Abstract

A near-infrared-emitting microlaser has been demonstrated, which is based on a semiconducting non-conjugated polymer. A luminescent polymer layer is formed on a silica optical fiber 125μm in diameter by self-assembly with poly(9-vinylcarbazole) containing an electron-transport material, 2-(4-Biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole, and a near-infrared-emitting compound, 2-(6-(p-dimethylaminophenyl)-2,4-neopentylene-1,3,5-hexatrienyl)-3-ethylbenzothiazolium perchlorate. The cylindrical polymer microcavity shows laser emission at 825 nm when it is transversally photopumped at 532 nm with a nanosecond Nd:yttrium aluminum garnet laser. The resonance of the microcavity is characterized by a cavity quality factor Q=(2.7±0.1)×103, which is determined from the laser spectral width. Furthermore, a threshold analysis is carried out by taking into account the effects of the ground-state absorption of the chromophore and Rayleigh scattering of the gain medium. The analysis shows that the minimum threshold lies in the vicinity of 824 nm, which is consistent with the experimentally observed laser emission line at 825 nm.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Suzuki, “Self-enhancement in the electroluminescence of a near-infrared ionic dye,” Appl. Phys. Lett. 76, 1543–1545 (2000).
    [CrossRef]
  2. H. Suzuki, “Infrared electroluminescence from an organic ionic dye containing no rare-earth ions,” Appl. Phys. Lett. 80, 3256–3258 (2002).
    [CrossRef]
  3. B. C. Thompson, L. G. Madrigal, M. R. Pinto, T.-S. Kang, K. S. Schanze, and J. R. Reynolds, “Donor-acceptor copolymers for red and near-infrared emitting PLEDs,” J. Polym. Sci., Part A: Polym. Chem. 43, 1417–1431 (2005).
    [CrossRef]
  4. C. Borek, K. Hanson, P. I. Djurovich, M. E. Thompson, K. Aznavour, R. Bau, Y. Sun, S. R. Forrest, J. Brooks, L. Michalski, and J. Brown, “Highly efficient, near-infrared electrophosphorescence from a Pt-metalloporphyrin complex,” Angew. Chem., Int. Ed. 46, 1109–1112 (2007).
    [CrossRef]
  5. Y. Yang, R. T. Farley, T. T. Steckler, S.-H. Eom, J. R. Reynolds, K. S. Schanze, and J. Xue, “Near infrared organic light-emitting devices based on donor-acceptor-donor oligomers,” Appl. Phys. Lett. 93, 163305 (2008).
    [CrossRef]
  6. R. G. Sun, Y. Z. Wang, Q. B. Zheng, H. J. Zhang, and A. J. Epstein, “1.54 μm infrared photoluminescence and electroluminescence from an erbium organic compound,” J. Appl. Phys. 87, 7589–7591 (2000).
    [CrossRef]
  7. Y. Kuwamura, Y. Wada, and S. Yanagida, “Near-infrared photoluminescence and electroluminescence of neodymium, erbium, and ytterbium complexes,” Jpn. J. Appl. Phys., Part 1 40, 350–356 (2001).
    [CrossRef]
  8. L. H. Slooff, A. Polman, F. Cacialli, R. H. Friend, G. A. Hebbink, F. C. J. M. van Veggel, and D. N. Reinhoudt, “Near-infrared electroluminescence of polymer light-emitting diodes doped with a lissamine-sensitized Nd3+ complex,” Appl. Phys. Lett. 78, 2122–2124 (2001).
    [CrossRef]
  9. B. S. Harrison, T. J. Foley, M. Bouguettaya, J. M. Boncella, J. R. Reynolds, K. S. Schanzea, J. Shim, P. H. Holloway, G. Padmanaban, and S. Ramakrishnan, “Near-infrared electroluminescence from conjugated polymer/lanthanide porphyrin blends,” Appl. Phys. Lett. 79, 3370–3372 (2001).
    [CrossRef]
  10. N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science 295, 1506–1508 (2002).
    [CrossRef] [PubMed]
  11. T. Kobayashi, M. Djiango, and W. J. Blau, “Near-infrared electroluminescence and stimulated emission from semiconducting non-conjugated polymer thin films,” J. Appl. Phys. 107, 023103 (2010).
    [CrossRef]
  12. M. Djiango, T. Kobayashi, W. J. Blau, B. Cai, K. Komatsu, and T. Kaino, “Near-infrared luminescent polymer waveguide with a 20 dB small-signal gain,” Appl. Phys. Lett. 92, 083306 (2008).
    [CrossRef]
  13. K. Yamashita, T. Kuro, K. Oe, and H. Yanagi, “Low threshold amplified spontaneous emission from near-infrared dye-doped polymeric waveguide,” Appl. Phys. Lett. 88, 241110 (2006).
    [CrossRef]
  14. T. Kobayashi, J.-B. Savatier, G. Jordan, W. J. Blau, Y. Suzuki, and T. Kaino, “Near-infrared laser emission from luminescent plastic waveguides,” Appl. Phys. Lett. 85, 185–187 (2004).
    [CrossRef]
  15. T. Kobayashi, M. Djiango, G. Jordan, M. Rüther, W. J. Blau, Y. Suzuki, and T. Kaino, “Laser emission at 0.8 μm from photopumped luminescent polymer microresonators,” Appl. Phys. Lett. 88, 181119 (2006).
    [CrossRef]
  16. M. Djiango, T. Kobayashi, and W. J. Blau, “Cavity-enhanced stimulated emission cross section in polymer microlasers,” Appl. Phys. Lett. 93, 143306 (2008).
    [CrossRef]
  17. S. Yuyama, T. Nakajima, K. Yamashita, and K. Oe, “Solid state organic laser emission at 970 nm from dye-doped fluorinated-polyimide planar waveguides,” Appl. Phys. Lett. 93, 023306 (2008).
    [CrossRef]
  18. G. Karve, B. Bihari, and R. T. Chen, “Demonstration of optical gain at 1.06 μm in a neodymium-doped polyimide waveguide,” Appl. Phys. Lett. 77, 1253–1255 (2000).
    [CrossRef]
  19. D. J. Morantz, B. G. White, and A. J. C. Wright, “Stimulated light emission by optical pumping and by energy transfer in organic molecules,” Phys. Rev. Lett. 8, 23–25 (1962).
    [CrossRef]
  20. F.P.Schäfer, ed., Dye Lasers, 3rd ed. (Springer-Verlag, 1990).
  21. Z. V. Vardeny, “Telecommunications: a boost for fibre optics,” Nature 416, 489–491 (2002).
    [CrossRef] [PubMed]
  22. D. Rezzonico, A. Guarino, C. Herzog, M. Jazbinsek, and P. Günter, “High-finesse laterally coupled organic–inorganic hybrid polymer microring resonators for VLSI photonics,” IEEE Photon. Technol. Lett. 18, 865–867 (2006).
    [CrossRef]
  23. M. Kuwata-Gonokami and K. Takeda, “Polymer whispering gallery mode lasers,” Opt. Mater. 9, 12–17 (1998).
    [CrossRef]
  24. R. H. Partridge, “Electroluminescence from polyvinylcarbazole films: Pt. 1: Cabazole cations,” Polymer 24, 733–738 (1983).
    [CrossRef]
  25. R. H. Partridge, “Electroluminescence from polyvinylcarbazole films: 2. Polyvinylcarbazole films containing antimony pentachloride,” Polymer 24, 739–747 (1983).
    [CrossRef]
  26. R. H. Partridge, “Electroluminescence from polyvinylcarbazole films: 3. Electroluminescent devices,” Polymer 24, 748–754 (1983).
    [CrossRef]
  27. R. H. Partridge, “Electrochemiluminescence from polyvinylcarbazole films 4. Electrochemiluminescence using higher work function cathodes,” Polymer 24, 755–762 (1983).
    [CrossRef]
  28. V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84, 4096–4108 (1998).
    [CrossRef]
  29. G. Heliotis, R. Xisa, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium,” J. Appl. Phys. 96, 6959–6965 (2004).
    [CrossRef]
  30. T. Kobayashi, M. Flämmich, G. Jordan, R. D’Arcy, M. Rüther, W. J. Blau, Y. Suzuki, and T. Kaino, “Blue-green small-signal gain and saturation in a luminescent polymer gain medium,” Appl. Phys. Lett. 89, 131119 (2006).
    [CrossRef]

2010 (1)

T. Kobayashi, M. Djiango, and W. J. Blau, “Near-infrared electroluminescence and stimulated emission from semiconducting non-conjugated polymer thin films,” J. Appl. Phys. 107, 023103 (2010).
[CrossRef]

2008 (4)

M. Djiango, T. Kobayashi, W. J. Blau, B. Cai, K. Komatsu, and T. Kaino, “Near-infrared luminescent polymer waveguide with a 20 dB small-signal gain,” Appl. Phys. Lett. 92, 083306 (2008).
[CrossRef]

M. Djiango, T. Kobayashi, and W. J. Blau, “Cavity-enhanced stimulated emission cross section in polymer microlasers,” Appl. Phys. Lett. 93, 143306 (2008).
[CrossRef]

S. Yuyama, T. Nakajima, K. Yamashita, and K. Oe, “Solid state organic laser emission at 970 nm from dye-doped fluorinated-polyimide planar waveguides,” Appl. Phys. Lett. 93, 023306 (2008).
[CrossRef]

Y. Yang, R. T. Farley, T. T. Steckler, S.-H. Eom, J. R. Reynolds, K. S. Schanze, and J. Xue, “Near infrared organic light-emitting devices based on donor-acceptor-donor oligomers,” Appl. Phys. Lett. 93, 163305 (2008).
[CrossRef]

2007 (1)

C. Borek, K. Hanson, P. I. Djurovich, M. E. Thompson, K. Aznavour, R. Bau, Y. Sun, S. R. Forrest, J. Brooks, L. Michalski, and J. Brown, “Highly efficient, near-infrared electrophosphorescence from a Pt-metalloporphyrin complex,” Angew. Chem., Int. Ed. 46, 1109–1112 (2007).
[CrossRef]

2006 (4)

K. Yamashita, T. Kuro, K. Oe, and H. Yanagi, “Low threshold amplified spontaneous emission from near-infrared dye-doped polymeric waveguide,” Appl. Phys. Lett. 88, 241110 (2006).
[CrossRef]

D. Rezzonico, A. Guarino, C. Herzog, M. Jazbinsek, and P. Günter, “High-finesse laterally coupled organic–inorganic hybrid polymer microring resonators for VLSI photonics,” IEEE Photon. Technol. Lett. 18, 865–867 (2006).
[CrossRef]

T. Kobayashi, M. Djiango, G. Jordan, M. Rüther, W. J. Blau, Y. Suzuki, and T. Kaino, “Laser emission at 0.8 μm from photopumped luminescent polymer microresonators,” Appl. Phys. Lett. 88, 181119 (2006).
[CrossRef]

T. Kobayashi, M. Flämmich, G. Jordan, R. D’Arcy, M. Rüther, W. J. Blau, Y. Suzuki, and T. Kaino, “Blue-green small-signal gain and saturation in a luminescent polymer gain medium,” Appl. Phys. Lett. 89, 131119 (2006).
[CrossRef]

2005 (1)

B. C. Thompson, L. G. Madrigal, M. R. Pinto, T.-S. Kang, K. S. Schanze, and J. R. Reynolds, “Donor-acceptor copolymers for red and near-infrared emitting PLEDs,” J. Polym. Sci., Part A: Polym. Chem. 43, 1417–1431 (2005).
[CrossRef]

2004 (2)

T. Kobayashi, J.-B. Savatier, G. Jordan, W. J. Blau, Y. Suzuki, and T. Kaino, “Near-infrared laser emission from luminescent plastic waveguides,” Appl. Phys. Lett. 85, 185–187 (2004).
[CrossRef]

G. Heliotis, R. Xisa, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium,” J. Appl. Phys. 96, 6959–6965 (2004).
[CrossRef]

2002 (3)

N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science 295, 1506–1508 (2002).
[CrossRef] [PubMed]

Z. V. Vardeny, “Telecommunications: a boost for fibre optics,” Nature 416, 489–491 (2002).
[CrossRef] [PubMed]

H. Suzuki, “Infrared electroluminescence from an organic ionic dye containing no rare-earth ions,” Appl. Phys. Lett. 80, 3256–3258 (2002).
[CrossRef]

2001 (3)

Y. Kuwamura, Y. Wada, and S. Yanagida, “Near-infrared photoluminescence and electroluminescence of neodymium, erbium, and ytterbium complexes,” Jpn. J. Appl. Phys., Part 1 40, 350–356 (2001).
[CrossRef]

L. H. Slooff, A. Polman, F. Cacialli, R. H. Friend, G. A. Hebbink, F. C. J. M. van Veggel, and D. N. Reinhoudt, “Near-infrared electroluminescence of polymer light-emitting diodes doped with a lissamine-sensitized Nd3+ complex,” Appl. Phys. Lett. 78, 2122–2124 (2001).
[CrossRef]

B. S. Harrison, T. J. Foley, M. Bouguettaya, J. M. Boncella, J. R. Reynolds, K. S. Schanzea, J. Shim, P. H. Holloway, G. Padmanaban, and S. Ramakrishnan, “Near-infrared electroluminescence from conjugated polymer/lanthanide porphyrin blends,” Appl. Phys. Lett. 79, 3370–3372 (2001).
[CrossRef]

2000 (3)

R. G. Sun, Y. Z. Wang, Q. B. Zheng, H. J. Zhang, and A. J. Epstein, “1.54 μm infrared photoluminescence and electroluminescence from an erbium organic compound,” J. Appl. Phys. 87, 7589–7591 (2000).
[CrossRef]

H. Suzuki, “Self-enhancement in the electroluminescence of a near-infrared ionic dye,” Appl. Phys. Lett. 76, 1543–1545 (2000).
[CrossRef]

G. Karve, B. Bihari, and R. T. Chen, “Demonstration of optical gain at 1.06 μm in a neodymium-doped polyimide waveguide,” Appl. Phys. Lett. 77, 1253–1255 (2000).
[CrossRef]

1998 (2)

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84, 4096–4108 (1998).
[CrossRef]

M. Kuwata-Gonokami and K. Takeda, “Polymer whispering gallery mode lasers,” Opt. Mater. 9, 12–17 (1998).
[CrossRef]

1983 (4)

R. H. Partridge, “Electroluminescence from polyvinylcarbazole films: Pt. 1: Cabazole cations,” Polymer 24, 733–738 (1983).
[CrossRef]

R. H. Partridge, “Electroluminescence from polyvinylcarbazole films: 2. Polyvinylcarbazole films containing antimony pentachloride,” Polymer 24, 739–747 (1983).
[CrossRef]

R. H. Partridge, “Electroluminescence from polyvinylcarbazole films: 3. Electroluminescent devices,” Polymer 24, 748–754 (1983).
[CrossRef]

R. H. Partridge, “Electrochemiluminescence from polyvinylcarbazole films 4. Electrochemiluminescence using higher work function cathodes,” Polymer 24, 755–762 (1983).
[CrossRef]

1962 (1)

D. J. Morantz, B. G. White, and A. J. C. Wright, “Stimulated light emission by optical pumping and by energy transfer in organic molecules,” Phys. Rev. Lett. 8, 23–25 (1962).
[CrossRef]

Andrew, P.

G. Heliotis, R. Xisa, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium,” J. Appl. Phys. 96, 6959–6965 (2004).
[CrossRef]

Aznavour, K.

C. Borek, K. Hanson, P. I. Djurovich, M. E. Thompson, K. Aznavour, R. Bau, Y. Sun, S. R. Forrest, J. Brooks, L. Michalski, and J. Brown, “Highly efficient, near-infrared electrophosphorescence from a Pt-metalloporphyrin complex,” Angew. Chem., Int. Ed. 46, 1109–1112 (2007).
[CrossRef]

Baldo, M.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84, 4096–4108 (1998).
[CrossRef]

Banin, U.

N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science 295, 1506–1508 (2002).
[CrossRef] [PubMed]

Barnes, W. L.

G. Heliotis, R. Xisa, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium,” J. Appl. Phys. 96, 6959–6965 (2004).
[CrossRef]

Bau, R.

C. Borek, K. Hanson, P. I. Djurovich, M. E. Thompson, K. Aznavour, R. Bau, Y. Sun, S. R. Forrest, J. Brooks, L. Michalski, and J. Brown, “Highly efficient, near-infrared electrophosphorescence from a Pt-metalloporphyrin complex,” Angew. Chem., Int. Ed. 46, 1109–1112 (2007).
[CrossRef]

Bihari, B.

G. Karve, B. Bihari, and R. T. Chen, “Demonstration of optical gain at 1.06 μm in a neodymium-doped polyimide waveguide,” Appl. Phys. Lett. 77, 1253–1255 (2000).
[CrossRef]

Blau, W. J.

T. Kobayashi, M. Djiango, and W. J. Blau, “Near-infrared electroluminescence and stimulated emission from semiconducting non-conjugated polymer thin films,” J. Appl. Phys. 107, 023103 (2010).
[CrossRef]

M. Djiango, T. Kobayashi, W. J. Blau, B. Cai, K. Komatsu, and T. Kaino, “Near-infrared luminescent polymer waveguide with a 20 dB small-signal gain,” Appl. Phys. Lett. 92, 083306 (2008).
[CrossRef]

M. Djiango, T. Kobayashi, and W. J. Blau, “Cavity-enhanced stimulated emission cross section in polymer microlasers,” Appl. Phys. Lett. 93, 143306 (2008).
[CrossRef]

T. Kobayashi, M. Djiango, G. Jordan, M. Rüther, W. J. Blau, Y. Suzuki, and T. Kaino, “Laser emission at 0.8 μm from photopumped luminescent polymer microresonators,” Appl. Phys. Lett. 88, 181119 (2006).
[CrossRef]

T. Kobayashi, M. Flämmich, G. Jordan, R. D’Arcy, M. Rüther, W. J. Blau, Y. Suzuki, and T. Kaino, “Blue-green small-signal gain and saturation in a luminescent polymer gain medium,” Appl. Phys. Lett. 89, 131119 (2006).
[CrossRef]

T. Kobayashi, J.-B. Savatier, G. Jordan, W. J. Blau, Y. Suzuki, and T. Kaino, “Near-infrared laser emission from luminescent plastic waveguides,” Appl. Phys. Lett. 85, 185–187 (2004).
[CrossRef]

Boncella, J. M.

B. S. Harrison, T. J. Foley, M. Bouguettaya, J. M. Boncella, J. R. Reynolds, K. S. Schanzea, J. Shim, P. H. Holloway, G. Padmanaban, and S. Ramakrishnan, “Near-infrared electroluminescence from conjugated polymer/lanthanide porphyrin blends,” Appl. Phys. Lett. 79, 3370–3372 (2001).
[CrossRef]

Borek, C.

C. Borek, K. Hanson, P. I. Djurovich, M. E. Thompson, K. Aznavour, R. Bau, Y. Sun, S. R. Forrest, J. Brooks, L. Michalski, and J. Brown, “Highly efficient, near-infrared electrophosphorescence from a Pt-metalloporphyrin complex,” Angew. Chem., Int. Ed. 46, 1109–1112 (2007).
[CrossRef]

Bouguettaya, M.

B. S. Harrison, T. J. Foley, M. Bouguettaya, J. M. Boncella, J. R. Reynolds, K. S. Schanzea, J. Shim, P. H. Holloway, G. Padmanaban, and S. Ramakrishnan, “Near-infrared electroluminescence from conjugated polymer/lanthanide porphyrin blends,” Appl. Phys. Lett. 79, 3370–3372 (2001).
[CrossRef]

Bradley, D. D. C.

G. Heliotis, R. Xisa, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium,” J. Appl. Phys. 96, 6959–6965 (2004).
[CrossRef]

Brooks, J.

C. Borek, K. Hanson, P. I. Djurovich, M. E. Thompson, K. Aznavour, R. Bau, Y. Sun, S. R. Forrest, J. Brooks, L. Michalski, and J. Brown, “Highly efficient, near-infrared electrophosphorescence from a Pt-metalloporphyrin complex,” Angew. Chem., Int. Ed. 46, 1109–1112 (2007).
[CrossRef]

Brown, J.

C. Borek, K. Hanson, P. I. Djurovich, M. E. Thompson, K. Aznavour, R. Bau, Y. Sun, S. R. Forrest, J. Brooks, L. Michalski, and J. Brown, “Highly efficient, near-infrared electrophosphorescence from a Pt-metalloporphyrin complex,” Angew. Chem., Int. Ed. 46, 1109–1112 (2007).
[CrossRef]

Bulovic, V.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84, 4096–4108 (1998).
[CrossRef]

Burrows, P. E.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84, 4096–4108 (1998).
[CrossRef]

Cacialli, F.

L. H. Slooff, A. Polman, F. Cacialli, R. H. Friend, G. A. Hebbink, F. C. J. M. van Veggel, and D. N. Reinhoudt, “Near-infrared electroluminescence of polymer light-emitting diodes doped with a lissamine-sensitized Nd3+ complex,” Appl. Phys. Lett. 78, 2122–2124 (2001).
[CrossRef]

Cai, B.

M. Djiango, T. Kobayashi, W. J. Blau, B. Cai, K. Komatsu, and T. Kaino, “Near-infrared luminescent polymer waveguide with a 20 dB small-signal gain,” Appl. Phys. Lett. 92, 083306 (2008).
[CrossRef]

Chen, R. T.

G. Karve, B. Bihari, and R. T. Chen, “Demonstration of optical gain at 1.06 μm in a neodymium-doped polyimide waveguide,” Appl. Phys. Lett. 77, 1253–1255 (2000).
[CrossRef]

D’Arcy, R.

T. Kobayashi, M. Flämmich, G. Jordan, R. D’Arcy, M. Rüther, W. J. Blau, Y. Suzuki, and T. Kaino, “Blue-green small-signal gain and saturation in a luminescent polymer gain medium,” Appl. Phys. Lett. 89, 131119 (2006).
[CrossRef]

Djiango, M.

T. Kobayashi, M. Djiango, and W. J. Blau, “Near-infrared electroluminescence and stimulated emission from semiconducting non-conjugated polymer thin films,” J. Appl. Phys. 107, 023103 (2010).
[CrossRef]

M. Djiango, T. Kobayashi, W. J. Blau, B. Cai, K. Komatsu, and T. Kaino, “Near-infrared luminescent polymer waveguide with a 20 dB small-signal gain,” Appl. Phys. Lett. 92, 083306 (2008).
[CrossRef]

M. Djiango, T. Kobayashi, and W. J. Blau, “Cavity-enhanced stimulated emission cross section in polymer microlasers,” Appl. Phys. Lett. 93, 143306 (2008).
[CrossRef]

T. Kobayashi, M. Djiango, G. Jordan, M. Rüther, W. J. Blau, Y. Suzuki, and T. Kaino, “Laser emission at 0.8 μm from photopumped luminescent polymer microresonators,” Appl. Phys. Lett. 88, 181119 (2006).
[CrossRef]

Djurovich, P. I.

C. Borek, K. Hanson, P. I. Djurovich, M. E. Thompson, K. Aznavour, R. Bau, Y. Sun, S. R. Forrest, J. Brooks, L. Michalski, and J. Brown, “Highly efficient, near-infrared electrophosphorescence from a Pt-metalloporphyrin complex,” Angew. Chem., Int. Ed. 46, 1109–1112 (2007).
[CrossRef]

Eom, S. -H.

Y. Yang, R. T. Farley, T. T. Steckler, S.-H. Eom, J. R. Reynolds, K. S. Schanze, and J. Xue, “Near infrared organic light-emitting devices based on donor-acceptor-donor oligomers,” Appl. Phys. Lett. 93, 163305 (2008).
[CrossRef]

Epstein, A. J.

R. G. Sun, Y. Z. Wang, Q. B. Zheng, H. J. Zhang, and A. J. Epstein, “1.54 μm infrared photoluminescence and electroluminescence from an erbium organic compound,” J. Appl. Phys. 87, 7589–7591 (2000).
[CrossRef]

Farley, R. T.

Y. Yang, R. T. Farley, T. T. Steckler, S.-H. Eom, J. R. Reynolds, K. S. Schanze, and J. Xue, “Near infrared organic light-emitting devices based on donor-acceptor-donor oligomers,” Appl. Phys. Lett. 93, 163305 (2008).
[CrossRef]

Flämmich, M.

T. Kobayashi, M. Flämmich, G. Jordan, R. D’Arcy, M. Rüther, W. J. Blau, Y. Suzuki, and T. Kaino, “Blue-green small-signal gain and saturation in a luminescent polymer gain medium,” Appl. Phys. Lett. 89, 131119 (2006).
[CrossRef]

Foley, T. J.

B. S. Harrison, T. J. Foley, M. Bouguettaya, J. M. Boncella, J. R. Reynolds, K. S. Schanzea, J. Shim, P. H. Holloway, G. Padmanaban, and S. Ramakrishnan, “Near-infrared electroluminescence from conjugated polymer/lanthanide porphyrin blends,” Appl. Phys. Lett. 79, 3370–3372 (2001).
[CrossRef]

Forrest, S. R.

C. Borek, K. Hanson, P. I. Djurovich, M. E. Thompson, K. Aznavour, R. Bau, Y. Sun, S. R. Forrest, J. Brooks, L. Michalski, and J. Brown, “Highly efficient, near-infrared electrophosphorescence from a Pt-metalloporphyrin complex,” Angew. Chem., Int. Ed. 46, 1109–1112 (2007).
[CrossRef]

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84, 4096–4108 (1998).
[CrossRef]

Friend, R. H.

L. H. Slooff, A. Polman, F. Cacialli, R. H. Friend, G. A. Hebbink, F. C. J. M. van Veggel, and D. N. Reinhoudt, “Near-infrared electroluminescence of polymer light-emitting diodes doped with a lissamine-sensitized Nd3+ complex,” Appl. Phys. Lett. 78, 2122–2124 (2001).
[CrossRef]

Guarino, A.

D. Rezzonico, A. Guarino, C. Herzog, M. Jazbinsek, and P. Günter, “High-finesse laterally coupled organic–inorganic hybrid polymer microring resonators for VLSI photonics,” IEEE Photon. Technol. Lett. 18, 865–867 (2006).
[CrossRef]

Günter, P.

D. Rezzonico, A. Guarino, C. Herzog, M. Jazbinsek, and P. Günter, “High-finesse laterally coupled organic–inorganic hybrid polymer microring resonators for VLSI photonics,” IEEE Photon. Technol. Lett. 18, 865–867 (2006).
[CrossRef]

Hanson, K.

C. Borek, K. Hanson, P. I. Djurovich, M. E. Thompson, K. Aznavour, R. Bau, Y. Sun, S. R. Forrest, J. Brooks, L. Michalski, and J. Brown, “Highly efficient, near-infrared electrophosphorescence from a Pt-metalloporphyrin complex,” Angew. Chem., Int. Ed. 46, 1109–1112 (2007).
[CrossRef]

Harrison, B. S.

B. S. Harrison, T. J. Foley, M. Bouguettaya, J. M. Boncella, J. R. Reynolds, K. S. Schanzea, J. Shim, P. H. Holloway, G. Padmanaban, and S. Ramakrishnan, “Near-infrared electroluminescence from conjugated polymer/lanthanide porphyrin blends,” Appl. Phys. Lett. 79, 3370–3372 (2001).
[CrossRef]

Hebbink, G. A.

L. H. Slooff, A. Polman, F. Cacialli, R. H. Friend, G. A. Hebbink, F. C. J. M. van Veggel, and D. N. Reinhoudt, “Near-infrared electroluminescence of polymer light-emitting diodes doped with a lissamine-sensitized Nd3+ complex,” Appl. Phys. Lett. 78, 2122–2124 (2001).
[CrossRef]

Heliotis, G.

G. Heliotis, R. Xisa, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium,” J. Appl. Phys. 96, 6959–6965 (2004).
[CrossRef]

Herzog, C.

D. Rezzonico, A. Guarino, C. Herzog, M. Jazbinsek, and P. Günter, “High-finesse laterally coupled organic–inorganic hybrid polymer microring resonators for VLSI photonics,” IEEE Photon. Technol. Lett. 18, 865–867 (2006).
[CrossRef]

Holloway, P. H.

B. S. Harrison, T. J. Foley, M. Bouguettaya, J. M. Boncella, J. R. Reynolds, K. S. Schanzea, J. Shim, P. H. Holloway, G. Padmanaban, and S. Ramakrishnan, “Near-infrared electroluminescence from conjugated polymer/lanthanide porphyrin blends,” Appl. Phys. Lett. 79, 3370–3372 (2001).
[CrossRef]

Jazbinsek, M.

D. Rezzonico, A. Guarino, C. Herzog, M. Jazbinsek, and P. Günter, “High-finesse laterally coupled organic–inorganic hybrid polymer microring resonators for VLSI photonics,” IEEE Photon. Technol. Lett. 18, 865–867 (2006).
[CrossRef]

Jordan, G.

T. Kobayashi, M. Djiango, G. Jordan, M. Rüther, W. J. Blau, Y. Suzuki, and T. Kaino, “Laser emission at 0.8 μm from photopumped luminescent polymer microresonators,” Appl. Phys. Lett. 88, 181119 (2006).
[CrossRef]

T. Kobayashi, M. Flämmich, G. Jordan, R. D’Arcy, M. Rüther, W. J. Blau, Y. Suzuki, and T. Kaino, “Blue-green small-signal gain and saturation in a luminescent polymer gain medium,” Appl. Phys. Lett. 89, 131119 (2006).
[CrossRef]

T. Kobayashi, J.-B. Savatier, G. Jordan, W. J. Blau, Y. Suzuki, and T. Kaino, “Near-infrared laser emission from luminescent plastic waveguides,” Appl. Phys. Lett. 85, 185–187 (2004).
[CrossRef]

Kaino, T.

M. Djiango, T. Kobayashi, W. J. Blau, B. Cai, K. Komatsu, and T. Kaino, “Near-infrared luminescent polymer waveguide with a 20 dB small-signal gain,” Appl. Phys. Lett. 92, 083306 (2008).
[CrossRef]

T. Kobayashi, M. Djiango, G. Jordan, M. Rüther, W. J. Blau, Y. Suzuki, and T. Kaino, “Laser emission at 0.8 μm from photopumped luminescent polymer microresonators,” Appl. Phys. Lett. 88, 181119 (2006).
[CrossRef]

T. Kobayashi, M. Flämmich, G. Jordan, R. D’Arcy, M. Rüther, W. J. Blau, Y. Suzuki, and T. Kaino, “Blue-green small-signal gain and saturation in a luminescent polymer gain medium,” Appl. Phys. Lett. 89, 131119 (2006).
[CrossRef]

T. Kobayashi, J.-B. Savatier, G. Jordan, W. J. Blau, Y. Suzuki, and T. Kaino, “Near-infrared laser emission from luminescent plastic waveguides,” Appl. Phys. Lett. 85, 185–187 (2004).
[CrossRef]

Kan, S.

N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science 295, 1506–1508 (2002).
[CrossRef] [PubMed]

Kang, T. -S.

B. C. Thompson, L. G. Madrigal, M. R. Pinto, T.-S. Kang, K. S. Schanze, and J. R. Reynolds, “Donor-acceptor copolymers for red and near-infrared emitting PLEDs,” J. Polym. Sci., Part A: Polym. Chem. 43, 1417–1431 (2005).
[CrossRef]

Karve, G.

G. Karve, B. Bihari, and R. T. Chen, “Demonstration of optical gain at 1.06 μm in a neodymium-doped polyimide waveguide,” Appl. Phys. Lett. 77, 1253–1255 (2000).
[CrossRef]

Kazes, M.

N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science 295, 1506–1508 (2002).
[CrossRef] [PubMed]

Khalfin, V. B.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84, 4096–4108 (1998).
[CrossRef]

Kobayashi, T.

T. Kobayashi, M. Djiango, and W. J. Blau, “Near-infrared electroluminescence and stimulated emission from semiconducting non-conjugated polymer thin films,” J. Appl. Phys. 107, 023103 (2010).
[CrossRef]

M. Djiango, T. Kobayashi, W. J. Blau, B. Cai, K. Komatsu, and T. Kaino, “Near-infrared luminescent polymer waveguide with a 20 dB small-signal gain,” Appl. Phys. Lett. 92, 083306 (2008).
[CrossRef]

M. Djiango, T. Kobayashi, and W. J. Blau, “Cavity-enhanced stimulated emission cross section in polymer microlasers,” Appl. Phys. Lett. 93, 143306 (2008).
[CrossRef]

T. Kobayashi, M. Djiango, G. Jordan, M. Rüther, W. J. Blau, Y. Suzuki, and T. Kaino, “Laser emission at 0.8 μm from photopumped luminescent polymer microresonators,” Appl. Phys. Lett. 88, 181119 (2006).
[CrossRef]

T. Kobayashi, M. Flämmich, G. Jordan, R. D’Arcy, M. Rüther, W. J. Blau, Y. Suzuki, and T. Kaino, “Blue-green small-signal gain and saturation in a luminescent polymer gain medium,” Appl. Phys. Lett. 89, 131119 (2006).
[CrossRef]

T. Kobayashi, J.-B. Savatier, G. Jordan, W. J. Blau, Y. Suzuki, and T. Kaino, “Near-infrared laser emission from luminescent plastic waveguides,” Appl. Phys. Lett. 85, 185–187 (2004).
[CrossRef]

Komatsu, K.

M. Djiango, T. Kobayashi, W. J. Blau, B. Cai, K. Komatsu, and T. Kaino, “Near-infrared luminescent polymer waveguide with a 20 dB small-signal gain,” Appl. Phys. Lett. 92, 083306 (2008).
[CrossRef]

Kozlov, V. G.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84, 4096–4108 (1998).
[CrossRef]

Kuro, T.

K. Yamashita, T. Kuro, K. Oe, and H. Yanagi, “Low threshold amplified spontaneous emission from near-infrared dye-doped polymeric waveguide,” Appl. Phys. Lett. 88, 241110 (2006).
[CrossRef]

Kuwamura, Y.

Y. Kuwamura, Y. Wada, and S. Yanagida, “Near-infrared photoluminescence and electroluminescence of neodymium, erbium, and ytterbium complexes,” Jpn. J. Appl. Phys., Part 1 40, 350–356 (2001).
[CrossRef]

Kuwata-Gonokami, M.

M. Kuwata-Gonokami and K. Takeda, “Polymer whispering gallery mode lasers,” Opt. Mater. 9, 12–17 (1998).
[CrossRef]

Madrigal, L. G.

B. C. Thompson, L. G. Madrigal, M. R. Pinto, T.-S. Kang, K. S. Schanze, and J. R. Reynolds, “Donor-acceptor copolymers for red and near-infrared emitting PLEDs,” J. Polym. Sci., Part A: Polym. Chem. 43, 1417–1431 (2005).
[CrossRef]

Medvedev, V.

N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science 295, 1506–1508 (2002).
[CrossRef] [PubMed]

Michalski, L.

C. Borek, K. Hanson, P. I. Djurovich, M. E. Thompson, K. Aznavour, R. Bau, Y. Sun, S. R. Forrest, J. Brooks, L. Michalski, and J. Brown, “Highly efficient, near-infrared electrophosphorescence from a Pt-metalloporphyrin complex,” Angew. Chem., Int. Ed. 46, 1109–1112 (2007).
[CrossRef]

Morantz, D. J.

D. J. Morantz, B. G. White, and A. J. C. Wright, “Stimulated light emission by optical pumping and by energy transfer in organic molecules,” Phys. Rev. Lett. 8, 23–25 (1962).
[CrossRef]

Nakajima, T.

S. Yuyama, T. Nakajima, K. Yamashita, and K. Oe, “Solid state organic laser emission at 970 nm from dye-doped fluorinated-polyimide planar waveguides,” Appl. Phys. Lett. 93, 023306 (2008).
[CrossRef]

Oe, K.

S. Yuyama, T. Nakajima, K. Yamashita, and K. Oe, “Solid state organic laser emission at 970 nm from dye-doped fluorinated-polyimide planar waveguides,” Appl. Phys. Lett. 93, 023306 (2008).
[CrossRef]

K. Yamashita, T. Kuro, K. Oe, and H. Yanagi, “Low threshold amplified spontaneous emission from near-infrared dye-doped polymeric waveguide,” Appl. Phys. Lett. 88, 241110 (2006).
[CrossRef]

Padmanaban, G.

B. S. Harrison, T. J. Foley, M. Bouguettaya, J. M. Boncella, J. R. Reynolds, K. S. Schanzea, J. Shim, P. H. Holloway, G. Padmanaban, and S. Ramakrishnan, “Near-infrared electroluminescence from conjugated polymer/lanthanide porphyrin blends,” Appl. Phys. Lett. 79, 3370–3372 (2001).
[CrossRef]

Parthasarathy, G.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84, 4096–4108 (1998).
[CrossRef]

Partridge, R. H.

R. H. Partridge, “Electroluminescence from polyvinylcarbazole films: Pt. 1: Cabazole cations,” Polymer 24, 733–738 (1983).
[CrossRef]

R. H. Partridge, “Electroluminescence from polyvinylcarbazole films: 2. Polyvinylcarbazole films containing antimony pentachloride,” Polymer 24, 739–747 (1983).
[CrossRef]

R. H. Partridge, “Electroluminescence from polyvinylcarbazole films: 3. Electroluminescent devices,” Polymer 24, 748–754 (1983).
[CrossRef]

R. H. Partridge, “Electrochemiluminescence from polyvinylcarbazole films 4. Electrochemiluminescence using higher work function cathodes,” Polymer 24, 755–762 (1983).
[CrossRef]

Pinto, M. R.

B. C. Thompson, L. G. Madrigal, M. R. Pinto, T.-S. Kang, K. S. Schanze, and J. R. Reynolds, “Donor-acceptor copolymers for red and near-infrared emitting PLEDs,” J. Polym. Sci., Part A: Polym. Chem. 43, 1417–1431 (2005).
[CrossRef]

Polman, A.

L. H. Slooff, A. Polman, F. Cacialli, R. H. Friend, G. A. Hebbink, F. C. J. M. van Veggel, and D. N. Reinhoudt, “Near-infrared electroluminescence of polymer light-emitting diodes doped with a lissamine-sensitized Nd3+ complex,” Appl. Phys. Lett. 78, 2122–2124 (2001).
[CrossRef]

Ramakrishnan, S.

B. S. Harrison, T. J. Foley, M. Bouguettaya, J. M. Boncella, J. R. Reynolds, K. S. Schanzea, J. Shim, P. H. Holloway, G. Padmanaban, and S. Ramakrishnan, “Near-infrared electroluminescence from conjugated polymer/lanthanide porphyrin blends,” Appl. Phys. Lett. 79, 3370–3372 (2001).
[CrossRef]

Reinhoudt, D. N.

L. H. Slooff, A. Polman, F. Cacialli, R. H. Friend, G. A. Hebbink, F. C. J. M. van Veggel, and D. N. Reinhoudt, “Near-infrared electroluminescence of polymer light-emitting diodes doped with a lissamine-sensitized Nd3+ complex,” Appl. Phys. Lett. 78, 2122–2124 (2001).
[CrossRef]

Reynolds, J. R.

Y. Yang, R. T. Farley, T. T. Steckler, S.-H. Eom, J. R. Reynolds, K. S. Schanze, and J. Xue, “Near infrared organic light-emitting devices based on donor-acceptor-donor oligomers,” Appl. Phys. Lett. 93, 163305 (2008).
[CrossRef]

B. C. Thompson, L. G. Madrigal, M. R. Pinto, T.-S. Kang, K. S. Schanze, and J. R. Reynolds, “Donor-acceptor copolymers for red and near-infrared emitting PLEDs,” J. Polym. Sci., Part A: Polym. Chem. 43, 1417–1431 (2005).
[CrossRef]

B. S. Harrison, T. J. Foley, M. Bouguettaya, J. M. Boncella, J. R. Reynolds, K. S. Schanzea, J. Shim, P. H. Holloway, G. Padmanaban, and S. Ramakrishnan, “Near-infrared electroluminescence from conjugated polymer/lanthanide porphyrin blends,” Appl. Phys. Lett. 79, 3370–3372 (2001).
[CrossRef]

Rezzonico, D.

D. Rezzonico, A. Guarino, C. Herzog, M. Jazbinsek, and P. Günter, “High-finesse laterally coupled organic–inorganic hybrid polymer microring resonators for VLSI photonics,” IEEE Photon. Technol. Lett. 18, 865–867 (2006).
[CrossRef]

Rüther, M.

T. Kobayashi, M. Djiango, G. Jordan, M. Rüther, W. J. Blau, Y. Suzuki, and T. Kaino, “Laser emission at 0.8 μm from photopumped luminescent polymer microresonators,” Appl. Phys. Lett. 88, 181119 (2006).
[CrossRef]

T. Kobayashi, M. Flämmich, G. Jordan, R. D’Arcy, M. Rüther, W. J. Blau, Y. Suzuki, and T. Kaino, “Blue-green small-signal gain and saturation in a luminescent polymer gain medium,” Appl. Phys. Lett. 89, 131119 (2006).
[CrossRef]

Samuel, I. D. W.

G. Heliotis, R. Xisa, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium,” J. Appl. Phys. 96, 6959–6965 (2004).
[CrossRef]

Savatier, J. -B.

T. Kobayashi, J.-B. Savatier, G. Jordan, W. J. Blau, Y. Suzuki, and T. Kaino, “Near-infrared laser emission from luminescent plastic waveguides,” Appl. Phys. Lett. 85, 185–187 (2004).
[CrossRef]

Schanze, K. S.

Y. Yang, R. T. Farley, T. T. Steckler, S.-H. Eom, J. R. Reynolds, K. S. Schanze, and J. Xue, “Near infrared organic light-emitting devices based on donor-acceptor-donor oligomers,” Appl. Phys. Lett. 93, 163305 (2008).
[CrossRef]

B. C. Thompson, L. G. Madrigal, M. R. Pinto, T.-S. Kang, K. S. Schanze, and J. R. Reynolds, “Donor-acceptor copolymers for red and near-infrared emitting PLEDs,” J. Polym. Sci., Part A: Polym. Chem. 43, 1417–1431 (2005).
[CrossRef]

Schanzea, K. S.

B. S. Harrison, T. J. Foley, M. Bouguettaya, J. M. Boncella, J. R. Reynolds, K. S. Schanzea, J. Shim, P. H. Holloway, G. Padmanaban, and S. Ramakrishnan, “Near-infrared electroluminescence from conjugated polymer/lanthanide porphyrin blends,” Appl. Phys. Lett. 79, 3370–3372 (2001).
[CrossRef]

Shim, J.

B. S. Harrison, T. J. Foley, M. Bouguettaya, J. M. Boncella, J. R. Reynolds, K. S. Schanzea, J. Shim, P. H. Holloway, G. Padmanaban, and S. Ramakrishnan, “Near-infrared electroluminescence from conjugated polymer/lanthanide porphyrin blends,” Appl. Phys. Lett. 79, 3370–3372 (2001).
[CrossRef]

Slooff, L. H.

L. H. Slooff, A. Polman, F. Cacialli, R. H. Friend, G. A. Hebbink, F. C. J. M. van Veggel, and D. N. Reinhoudt, “Near-infrared electroluminescence of polymer light-emitting diodes doped with a lissamine-sensitized Nd3+ complex,” Appl. Phys. Lett. 78, 2122–2124 (2001).
[CrossRef]

Steckler, T. T.

Y. Yang, R. T. Farley, T. T. Steckler, S.-H. Eom, J. R. Reynolds, K. S. Schanze, and J. Xue, “Near infrared organic light-emitting devices based on donor-acceptor-donor oligomers,” Appl. Phys. Lett. 93, 163305 (2008).
[CrossRef]

Sun, R. G.

R. G. Sun, Y. Z. Wang, Q. B. Zheng, H. J. Zhang, and A. J. Epstein, “1.54 μm infrared photoluminescence and electroluminescence from an erbium organic compound,” J. Appl. Phys. 87, 7589–7591 (2000).
[CrossRef]

Sun, Y.

C. Borek, K. Hanson, P. I. Djurovich, M. E. Thompson, K. Aznavour, R. Bau, Y. Sun, S. R. Forrest, J. Brooks, L. Michalski, and J. Brown, “Highly efficient, near-infrared electrophosphorescence from a Pt-metalloporphyrin complex,” Angew. Chem., Int. Ed. 46, 1109–1112 (2007).
[CrossRef]

Suzuki, H.

H. Suzuki, “Infrared electroluminescence from an organic ionic dye containing no rare-earth ions,” Appl. Phys. Lett. 80, 3256–3258 (2002).
[CrossRef]

H. Suzuki, “Self-enhancement in the electroluminescence of a near-infrared ionic dye,” Appl. Phys. Lett. 76, 1543–1545 (2000).
[CrossRef]

Suzuki, Y.

T. Kobayashi, M. Djiango, G. Jordan, M. Rüther, W. J. Blau, Y. Suzuki, and T. Kaino, “Laser emission at 0.8 μm from photopumped luminescent polymer microresonators,” Appl. Phys. Lett. 88, 181119 (2006).
[CrossRef]

T. Kobayashi, M. Flämmich, G. Jordan, R. D’Arcy, M. Rüther, W. J. Blau, Y. Suzuki, and T. Kaino, “Blue-green small-signal gain and saturation in a luminescent polymer gain medium,” Appl. Phys. Lett. 89, 131119 (2006).
[CrossRef]

T. Kobayashi, J.-B. Savatier, G. Jordan, W. J. Blau, Y. Suzuki, and T. Kaino, “Near-infrared laser emission from luminescent plastic waveguides,” Appl. Phys. Lett. 85, 185–187 (2004).
[CrossRef]

Takeda, K.

M. Kuwata-Gonokami and K. Takeda, “Polymer whispering gallery mode lasers,” Opt. Mater. 9, 12–17 (1998).
[CrossRef]

Tessler, N.

N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science 295, 1506–1508 (2002).
[CrossRef] [PubMed]

Thompson, B. C.

B. C. Thompson, L. G. Madrigal, M. R. Pinto, T.-S. Kang, K. S. Schanze, and J. R. Reynolds, “Donor-acceptor copolymers for red and near-infrared emitting PLEDs,” J. Polym. Sci., Part A: Polym. Chem. 43, 1417–1431 (2005).
[CrossRef]

Thompson, M. E.

C. Borek, K. Hanson, P. I. Djurovich, M. E. Thompson, K. Aznavour, R. Bau, Y. Sun, S. R. Forrest, J. Brooks, L. Michalski, and J. Brown, “Highly efficient, near-infrared electrophosphorescence from a Pt-metalloporphyrin complex,” Angew. Chem., Int. Ed. 46, 1109–1112 (2007).
[CrossRef]

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84, 4096–4108 (1998).
[CrossRef]

Turnbull, G. A.

G. Heliotis, R. Xisa, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium,” J. Appl. Phys. 96, 6959–6965 (2004).
[CrossRef]

van Veggel, F. C. J. M.

L. H. Slooff, A. Polman, F. Cacialli, R. H. Friend, G. A. Hebbink, F. C. J. M. van Veggel, and D. N. Reinhoudt, “Near-infrared electroluminescence of polymer light-emitting diodes doped with a lissamine-sensitized Nd3+ complex,” Appl. Phys. Lett. 78, 2122–2124 (2001).
[CrossRef]

Vardeny, Z. V.

Z. V. Vardeny, “Telecommunications: a boost for fibre optics,” Nature 416, 489–491 (2002).
[CrossRef] [PubMed]

Wada, Y.

Y. Kuwamura, Y. Wada, and S. Yanagida, “Near-infrared photoluminescence and electroluminescence of neodymium, erbium, and ytterbium complexes,” Jpn. J. Appl. Phys., Part 1 40, 350–356 (2001).
[CrossRef]

Wang, Y. Z.

R. G. Sun, Y. Z. Wang, Q. B. Zheng, H. J. Zhang, and A. J. Epstein, “1.54 μm infrared photoluminescence and electroluminescence from an erbium organic compound,” J. Appl. Phys. 87, 7589–7591 (2000).
[CrossRef]

White, B. G.

D. J. Morantz, B. G. White, and A. J. C. Wright, “Stimulated light emission by optical pumping and by energy transfer in organic molecules,” Phys. Rev. Lett. 8, 23–25 (1962).
[CrossRef]

Wright, A. J. C.

D. J. Morantz, B. G. White, and A. J. C. Wright, “Stimulated light emission by optical pumping and by energy transfer in organic molecules,” Phys. Rev. Lett. 8, 23–25 (1962).
[CrossRef]

Xisa, R.

G. Heliotis, R. Xisa, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium,” J. Appl. Phys. 96, 6959–6965 (2004).
[CrossRef]

Xue, J.

Y. Yang, R. T. Farley, T. T. Steckler, S.-H. Eom, J. R. Reynolds, K. S. Schanze, and J. Xue, “Near infrared organic light-emitting devices based on donor-acceptor-donor oligomers,” Appl. Phys. Lett. 93, 163305 (2008).
[CrossRef]

Yamashita, K.

S. Yuyama, T. Nakajima, K. Yamashita, and K. Oe, “Solid state organic laser emission at 970 nm from dye-doped fluorinated-polyimide planar waveguides,” Appl. Phys. Lett. 93, 023306 (2008).
[CrossRef]

K. Yamashita, T. Kuro, K. Oe, and H. Yanagi, “Low threshold amplified spontaneous emission from near-infrared dye-doped polymeric waveguide,” Appl. Phys. Lett. 88, 241110 (2006).
[CrossRef]

Yanagi, H.

K. Yamashita, T. Kuro, K. Oe, and H. Yanagi, “Low threshold amplified spontaneous emission from near-infrared dye-doped polymeric waveguide,” Appl. Phys. Lett. 88, 241110 (2006).
[CrossRef]

Yanagida, S.

Y. Kuwamura, Y. Wada, and S. Yanagida, “Near-infrared photoluminescence and electroluminescence of neodymium, erbium, and ytterbium complexes,” Jpn. J. Appl. Phys., Part 1 40, 350–356 (2001).
[CrossRef]

Yang, Y.

Y. Yang, R. T. Farley, T. T. Steckler, S.-H. Eom, J. R. Reynolds, K. S. Schanze, and J. Xue, “Near infrared organic light-emitting devices based on donor-acceptor-donor oligomers,” Appl. Phys. Lett. 93, 163305 (2008).
[CrossRef]

You, Y.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84, 4096–4108 (1998).
[CrossRef]

Yuyama, S.

S. Yuyama, T. Nakajima, K. Yamashita, and K. Oe, “Solid state organic laser emission at 970 nm from dye-doped fluorinated-polyimide planar waveguides,” Appl. Phys. Lett. 93, 023306 (2008).
[CrossRef]

Zhang, H. J.

R. G. Sun, Y. Z. Wang, Q. B. Zheng, H. J. Zhang, and A. J. Epstein, “1.54 μm infrared photoluminescence and electroluminescence from an erbium organic compound,” J. Appl. Phys. 87, 7589–7591 (2000).
[CrossRef]

Zheng, Q. B.

R. G. Sun, Y. Z. Wang, Q. B. Zheng, H. J. Zhang, and A. J. Epstein, “1.54 μm infrared photoluminescence and electroluminescence from an erbium organic compound,” J. Appl. Phys. 87, 7589–7591 (2000).
[CrossRef]

Angew. Chem., Int. Ed. (1)

C. Borek, K. Hanson, P. I. Djurovich, M. E. Thompson, K. Aznavour, R. Bau, Y. Sun, S. R. Forrest, J. Brooks, L. Michalski, and J. Brown, “Highly efficient, near-infrared electrophosphorescence from a Pt-metalloporphyrin complex,” Angew. Chem., Int. Ed. 46, 1109–1112 (2007).
[CrossRef]

Appl. Phys. Lett. (13)

Y. Yang, R. T. Farley, T. T. Steckler, S.-H. Eom, J. R. Reynolds, K. S. Schanze, and J. Xue, “Near infrared organic light-emitting devices based on donor-acceptor-donor oligomers,” Appl. Phys. Lett. 93, 163305 (2008).
[CrossRef]

H. Suzuki, “Self-enhancement in the electroluminescence of a near-infrared ionic dye,” Appl. Phys. Lett. 76, 1543–1545 (2000).
[CrossRef]

H. Suzuki, “Infrared electroluminescence from an organic ionic dye containing no rare-earth ions,” Appl. Phys. Lett. 80, 3256–3258 (2002).
[CrossRef]

L. H. Slooff, A. Polman, F. Cacialli, R. H. Friend, G. A. Hebbink, F. C. J. M. van Veggel, and D. N. Reinhoudt, “Near-infrared electroluminescence of polymer light-emitting diodes doped with a lissamine-sensitized Nd3+ complex,” Appl. Phys. Lett. 78, 2122–2124 (2001).
[CrossRef]

B. S. Harrison, T. J. Foley, M. Bouguettaya, J. M. Boncella, J. R. Reynolds, K. S. Schanzea, J. Shim, P. H. Holloway, G. Padmanaban, and S. Ramakrishnan, “Near-infrared electroluminescence from conjugated polymer/lanthanide porphyrin blends,” Appl. Phys. Lett. 79, 3370–3372 (2001).
[CrossRef]

M. Djiango, T. Kobayashi, W. J. Blau, B. Cai, K. Komatsu, and T. Kaino, “Near-infrared luminescent polymer waveguide with a 20 dB small-signal gain,” Appl. Phys. Lett. 92, 083306 (2008).
[CrossRef]

K. Yamashita, T. Kuro, K. Oe, and H. Yanagi, “Low threshold amplified spontaneous emission from near-infrared dye-doped polymeric waveguide,” Appl. Phys. Lett. 88, 241110 (2006).
[CrossRef]

T. Kobayashi, J.-B. Savatier, G. Jordan, W. J. Blau, Y. Suzuki, and T. Kaino, “Near-infrared laser emission from luminescent plastic waveguides,” Appl. Phys. Lett. 85, 185–187 (2004).
[CrossRef]

T. Kobayashi, M. Djiango, G. Jordan, M. Rüther, W. J. Blau, Y. Suzuki, and T. Kaino, “Laser emission at 0.8 μm from photopumped luminescent polymer microresonators,” Appl. Phys. Lett. 88, 181119 (2006).
[CrossRef]

M. Djiango, T. Kobayashi, and W. J. Blau, “Cavity-enhanced stimulated emission cross section in polymer microlasers,” Appl. Phys. Lett. 93, 143306 (2008).
[CrossRef]

S. Yuyama, T. Nakajima, K. Yamashita, and K. Oe, “Solid state organic laser emission at 970 nm from dye-doped fluorinated-polyimide planar waveguides,” Appl. Phys. Lett. 93, 023306 (2008).
[CrossRef]

G. Karve, B. Bihari, and R. T. Chen, “Demonstration of optical gain at 1.06 μm in a neodymium-doped polyimide waveguide,” Appl. Phys. Lett. 77, 1253–1255 (2000).
[CrossRef]

T. Kobayashi, M. Flämmich, G. Jordan, R. D’Arcy, M. Rüther, W. J. Blau, Y. Suzuki, and T. Kaino, “Blue-green small-signal gain and saturation in a luminescent polymer gain medium,” Appl. Phys. Lett. 89, 131119 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. Rezzonico, A. Guarino, C. Herzog, M. Jazbinsek, and P. Günter, “High-finesse laterally coupled organic–inorganic hybrid polymer microring resonators for VLSI photonics,” IEEE Photon. Technol. Lett. 18, 865–867 (2006).
[CrossRef]

J. Appl. Phys. (4)

T. Kobayashi, M. Djiango, and W. J. Blau, “Near-infrared electroluminescence and stimulated emission from semiconducting non-conjugated polymer thin films,” J. Appl. Phys. 107, 023103 (2010).
[CrossRef]

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84, 4096–4108 (1998).
[CrossRef]

G. Heliotis, R. Xisa, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium,” J. Appl. Phys. 96, 6959–6965 (2004).
[CrossRef]

R. G. Sun, Y. Z. Wang, Q. B. Zheng, H. J. Zhang, and A. J. Epstein, “1.54 μm infrared photoluminescence and electroluminescence from an erbium organic compound,” J. Appl. Phys. 87, 7589–7591 (2000).
[CrossRef]

J. Polym. Sci., Part A: Polym. Chem. (1)

B. C. Thompson, L. G. Madrigal, M. R. Pinto, T.-S. Kang, K. S. Schanze, and J. R. Reynolds, “Donor-acceptor copolymers for red and near-infrared emitting PLEDs,” J. Polym. Sci., Part A: Polym. Chem. 43, 1417–1431 (2005).
[CrossRef]

Jpn. J. Appl. Phys., Part 1 (1)

Y. Kuwamura, Y. Wada, and S. Yanagida, “Near-infrared photoluminescence and electroluminescence of neodymium, erbium, and ytterbium complexes,” Jpn. J. Appl. Phys., Part 1 40, 350–356 (2001).
[CrossRef]

Nature (1)

Z. V. Vardeny, “Telecommunications: a boost for fibre optics,” Nature 416, 489–491 (2002).
[CrossRef] [PubMed]

Opt. Mater. (1)

M. Kuwata-Gonokami and K. Takeda, “Polymer whispering gallery mode lasers,” Opt. Mater. 9, 12–17 (1998).
[CrossRef]

Phys. Rev. Lett. (1)

D. J. Morantz, B. G. White, and A. J. C. Wright, “Stimulated light emission by optical pumping and by energy transfer in organic molecules,” Phys. Rev. Lett. 8, 23–25 (1962).
[CrossRef]

Polymer (4)

R. H. Partridge, “Electroluminescence from polyvinylcarbazole films: Pt. 1: Cabazole cations,” Polymer 24, 733–738 (1983).
[CrossRef]

R. H. Partridge, “Electroluminescence from polyvinylcarbazole films: 2. Polyvinylcarbazole films containing antimony pentachloride,” Polymer 24, 739–747 (1983).
[CrossRef]

R. H. Partridge, “Electroluminescence from polyvinylcarbazole films: 3. Electroluminescent devices,” Polymer 24, 748–754 (1983).
[CrossRef]

R. H. Partridge, “Electrochemiluminescence from polyvinylcarbazole films 4. Electrochemiluminescence using higher work function cathodes,” Polymer 24, 755–762 (1983).
[CrossRef]

Science (1)

N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science 295, 1506–1508 (2002).
[CrossRef] [PubMed]

Other (1)

F.P.Schäfer, ed., Dye Lasers, 3rd ed. (Springer-Verlag, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Molecular structures of the materials: PVK, PBD, and LDS821.

Fig. 2
Fig. 2

(a) Schematic representation of the cross-section of the polymer-coated optical fiber and microscopic images of samples (b) with and (c) without PVK coating. Photo courtesy of Henry Barry.

Fig. 3
Fig. 3

Emission spectra of the microlaser taken below ( 0.6 μ J / pulse ) , above ( 12 μ J / pulse ) , and well above ( 94 μ J / pulse ) threshold. Inset: FWHM as a function of pump pulse energy. The value plotted at 0 μ J / pulse is the FWHM of the steady-state photoluminescence spectrum.

Fig. 4
Fig. 4

Laser output intensity as a function of pump pulse energy.

Fig. 5
Fig. 5

Fractional population N 2 / N t required for the onset of laser action (solid curve), which is estimated based on absorption (dashed curve) and stimulated emission (dotted curve) cross-sections and the cavity Q. The absorption cross-section spectrum was reproduced from Fig. 1 of [16]. The stimulated cross-section spectrum was determined by use of the Füchtbauer–Ladenburg formula σ e = λ 4 E ( λ ) / 8 π c n 2 τ , where τ = 1.4   ns [16], n = 1.5922 [11], the line shape function E ( λ ) (taken from Fig. 1b of [11]) is normalized so that 0 E ( λ ) d λ = ϕ , where the quantum efficiency ϕ is ϕ = 0.21 [16]. The threshold minimum is found at around 824 nm, which is close to the experimentally observed value of 825 nm.

Fig. 6
Fig. 6

Laser emission intensity as a function of the number of pump pulses. The curve is a fit to the data with I / I 0 = exp ( N / N 0 ) , where I is the output intensity and N is the number of the pump pulses. Through the fitting procedure, the decay constant N 0 is found to be approximately 1.8 × 10 5 shots.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

γ ( λ ) 2 π n eff λ Q t .
Q t 1 = Q c 1 + Q a 1 + Q s 1 .
Q a = 2 π n eff λ α a ,
N 2 N t = σ a σ e + σ a ( 1 + Q a Q t ) .

Metrics