Abstract

This investigation clarifies the transition phenomenon between the electromagnetically induced transparency (EIT) and Raman absorption in a ladder-type system of Doppler-broadened cesium vapor. A competition window of this transition was found to be as narrow as 2MHz defined by the probe Rabi frequency. For a weak probe, the spectrum of EIT associated with quantum interference suggests that the effect of the Doppler velocity on the spectrum is negligible. When the Rabi frequency of the probe becomes comparable with the effective decay rate, an electromagnetically induced absorption (EIA) dip emerges at the center of the power broadened EIT peak. While the Rabi frequency of the probe exceeds the effective decay rate, decoherence that is generated by the intensified probe field occurs and Raman absorption dominates the interaction process, yielding a pure absorption spectrum; the Doppler velocity plays an important role in the interaction. A theory that is based on density matrix simulation, with or without the Doppler effect, can qualitatively fit the experimental data. In this work, the coherence of atom–photon interactions is created or destroyed using the probe Rabi frequency as a decoherence source.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003-1025 (1998).
    [CrossRef]
  2. G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for the observation of R.F. transitions and laser beat resonances in oriented Na vapour,” Nuovo Cimento B 36, 5-20 (1976).
    [CrossRef]
  3. E. Arimondo and G. Orriols, “Nonabsorbing atomic coherences by coherent two-photon transitions in a three-level optical pumping,” Nuovo Cimento. Lett. 17, 333-338 (1976).
    [CrossRef]
  4. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783-786 (2001).
    [CrossRef] [PubMed]
  5. M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59, 4773-4776 (1999).
    [CrossRef]
  6. R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: Observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670-673 (1995).
    [CrossRef] [PubMed]
  7. M. O. Scully, S. Y. Zhu, and A. Gavrielides, “Degenerate quantum-beat laser: Lasing without inversion and inversion without lasing,” Phys. Rev. Lett. 62, 2813-2816 (1989).
    [CrossRef] [PubMed]
  8. A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826-829 (1988).
    [CrossRef] [PubMed]
  9. T. Hong, C. Cramer, W. Nagourney, and E. N. Fortson, “Optical clocks based on ultranarrow three-photon resonances in alkaline earth atoms,” Phys. Rev. Lett. 94, 050801 (2005).
    [CrossRef] [PubMed]
  10. A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
    [CrossRef] [PubMed]
  11. R. J. Rafac, C. E. Tanner, A. E. Livingston, and H. G. Berry, “Fast-beam laser lifetime measurements of the cesium 6p2P1/2,3/2 states,” Phys. Rev. A 60, 3648-3662 (1999).
    [CrossRef]
  12. G. Alessandretti, F. Chiarini, G. Gorini, and F. Petrucci, “Measurement of the Cs 8S-level lifetime,” Opt. Commun. 20, 289-291 (1977).
    [CrossRef]
  13. S. Shepherd, D. J. Fulton, and M. H. Dunn, “Wavelength dependence of coherently induced transparency in a Doppler-broadened cascade medium,” Phys. Rev. A 54, 5394-5399 (1996).
    [CrossRef] [PubMed]
  14. J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576-584 (1995).
    [CrossRef] [PubMed]
  15. R. Y. Chang, W. C. Fang, B. C. Ke, Z. S. He, M. D. Tsai, Y. C. Lee, and C. C. Tsai, “Suppression and recovery of the trapping of atoms using a ladder-type electromagnetically induced transparency,” Phys. Rev. A 76, 055404 (2007).
    [CrossRef]
  16. K. Pandey and V. Natarajan, “Splitting of electromagnetically induced transparency under strong-probe conditions due to Doppler averaging,” J. Phys. B: At. Mol. Opt. Phys. 41, 185504 (2008).
    [CrossRef]

2008 (1)

K. Pandey and V. Natarajan, “Splitting of electromagnetically induced transparency under strong-probe conditions due to Doppler averaging,” J. Phys. B: At. Mol. Opt. Phys. 41, 185504 (2008).
[CrossRef]

2007 (2)

R. Y. Chang, W. C. Fang, B. C. Ke, Z. S. He, M. D. Tsai, Y. C. Lee, and C. C. Tsai, “Suppression and recovery of the trapping of atoms using a ladder-type electromagnetically induced transparency,” Phys. Rev. A 76, 055404 (2007).
[CrossRef]

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[CrossRef] [PubMed]

2005 (1)

T. Hong, C. Cramer, W. Nagourney, and E. N. Fortson, “Optical clocks based on ultranarrow three-photon resonances in alkaline earth atoms,” Phys. Rev. Lett. 94, 050801 (2005).
[CrossRef] [PubMed]

2001 (1)

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

1999 (2)

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59, 4773-4776 (1999).
[CrossRef]

R. J. Rafac, C. E. Tanner, A. E. Livingston, and H. G. Berry, “Fast-beam laser lifetime measurements of the cesium 6p2P1/2,3/2 states,” Phys. Rev. A 60, 3648-3662 (1999).
[CrossRef]

1998 (1)

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003-1025 (1998).
[CrossRef]

1996 (1)

S. Shepherd, D. J. Fulton, and M. H. Dunn, “Wavelength dependence of coherently induced transparency in a Doppler-broadened cascade medium,” Phys. Rev. A 54, 5394-5399 (1996).
[CrossRef] [PubMed]

1995 (2)

J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576-584 (1995).
[CrossRef] [PubMed]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: Observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670-673 (1995).
[CrossRef] [PubMed]

1989 (1)

M. O. Scully, S. Y. Zhu, and A. Gavrielides, “Degenerate quantum-beat laser: Lasing without inversion and inversion without lasing,” Phys. Rev. Lett. 62, 2813-2816 (1989).
[CrossRef] [PubMed]

1988 (1)

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826-829 (1988).
[CrossRef] [PubMed]

1977 (1)

G. Alessandretti, F. Chiarini, G. Gorini, and F. Petrucci, “Measurement of the Cs 8S-level lifetime,” Opt. Commun. 20, 289-291 (1977).
[CrossRef]

1976 (2)

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for the observation of R.F. transitions and laser beat resonances in oriented Na vapour,” Nuovo Cimento B 36, 5-20 (1976).
[CrossRef]

E. Arimondo and G. Orriols, “Nonabsorbing atomic coherences by coherent two-photon transitions in a three-level optical pumping,” Nuovo Cimento. Lett. 17, 333-338 (1976).
[CrossRef]

Adams, C. S.

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[CrossRef] [PubMed]

Alessandretti, G.

G. Alessandretti, F. Chiarini, G. Gorini, and F. Petrucci, “Measurement of the Cs 8S-level lifetime,” Opt. Commun. 20, 289-291 (1977).
[CrossRef]

Alzetta, G.

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for the observation of R.F. transitions and laser beat resonances in oriented Na vapour,” Nuovo Cimento B 36, 5-20 (1976).
[CrossRef]

Arimondo, E.

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826-829 (1988).
[CrossRef] [PubMed]

E. Arimondo and G. Orriols, “Nonabsorbing atomic coherences by coherent two-photon transitions in a three-level optical pumping,” Nuovo Cimento. Lett. 17, 333-338 (1976).
[CrossRef]

Aspect, A.

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826-829 (1988).
[CrossRef] [PubMed]

Bergmann, K.

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003-1025 (1998).
[CrossRef]

Berry, H. G.

R. J. Rafac, C. E. Tanner, A. E. Livingston, and H. G. Berry, “Fast-beam laser lifetime measurements of the cesium 6p2P1/2,3/2 states,” Phys. Rev. A 60, 3648-3662 (1999).
[CrossRef]

Chang, R. Y.

R. Y. Chang, W. C. Fang, B. C. Ke, Z. S. He, M. D. Tsai, Y. C. Lee, and C. C. Tsai, “Suppression and recovery of the trapping of atoms using a ladder-type electromagnetically induced transparency,” Phys. Rev. A 76, 055404 (2007).
[CrossRef]

Chiarini, F.

G. Alessandretti, F. Chiarini, G. Gorini, and F. Petrucci, “Measurement of the Cs 8S-level lifetime,” Opt. Commun. 20, 289-291 (1977).
[CrossRef]

Cohen-Tannoudji, C.

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826-829 (1988).
[CrossRef] [PubMed]

Cramer, C.

T. Hong, C. Cramer, W. Nagourney, and E. N. Fortson, “Optical clocks based on ultranarrow three-photon resonances in alkaline earth atoms,” Phys. Rev. Lett. 94, 050801 (2005).
[CrossRef] [PubMed]

Dunn, M. H.

S. Shepherd, D. J. Fulton, and M. H. Dunn, “Wavelength dependence of coherently induced transparency in a Doppler-broadened cascade medium,” Phys. Rev. A 54, 5394-5399 (1996).
[CrossRef] [PubMed]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: Observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670-673 (1995).
[CrossRef] [PubMed]

Fang, W. C.

R. Y. Chang, W. C. Fang, B. C. Ke, Z. S. He, M. D. Tsai, Y. C. Lee, and C. C. Tsai, “Suppression and recovery of the trapping of atoms using a ladder-type electromagnetically induced transparency,” Phys. Rev. A 76, 055404 (2007).
[CrossRef]

Fleischhauer, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

Fortson, E. N.

T. Hong, C. Cramer, W. Nagourney, and E. N. Fortson, “Optical clocks based on ultranarrow three-photon resonances in alkaline earth atoms,” Phys. Rev. Lett. 94, 050801 (2005).
[CrossRef] [PubMed]

Fulton, D. J.

S. Shepherd, D. J. Fulton, and M. H. Dunn, “Wavelength dependence of coherently induced transparency in a Doppler-broadened cascade medium,” Phys. Rev. A 54, 5394-5399 (1996).
[CrossRef] [PubMed]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: Observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670-673 (1995).
[CrossRef] [PubMed]

Gavrielides, A.

M. O. Scully, S. Y. Zhu, and A. Gavrielides, “Degenerate quantum-beat laser: Lasing without inversion and inversion without lasing,” Phys. Rev. Lett. 62, 2813-2816 (1989).
[CrossRef] [PubMed]

Gea-Banacloche, J.

J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576-584 (1995).
[CrossRef] [PubMed]

Gorini, G.

G. Alessandretti, F. Chiarini, G. Gorini, and F. Petrucci, “Measurement of the Cs 8S-level lifetime,” Opt. Commun. 20, 289-291 (1977).
[CrossRef]

Gozzini, A.

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for the observation of R.F. transitions and laser beat resonances in oriented Na vapour,” Nuovo Cimento B 36, 5-20 (1976).
[CrossRef]

He, Z. S.

R. Y. Chang, W. C. Fang, B. C. Ke, Z. S. He, M. D. Tsai, Y. C. Lee, and C. C. Tsai, “Suppression and recovery of the trapping of atoms using a ladder-type electromagnetically induced transparency,” Phys. Rev. A 76, 055404 (2007).
[CrossRef]

Hong, T.

T. Hong, C. Cramer, W. Nagourney, and E. N. Fortson, “Optical clocks based on ultranarrow three-photon resonances in alkaline earth atoms,” Phys. Rev. Lett. 94, 050801 (2005).
[CrossRef] [PubMed]

Imoto, N.

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59, 4773-4776 (1999).
[CrossRef]

Jackson, T. R.

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[CrossRef] [PubMed]

Jin, S. Z.

J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576-584 (1995).
[CrossRef] [PubMed]

Kaiser, R.

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826-829 (1988).
[CrossRef] [PubMed]

Ke, B. C.

R. Y. Chang, W. C. Fang, B. C. Ke, Z. S. He, M. D. Tsai, Y. C. Lee, and C. C. Tsai, “Suppression and recovery of the trapping of atoms using a ladder-type electromagnetically induced transparency,” Phys. Rev. A 76, 055404 (2007).
[CrossRef]

Lee, Y. C.

R. Y. Chang, W. C. Fang, B. C. Ke, Z. S. He, M. D. Tsai, Y. C. Lee, and C. C. Tsai, “Suppression and recovery of the trapping of atoms using a ladder-type electromagnetically induced transparency,” Phys. Rev. A 76, 055404 (2007).
[CrossRef]

Li, Y. Q.

J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576-584 (1995).
[CrossRef] [PubMed]

Livingston, A. E.

R. J. Rafac, C. E. Tanner, A. E. Livingston, and H. G. Berry, “Fast-beam laser lifetime measurements of the cesium 6p2P1/2,3/2 states,” Phys. Rev. A 60, 3648-3662 (1999).
[CrossRef]

Lukin, M. D.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

Mair, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

Mitsunaga, M.

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59, 4773-4776 (1999).
[CrossRef]

Mohapatra, A. K.

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[CrossRef] [PubMed]

Moi, L.

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for the observation of R.F. transitions and laser beat resonances in oriented Na vapour,” Nuovo Cimento B 36, 5-20 (1976).
[CrossRef]

Moseley, R. R.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: Observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670-673 (1995).
[CrossRef] [PubMed]

Nagourney, W.

T. Hong, C. Cramer, W. Nagourney, and E. N. Fortson, “Optical clocks based on ultranarrow three-photon resonances in alkaline earth atoms,” Phys. Rev. Lett. 94, 050801 (2005).
[CrossRef] [PubMed]

Natarajan, V.

K. Pandey and V. Natarajan, “Splitting of electromagnetically induced transparency under strong-probe conditions due to Doppler averaging,” J. Phys. B: At. Mol. Opt. Phys. 41, 185504 (2008).
[CrossRef]

Orriols, G.

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for the observation of R.F. transitions and laser beat resonances in oriented Na vapour,” Nuovo Cimento B 36, 5-20 (1976).
[CrossRef]

E. Arimondo and G. Orriols, “Nonabsorbing atomic coherences by coherent two-photon transitions in a three-level optical pumping,” Nuovo Cimento. Lett. 17, 333-338 (1976).
[CrossRef]

Pandey, K.

K. Pandey and V. Natarajan, “Splitting of electromagnetically induced transparency under strong-probe conditions due to Doppler averaging,” J. Phys. B: At. Mol. Opt. Phys. 41, 185504 (2008).
[CrossRef]

Petrucci, F.

G. Alessandretti, F. Chiarini, G. Gorini, and F. Petrucci, “Measurement of the Cs 8S-level lifetime,” Opt. Commun. 20, 289-291 (1977).
[CrossRef]

Phillips, D. F.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

Rafac, R. J.

R. J. Rafac, C. E. Tanner, A. E. Livingston, and H. G. Berry, “Fast-beam laser lifetime measurements of the cesium 6p2P1/2,3/2 states,” Phys. Rev. A 60, 3648-3662 (1999).
[CrossRef]

Scully, M. O.

M. O. Scully, S. Y. Zhu, and A. Gavrielides, “Degenerate quantum-beat laser: Lasing without inversion and inversion without lasing,” Phys. Rev. Lett. 62, 2813-2816 (1989).
[CrossRef] [PubMed]

Shepherd, S.

S. Shepherd, D. J. Fulton, and M. H. Dunn, “Wavelength dependence of coherently induced transparency in a Doppler-broadened cascade medium,” Phys. Rev. A 54, 5394-5399 (1996).
[CrossRef] [PubMed]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: Observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670-673 (1995).
[CrossRef] [PubMed]

Shore, B. W.

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003-1025 (1998).
[CrossRef]

Sinclair, B. D.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: Observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670-673 (1995).
[CrossRef] [PubMed]

Tanner, C. E.

R. J. Rafac, C. E. Tanner, A. E. Livingston, and H. G. Berry, “Fast-beam laser lifetime measurements of the cesium 6p2P1/2,3/2 states,” Phys. Rev. A 60, 3648-3662 (1999).
[CrossRef]

Theuer, H.

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003-1025 (1998).
[CrossRef]

Tsai, C. C.

R. Y. Chang, W. C. Fang, B. C. Ke, Z. S. He, M. D. Tsai, Y. C. Lee, and C. C. Tsai, “Suppression and recovery of the trapping of atoms using a ladder-type electromagnetically induced transparency,” Phys. Rev. A 76, 055404 (2007).
[CrossRef]

Tsai, M. D.

R. Y. Chang, W. C. Fang, B. C. Ke, Z. S. He, M. D. Tsai, Y. C. Lee, and C. C. Tsai, “Suppression and recovery of the trapping of atoms using a ladder-type electromagnetically induced transparency,” Phys. Rev. A 76, 055404 (2007).
[CrossRef]

Vansteenkiste, N.

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826-829 (1988).
[CrossRef] [PubMed]

Walsworth, R. L.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

Xiao, M.

J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576-584 (1995).
[CrossRef] [PubMed]

Zhu, S. Y.

M. O. Scully, S. Y. Zhu, and A. Gavrielides, “Degenerate quantum-beat laser: Lasing without inversion and inversion without lasing,” Phys. Rev. Lett. 62, 2813-2816 (1989).
[CrossRef] [PubMed]

J. Phys. B: At. Mol. Opt. Phys. (1)

K. Pandey and V. Natarajan, “Splitting of electromagnetically induced transparency under strong-probe conditions due to Doppler averaging,” J. Phys. B: At. Mol. Opt. Phys. 41, 185504 (2008).
[CrossRef]

Nuovo Cimento B (1)

G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for the observation of R.F. transitions and laser beat resonances in oriented Na vapour,” Nuovo Cimento B 36, 5-20 (1976).
[CrossRef]

Nuovo Cimento. Lett. (1)

E. Arimondo and G. Orriols, “Nonabsorbing atomic coherences by coherent two-photon transitions in a three-level optical pumping,” Nuovo Cimento. Lett. 17, 333-338 (1976).
[CrossRef]

Opt. Commun. (1)

G. Alessandretti, F. Chiarini, G. Gorini, and F. Petrucci, “Measurement of the Cs 8S-level lifetime,” Opt. Commun. 20, 289-291 (1977).
[CrossRef]

Phys. Rev. A (5)

S. Shepherd, D. J. Fulton, and M. H. Dunn, “Wavelength dependence of coherently induced transparency in a Doppler-broadened cascade medium,” Phys. Rev. A 54, 5394-5399 (1996).
[CrossRef] [PubMed]

J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576-584 (1995).
[CrossRef] [PubMed]

R. Y. Chang, W. C. Fang, B. C. Ke, Z. S. He, M. D. Tsai, Y. C. Lee, and C. C. Tsai, “Suppression and recovery of the trapping of atoms using a ladder-type electromagnetically induced transparency,” Phys. Rev. A 76, 055404 (2007).
[CrossRef]

R. J. Rafac, C. E. Tanner, A. E. Livingston, and H. G. Berry, “Fast-beam laser lifetime measurements of the cesium 6p2P1/2,3/2 states,” Phys. Rev. A 60, 3648-3662 (1999).
[CrossRef]

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59, 4773-4776 (1999).
[CrossRef]

Phys. Rev. Lett. (6)

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: Observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670-673 (1995).
[CrossRef] [PubMed]

M. O. Scully, S. Y. Zhu, and A. Gavrielides, “Degenerate quantum-beat laser: Lasing without inversion and inversion without lasing,” Phys. Rev. Lett. 62, 2813-2816 (1989).
[CrossRef] [PubMed]

A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, “Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping,” Phys. Rev. Lett. 61, 826-829 (1988).
[CrossRef] [PubMed]

T. Hong, C. Cramer, W. Nagourney, and E. N. Fortson, “Optical clocks based on ultranarrow three-photon resonances in alkaline earth atoms,” Phys. Rev. Lett. 94, 050801 (2005).
[CrossRef] [PubMed]

A. K. Mohapatra, T. R. Jackson, and C. S. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett. 98, 113003 (2007).
[CrossRef] [PubMed]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783-786 (2001).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003-1025 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Relevant energy diagram of the ladder-type three level system of Cs 133 . Ω ( p , c ) , ω ( p , c ) , Δ ( p , c ) denote the Rabi frequency, the laser frequency, and the detuning of the probe and coupling fields. Γ 2 and Γ 3 describe the decay rate of the states | 6 P 3 2 2 , F = 5 and | 8 S 1 2 2 , F = 4 , respectively.

Fig. 2
Fig. 2

The simulation of the transmission profile based on the density matrix approach without integrating the Doppler velocity group. The parameters are as follows: Γ 2 = 5.22 MHz , Γ 3 = 2.18 MHz , Δ p = 0 , Ω c = 6.17 MHz , and the linewidth of both fields are set to be 0.4 MHz .

Fig. 3
Fig. 3

The simulation of the transmission profile based on the density matrix approach, integrating the Doppler velocity group at 300 K and velocity from 1000 m s to + 1000 m s , and all the parameters are the same as those in Fig. 2.

Fig. 4
Fig. 4

The schematic diagram of the experimental setup. Ti:Sapphire laser operates at 794 nm and serves as the coupling laser. The probe laser is an external cavity grating feedback diode laser, which is locked to the | 6 S 1 2 2 , F = 4 | 6 P 3 2 2 , F = 5 transition ( Δ p = 0 ) . PD, semiconductor photodetector; M, mirrors; Att, attenuators; PC, personal computer.

Fig. 5
Fig. 5

The EIT spectrum. The experimental result has the linewidth of 5.79 MHz (diamond). Two theoretical simulations with (lower curve) and without (upper curve) summing over the Doppler velocity distribution. The simulation parameters Ω c = 6.17 (laser power 124.9 mW , intensity 6.36 mW mm 2 ) MHz and Ω p = 1.89 MHz (laser power 6.2 mW , intensity 1.96 mW mm 2 ) are from experiment, and the remaining conditions are the same as those in Fig. 2.

Fig. 6
Fig. 6

The strong-probe spectrum. The experimental result shows a pure absorption dip (diamond). Two theoretical simulations with (lower curve) or without (upper curve) summing over the Doppler velocity distribution. The simulation parameters Ω c = 6.17 MHz and Ω p = 7.08 MHz are from experiment, and the remaining conditions are the same as those in Fig. 2.

Fig. 7
Fig. 7

The spectrum of the evolution process between the EIT regime and Raman absorption. The Rabi frequency of coupling transition is 6.17 MHz , and the probe transitions are (a) 2.67 MHz , (b) 4.31 MHz , (c) 5.21 MHz , (d) 5.80 MHz , (e) 5.92 MHz , and (f) 13.37 MHz .

Fig. 8
Fig. 8

The ratio of the normalized standard deviation stdev 1 ( stdev 1 + stdev 2 ) as a function of Ω p .

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

i ρ ̇ = [ H , ρ ] i 2 { Γ , ρ } .
i ( ρ ̇ 11 ρ ̇ 12 ρ ̇ 13 ρ ̇ 21 ρ ̇ 22 ρ ̇ 23 ρ ̇ 31 ρ ̇ 32 ρ ̇ 33 ) = ( ( 0 Ω p 2 e i Δ p t 0 Ω p 2 e i Δ p t 0 Ω c 2 e i Δ c t 0 Ω c 2 e i Δ c t 0 ) ( ρ 11 ρ 12 ρ 13 ρ 21 ρ 22 ρ 23 ρ 31 ρ 32 ρ 33 ) ( ρ 11 ρ 12 ρ 13 ρ 21 ρ 22 ρ 23 ρ 31 ρ 32 ρ 33 ) ( 0 Ω p 2 e i Δ p t 0 Ω p 2 e i Δ p t 0 Ω c 2 e i Δ c t 0 Ω c 2 e i Δ c t 0 ) ) + i ( Γ 2 ρ 22 + Γ 3 ρ 33 1 2 ( Γ 2 + γ p ) ρ 12 1 2 ( Γ 3 + γ c + γ p ) ρ 13 1 2 ( Γ 2 + γ p ) ρ 21 Γ 2 ρ 22 1 2 ( Γ 2 + Γ 3 + γ c ) ρ 23 1 2 ( Γ 3 + γ c + γ p ) ρ 31 1 2 ( Γ 2 + Γ 3 + γ c ) ρ 32 Γ 3 ρ 33 )
ρ 11 = ρ ¯ 11 ,
ρ 22 = ρ ¯ 22 ,
ρ 33 = ρ ¯ 33 ,
ρ 12 = ρ ¯ 12 e i Δ p t ,
ρ 21 = ρ ¯ 21 e i Δ p t ,
ρ 13 = ρ ¯ 13 e i ( Δ p + Δ c ) t ,
ρ 31 = ρ ¯ 31 e i ( Δ p + Δ c ) t ,
ρ 23 = ρ ¯ 23 e i Δ c t ,
ρ 32 = ρ ¯ 32 e i Δ c t ,
2 Γ 2 ρ ¯ 22 + 2 Γ 3 ρ ¯ 33 i Ω p ( ρ ¯ 12 ρ ¯ 21 ) = 0 ,
( γ p + Γ 2 2 i Δ p ) ρ ¯ 12 + i ( Ω c ρ ¯ 13 + Ω p ( ρ ¯ 11 ρ ¯ 22 ) ) = 0 ,
( γ c + γ p + Γ 3 2 i ( Δ c + Δ p ) ) ρ ¯ 13 + i ( Ω c ρ ¯ 12 Ω p ρ ¯ 23 ) = 0 ,
( γ p + Γ 2 + 2 i Δ p ) ρ ¯ 21 i ( Ω c ρ 31 + Ω p ( ρ ¯ 11 ρ ¯ 22 ) ) = 0 ,
2 i Γ 2 ρ ¯ 22 + Ω c ( ρ ¯ 32 ρ ¯ 23 ) + Ω p ( ρ ¯ 12 ρ ¯ 21 ) = 0 ,
( γ c + Γ 2 + Γ 3 2 i Δ c ) ρ ¯ 23 i ( Ω c ( ρ ¯ 33 ρ ¯ 22 ) + Ω p ρ ¯ 13 ) = 0 ,
( γ c + γ p + Γ 3 + 2 i ( Δ c + Δ p ) ) ρ ¯ 31 i ( Ω c ρ ¯ 21 Ω p ρ ¯ 32 ) = 0 ,
( γ c + Γ 2 + Γ 3 + 2 i Δ c ) ρ ¯ 32 i ( Ω c ( ρ ¯ 22 ρ ¯ 33 ) Ω p ρ ¯ 31 ) = 0 ,
2 Γ 3 ρ ¯ 33 i Ω c ( ρ ¯ 23 ρ ¯ 32 ) = 0 ,
ρ ¯ 11 + ρ ¯ 22 + ρ ¯ 33 = 1.

Metrics