Abstract

A near-infrared-emitting microlaser has been demonstrated, which is based on a semiconducting non-conjugated polymer. A luminescent polymer layer is formed on a silica optical fiber 125μm in diameter by self-assembly with poly(9-vinylcarbazole) containing an electron-transport material, 2-(4-Biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole, and a near-infrared-emitting compound, 2-(6-(p-dimethylaminophenyl)-2,4-neopentylene-1,3,5-hexatrienyl)-3-ethylbenzothiazolium perchlorate. The cylindrical polymer microcavity shows laser emission at 825 nm when it is transversally photopumped at 532 nm with a nanosecond Nd:yttrium aluminum garnet laser. The resonance of the microcavity is characterized by a cavity quality factor Q=(2.7±0.1)×103, which is determined from the laser spectral width. Furthermore, a threshold analysis is carried out by taking into account the effects of the ground-state absorption of the chromophore and Rayleigh scattering of the gain medium. The analysis shows that the minimum threshold lies in the vicinity of 824 nm, which is consistent with the experimentally observed laser emission line at 825 nm.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription