Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

EIT-assisted large cross-Kerr nonlinearity in a four-level inverted-Y atomic system

Not Accessible

Your library or personal account may give you access

Abstract

A four-level inverted-Y scheme with an electromagnetically induced transparency (EIT) core is investigated for the enhancement of cross-Kerr effect in rubidium atoms. When detunings of the coupling and control fields are appropriately set, an enhanced EIT window is observed, and the induced phase shift of the probe field due to cross-phase modulation (XPM) is obtained by measuring the dispersive property of the probe transition. The maximal XPM phase shift is about 12° under the current experimental conditions. The experimental measurements agree well with the theoretical calculations. The enhanced XPM phase shift in such an atomic system has applications in quantum nonlinear optics and quantum information science.

© 2010 Optical Society of America

Full Article  |  PDF Article
More Like This
Enhanced cross-Kerr nonlinearity via electromagnetically induced transparency in a four-level tripod atomic system

Xudong Yang, Shujing Li, Chunhong Zhang, and Hai Wang
J. Opt. Soc. Am. B 26(7) 1423-1434 (2009)

Manipulating giant cross-Kerr nonlinearity at multiple frequencies in an atomic gaseous medium

Le van Doai, Nguyen Le Thuy An, Dinh Xuan Khoa, Vu Ngọc Sau, and Nguyen Huy Bang
J. Opt. Soc. Am. B 36(10) 2856-2862 (2019)

Fifth-order nonlinearity and 3-qubit phase gate in a five-level tripod atomic system

Pengbo Li, Ying Gu, Lijun Wang, and Qihuang Gong
J. Opt. Soc. Am. B 25(4) 504-512 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved