Abstract

Several corrections of detail are made to an earlier paper. The main results and conclusions are unchanged.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. C. Rand, “Quantum theory of coherent transverse optical magnetism,” J. Opt. Soc. Am. B 26, B120-B129 (2009).
    [CrossRef]

2009 (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (7)

Equations on this page are rendered with MathJax. Learn more.

V 12 ( e ) 1 | V ( e ) | 2 = 1 2 1 | [ Ω + ( e ) + Ω ( e ) ] e i φ + h.c. | 2 ,
V 12 ( m ) 1 | V ( m ) | 2 = 1 2 1 | [ Ω + * ( m ) + Ω * ( m ) ] + h.c. | 2 1 2 1 | [ Ω + ( m ) + Ω ( m ) ] e 2 i φ + h.c. | 2 ,
ρ 12 ( e ) = 1 2 { [ Ω + ( e ) + Ω ( e ) ] 12 ( Δ 1 + i Γ 12 ) e i ω t } ( ρ 11 ρ 22 ) ,
ρ 12 ( m ) = 1 2 { [ Ω + ( m ) + Ω ( m ) ] 12 ( ω φ + i Γ 12 ( m ) ) e i ω t + [ Ω + ( m ) + Ω ( m ) ] 12 ( Δ 2 + i Γ 12 ( m ) ) e i ω t } ( ρ 11 ( 0 ) ρ 22 ( 0 ) ) .
M ¯ ( t ) = y ̂ ( N e 2 m ) { 1 2 [ 2 | L y | 1 [ Ω 0 ( e ) ] 12 [ Ω 0 ( m ) ] 12 ( Δ 1 + i Γ 12 ( e ) ) ( Δ 2 + i Γ 12 ( m ) ) e i ω t + 2 | L y | 1 [ Ω 0 ( e ) ] 12 [ Ω 0 ( m ) ] 12 ( ω φ + i Γ 12 ( m ) ) ( Δ 2 + i Γ 12 ( m ) ) e i ω t ] + h.c. } ( ρ 11 ρ 22 ) ,
M ̃ = y ̂ ( N e m ) 1 2 [ 2 | L y | 1 [ Ω 0 ( e ) ] 12 [ Ω 0 ( m ) ] 12 ( Δ 1 + i Γ 12 ( e ) ) ( Δ 2 + i Γ 12 ( m ) ) + 2 | L y | 1 * [ Ω 0 * ( e ) ] 12 [ Ω 0 ( m ) * ] 12 ( ω φ i Γ 12 ( m ) ) ( Δ 2 i Γ 12 ( m ) ) ] ( ρ 11 ρ 22 ) .
P ¯ ( t ) = N z ̂ ( μ 21 ( e ) ρ 12 ( m ) ( t ) ρ 12 ( e ) + h.c. ) = N z ̂ { ( 1 2 μ 21 ( e ) [ Ω 0 ( m ) ] 12 [ Ω 0 ( e ) ] 12 ( Δ 1 + i Γ 12 ( e ) ) ( ω φ + i Γ 12 ( m ) ) + h.c. ) + ( 1 2 μ 21 ( e ) [ Ω 0 ( m ) ] 12 [ Ω 0 ( e ) ] 12 ( Δ 1 + i Γ 12 ( e ) ) ( Δ 2 + i Γ 12 ( m ) ) e 2 i ω t + h.c. ) } .

Metrics