Abstract

We propose a nanometer-scale hollow core waveguide that can be fabricated with standard methods on a silicon-on-insulator substrate. High optical confinement in the core is possible, making such a waveguide structure suitable for sensing applications, applications making use of strong optical nonlinearities, and optofluidics applications. We extend a historical method (Marcatili’s method) to provide analytical solutions for field distributions in the device and simulate power confinement, intensity, and parametric dependencies with beam propagation and finite-difference time-domain methods for two polarizations. In an example worked out, the optical confinement in the air core is 40% of the total waveguide power, which is favorable to that of a standard slot waveguide. The intensity per μm2 in the hollow core is 95% higher than in the silicon cladding region, indicating that avoiding optical nonlinearities is also possible.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription