Abstract

An optical black hole is studied using a parallel radially dependent finite-difference time-domain (FDTD) simulation technique. The device requires non-dispersive metamaterial structures and is capable of broadband operation, based on transformation optics. Excellent absorption is demonstrated for different angles of wave incidence and illumination excitation types. In addition, a practical device, which is made to be matched to free space, is proposed, and the relevant physics is explored. Finally, peculiar phase distributions of the electromagnetic waves are observed inside the radially dependent permittivity material of the devices.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [CrossRef] [PubMed]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
    [CrossRef] [PubMed]
  3. J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
    [CrossRef] [PubMed]
  4. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
    [CrossRef] [PubMed]
  5. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009).
    [CrossRef]
  6. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3, 461–463 (2009).
    [CrossRef]
  7. J. H. Lee, J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express 17, 12922–12928 (2009).
    [CrossRef] [PubMed]
  8. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
    [CrossRef] [PubMed]
  9. J. Ng, H. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett. 34, 644–646 (2009).
    [CrossRef] [PubMed]
  10. C. Argyropoulos, E. Kallos, Y. Zhao, and Y. Hao, “Manipulating the loss in electromagnetic cloaks for perfect wave absorption,” Opt. Express 17, 8467–8475 (2009).
    [CrossRef] [PubMed]
  11. E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95, 041106 (2009).
    [CrossRef]
  12. D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys. 5, 687–692 (2009).
    [CrossRef]
  13. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [CrossRef] [PubMed]
  14. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205–213 (2010).
    [CrossRef]
  15. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
    [CrossRef]
  16. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
    [CrossRef]
  17. E. Kallos, C. Argyropoulos, and Y. Hao, “Ground-plane quasicloaking for free space,” Phys. Rev. A 79, 063825 (2009).
    [CrossRef]
  18. H. F. Ma, W. X. Jiang, X. M. Yang, X. Y. Zhou, and T. J. Cui, “Compact-sized and broadband carpet cloak and free-space cloak,” Opt. Express 17, 19947–19959 (2009).
    [CrossRef] [PubMed]
  19. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  20. C. Argyropoulos, Y. Zhao, and Y. Hao, “A radially-dependent dispersive finite-difference time-domain method for the evaluation of electromagnetic cloaks,” IEEE Trans. Antennas Propag. 57, 1432–1441 (2009).
    [CrossRef]
  21. C. Argyropoulos, E. Kallos, and Y. Hao, “Dispersive cylindrical cloaks under nonmonochromatic illumination,” Phys. Rev. E 81, 016611 (2010).
    [CrossRef]
  22. K. C. Chew and V. F. Fusco, “A parallel implementation of the finite difference time-domain algorithm,” Int. J. Numer. Model. 8, 293–299 (1995).
    [CrossRef]
  23. J.-P. Bérenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
    [CrossRef]

2010 (4)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205–213 (2010).
[CrossRef]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[CrossRef]

C. Argyropoulos, E. Kallos, and Y. Hao, “Dispersive cylindrical cloaks under nonmonochromatic illumination,” Phys. Rev. E 81, 016611 (2010).
[CrossRef]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef] [PubMed]

2009 (11)

J. Ng, H. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett. 34, 644–646 (2009).
[CrossRef] [PubMed]

C. Argyropoulos, E. Kallos, Y. Zhao, and Y. Hao, “Manipulating the loss in electromagnetic cloaks for perfect wave absorption,” Opt. Express 17, 8467–8475 (2009).
[CrossRef] [PubMed]

J. H. Lee, J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express 17, 12922–12928 (2009).
[CrossRef] [PubMed]

H. F. Ma, W. X. Jiang, X. M. Yang, X. Y. Zhou, and T. J. Cui, “Compact-sized and broadband carpet cloak and free-space cloak,” Opt. Express 17, 19947–19959 (2009).
[CrossRef] [PubMed]

E. Kallos, C. Argyropoulos, and Y. Hao, “Ground-plane quasicloaking for free space,” Phys. Rev. A 79, 063825 (2009).
[CrossRef]

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95, 041106 (2009).
[CrossRef]

D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys. 5, 687–692 (2009).
[CrossRef]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009).
[CrossRef]

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3, 461–463 (2009).
[CrossRef]

C. Argyropoulos, Y. Zhao, and Y. Hao, “A radially-dependent dispersive finite-difference time-domain method for the evaluation of electromagnetic cloaks,” IEEE Trans. Antennas Propag. 57, 1432–1441 (2009).
[CrossRef]

2008 (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[CrossRef] [PubMed]

2006 (2)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[CrossRef] [PubMed]

1995 (1)

K. C. Chew and V. F. Fusco, “A parallel implementation of the finite difference time-domain algorithm,” Int. J. Numer. Model. 8, 293–299 (1995).
[CrossRef]

1994 (1)

J.-P. Bérenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

1966 (1)

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[CrossRef]

Argyropoulos, C.

C. Argyropoulos, E. Kallos, and Y. Hao, “Dispersive cylindrical cloaks under nonmonochromatic illumination,” Phys. Rev. E 81, 016611 (2010).
[CrossRef]

C. Argyropoulos, E. Kallos, Y. Zhao, and Y. Hao, “Manipulating the loss in electromagnetic cloaks for perfect wave absorption,” Opt. Express 17, 8467–8475 (2009).
[CrossRef] [PubMed]

E. Kallos, C. Argyropoulos, and Y. Hao, “Ground-plane quasicloaking for free space,” Phys. Rev. A 79, 063825 (2009).
[CrossRef]

C. Argyropoulos, Y. Zhao, and Y. Hao, “A radially-dependent dispersive finite-difference time-domain method for the evaluation of electromagnetic cloaks,” IEEE Trans. Antennas Propag. 57, 1432–1441 (2009).
[CrossRef]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205–213 (2010).
[CrossRef]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[CrossRef]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009).
[CrossRef]

Bérenger, J. -P.

J.-P. Bérenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

Blair, J.

Brenner, P.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[CrossRef]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[CrossRef]

Cardenas, J.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3, 461–463 (2009).
[CrossRef]

Chan, C. T.

Chen, H.

Chew, K. C.

K. C. Chew and V. F. Fusco, “A parallel implementation of the finite difference time-domain algorithm,” Int. J. Numer. Model. 8, 293–299 (1995).
[CrossRef]

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef] [PubMed]

Cui, T. J.

Ergin, T.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef] [PubMed]

Fusco, V. F.

K. C. Chew and V. F. Fusco, “A parallel implementation of the finite difference time-domain algorithm,” Int. J. Numer. Model. 8, 293–299 (1995).
[CrossRef]

Gabrielli, L. H.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3, 461–463 (2009).
[CrossRef]

Genov, D. A.

D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys. 5, 687–692 (2009).
[CrossRef]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Hao, Y.

C. Argyropoulos, E. Kallos, and Y. Hao, “Dispersive cylindrical cloaks under nonmonochromatic illumination,” Phys. Rev. E 81, 016611 (2010).
[CrossRef]

C. Argyropoulos, E. Kallos, Y. Zhao, and Y. Hao, “Manipulating the loss in electromagnetic cloaks for perfect wave absorption,” Opt. Express 17, 8467–8475 (2009).
[CrossRef] [PubMed]

C. Argyropoulos, Y. Zhao, and Y. Hao, “A radially-dependent dispersive finite-difference time-domain method for the evaluation of electromagnetic cloaks,” IEEE Trans. Antennas Propag. 57, 1432–1441 (2009).
[CrossRef]

E. Kallos, C. Argyropoulos, and Y. Hao, “Ground-plane quasicloaking for free space,” Phys. Rev. A 79, 063825 (2009).
[CrossRef]

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef] [PubMed]

Jiang, W. X.

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[CrossRef]

Kallos, E.

C. Argyropoulos, E. Kallos, and Y. Hao, “Dispersive cylindrical cloaks under nonmonochromatic illumination,” Phys. Rev. E 81, 016611 (2010).
[CrossRef]

C. Argyropoulos, E. Kallos, Y. Zhao, and Y. Hao, “Manipulating the loss in electromagnetic cloaks for perfect wave absorption,” Opt. Express 17, 8467–8475 (2009).
[CrossRef] [PubMed]

E. Kallos, C. Argyropoulos, and Y. Hao, “Ground-plane quasicloaking for free space,” Phys. Rev. A 79, 063825 (2009).
[CrossRef]

Kildishev, A. V.

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95, 041106 (2009).
[CrossRef]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Lee, J. H.

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[CrossRef] [PubMed]

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009).
[CrossRef]

J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[CrossRef] [PubMed]

Lipson, M.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3, 461–463 (2009).
[CrossRef]

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef] [PubMed]

Ma, H. F.

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Narimanov, E. E.

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95, 041106 (2009).
[CrossRef]

Ng, J.

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Park, W.

Pendry, J. B.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

Poitras, C. B.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3, 461–463 (2009).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205–213 (2010).
[CrossRef]

Rhee, S. J.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[CrossRef]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

Smith, D. R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

Stenger, N.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef] [PubMed]

Summers, C. J.

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Tamma, V. A.

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009).
[CrossRef]

Wegener, M.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[CrossRef]

Wu, Q.

Yang, X. M.

Yee, K.

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[CrossRef]

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009).
[CrossRef]

Zhang, S.

D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys. 5, 687–692 (2009).
[CrossRef]

Zhang, X.

D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys. 5, 687–692 (2009).
[CrossRef]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009).
[CrossRef]

Zhao, Y.

C. Argyropoulos, Y. Zhao, and Y. Hao, “A radially-dependent dispersive finite-difference time-domain method for the evaluation of electromagnetic cloaks,” IEEE Trans. Antennas Propag. 57, 1432–1441 (2009).
[CrossRef]

C. Argyropoulos, E. Kallos, Y. Zhao, and Y. Hao, “Manipulating the loss in electromagnetic cloaks for perfect wave absorption,” Opt. Express 17, 8467–8475 (2009).
[CrossRef] [PubMed]

Zhou, X. Y.

Appl. Phys. Lett. (1)

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95, 041106 (2009).
[CrossRef]

IEEE Trans. Antennas Propag. (2)

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
[CrossRef]

C. Argyropoulos, Y. Zhao, and Y. Hao, “A radially-dependent dispersive finite-difference time-domain method for the evaluation of electromagnetic cloaks,” IEEE Trans. Antennas Propag. 57, 1432–1441 (2009).
[CrossRef]

Int. J. Numer. Model. (1)

K. C. Chew and V. F. Fusco, “A parallel implementation of the finite difference time-domain algorithm,” Int. J. Numer. Model. 8, 293–299 (1995).
[CrossRef]

J. Comput. Phys. (1)

J.-P. Bérenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

Nat. Photonics (1)

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3, 461–463 (2009).
[CrossRef]

Nat. Phys. (1)

D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys. 5, 687–692 (2009).
[CrossRef]

Nature Mater. (3)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205–213 (2010).
[CrossRef]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[CrossRef]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. A (1)

E. Kallos, C. Argyropoulos, and Y. Hao, “Ground-plane quasicloaking for free space,” Phys. Rev. A 79, 063825 (2009).
[CrossRef]

Phys. Rev. E (1)

C. Argyropoulos, E. Kallos, and Y. Hao, “Dispersive cylindrical cloaks under nonmonochromatic illumination,” Phys. Rev. E 81, 016611 (2010).
[CrossRef]

Phys. Rev. Lett. (2)

J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Science (4)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).
[CrossRef] [PubMed]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009).
[CrossRef] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010).
[CrossRef] [PubMed]

Other (1)

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Supplementary Material (1)

» Media 1: MOV (323 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Amplitude of E y field component exciting the spherical optical black hole embedded in dielectric medium. The spatial Gaussian pulse illuminates the device normal to the x - y surface placed at a central position ( 15 λ , 15 λ , 1 λ ) . The permittivity of the background is ε 0 = 2.1 . The intensity of the E y field component can be seen from the color bar. The spherical coating inner and outer radii are R c = 5.6 λ and R s h = 13.33 λ , respectively. The three projection planes cross the axis at x = 15 λ , y = 15 λ , and slightly off-center z = 13.4 λ .

Fig. 2
Fig. 2

Amplitude of E y field component exciting the spherical optical black hole embedded in dielectric medium. The spatial Gaussian pulse illuminates the device normal to the x - y surface placed at a side position ( 15 λ , 7.5 λ , 4 λ ) . The permittivity of the background is ε 0 = 2.1 . The intensity of the E y field component can be seen from the color bar. The spherical coating inner and outer radii are R c = 5.6 λ and R s h = 13.33 λ , respectively. The three projection planes cross the axis at x = 15 λ , y = 15 λ , and slightly off-center z = 13.4 λ to compare with the previous figure.

Fig. 3
Fig. 3

(a) Real part and (b) Media 1 amplitude of H z field component at the embedded in silica glass black hole.

Fig. 4
Fig. 4

(a) Real part and (b) amplitude of H z field component when a plane wave is impinging at the embedded in silica glass black hole.

Fig. 5
Fig. 5

(a) Real part and (b) amplitude of H z field component when a temporally continuous spatially Gaussian pulse is impinging at the matched to free space black hole.

Fig. 6
Fig. 6

(a) Real part and (b) amplitude of H z field component at the free space black hole. The pulse is incident with a different angle.

Fig. 7
Fig. 7

(a) Real part and (b) phase distribution of H z field component at the free space black hole. The wavefronts are traveling with different speeds at both sides of the device.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

× E ¯ = B ¯ t ,
× H ¯ = D ¯ t ,
H n + 1 = H n ( Δ t μ 0 μ ( x , y , z ) ) curl ( E n + 1 / 2 ) ,
E n + 1 = E n + ( Δ t ε 0 ε ( x , y , z ) ) curl ( H n + 1 / 2 ) ,
ε ( r ) = { ε 0 , r > R s h ε 0 ( R s h r ) 2 , R c r R s h ε c + ı γ , r < R c , }
ε ( r = R c ) = ε c R c = R s h ε 0 ε c .
v p h ( r ) = c ε ( r ) = c ε 0 1 ( R s h / r ) 2 = v p h 0 r R s h ,
v g ( r ) = c ε ( r ) = c ε 0 ( R s h r ) 2 = v g 0 R s h r ,

Metrics