PPLWG: (b) front-view and (c) side-view.

Fig. 2
Fig. 2

Analysis of PPLWG using GMT: locations of multipoles and excitation points are marked by ⊗ and ×, respectively.

Fig. 3
Fig. 3

Simulation of wave propagation in PPLWG by FEM. The magnitude of electric field in the plane of propagation is superimposed.

Fig. 4
Fig. 4

Analysis of PPLWG with H = 150 μ m , L = 40 μ m , W = 5 μ m , and t = 10 μ m by GMT, MMT, and FEM. (a) Normalized phase constant of PPLWG. (b) Attenuation constant of PPLWG compared to TEM and TE 1 modes of PPWG.

Fig. 5
Fig. 5

Effect of spatial period on the waveguiding characteristics of PPLWG: (a) normalized phase constant, (b) attenuation constant, (c) normalized group velocity, and (d) intensity of E x along the x-axis at z = L / 2 , y = H / 2 , and f = 2.5   THz .

Fig. 6
Fig. 6

Broadening the bandwidth of PPLWG dominant mode by increasing the distance of parallel plates ( H ) : (a) normalized phase constant, (b) attenuation constant, (c) normalized group velocity, and (d) intensity of E x along the x-axis at f = 3.0   THz .

Fig. 7
Fig. 7

Enhancing the confinement of PPLWG by increasing the width of tapes ( W ) : (a) normalized phase constant, (b) attenuation constant, (c) normalized group velocity, and (d) intensity of E x along the x-axis at f = 2.2   THz .

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

H y ( r ) = sin ( m π y H ) p = 1 P { n = 0 N p cos ( n φ p ) [ A p n J n ( k r R p ) + B p n N n ( k r R p ) ] + n = 1 N p sin ( n φ p ) [ C p n J n ( k r R p ) + D p n N n ( k r R p ) ] } ,
H y ( r ) = sin ( m π y H ) q = Q Q C q   exp [ j ( β + 2 q π / L ) z ] exp [ γ q ( | x | W o ) ] ,
γ q 2 = ( m π / H ) 2 + ( β + 2 q π / L ) 2 k 0 2 ,     Re { γ q } 0.
H y exc ( r ) = sin ( m π y H ) [ J 0 ( k r R exc ) j α N 0 ( k r R exc ) ] ,
λ c m = 2 H m ,
γ 0 2 = ( m π / H ) 2 + β 2 k 0 2 .
k 0 2 ( m π / H ) 2 β 2 ( π / L ) 2 .
λ > 2 H m 1 + ( H / m L ) 2 .
f u f l < 1 + ( H m L ) 2 ,
α c = P loss 2 P t [ Np / m ] ,
P t = 1 2 Re { E × H z ̂ d s } [ W ] ,
P loss = R s 2 L | H tng | 2 d s [ W / m ] ,

Metrics