Abstract
We recently reported experimental evidence for double enhancement of spontaneous emission due to increased photon density of states and small group velocity at photonic bandedge frequencies by observing angleresolved emission and excitation spectra of photoluminescence [ K. Kuroda et al., Opt. Express 17, 13168 (2009) ]. The specimen we used was a onedimensional photonic crystal composed of periodic multilayers of ${\mathrm{Ta}}_{2}{\mathrm{O}}_{5}$ and $\mathrm{Si}{\mathrm{O}}_{2}$ with oxygen vacancies as light emitters. In the present study, we report on the lack of any excitation intensity dependence of the emission peak height and width, which excludes possibilities of nonlinear effects, the polarized emission spectra, and their comparison with theoretical calculations to further confirm our finding.
© 2009 Optical Society of America
Full Article  PDF ArticleOSA Recommended Articles
Keiji Kuroda, Tsutomu Sawada, Takashi Kuroda, Kenji Watanabe, and Kazuaki Sakoda
Opt. Express 17(15) 1316813177 (2009)
Chunling Ding, Rong Yu, Jiahua Li, Xiangying Hao, and Xiaoxue Yang
J. Opt. Soc. Am. B 30(12) 32253232 (2013)
HsiaoTsung Wang, JiaDe Lin, ChiaRong Lee, and Wei Lee
Opt. Lett. 39(12) 35163519 (2014)
References
 View by:
 Article Order
 
 Year
 
 Author
 
 Publication

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995).

K. Sakoda, Optical Properties of Photonic Crystals, 2nd ed. (Springer, 2004).

K. Sakoda, “Optics of photonic crystals,” Opt. Rev. 6, 381392 (1999).
[Crossref] 
M. Hübner, J. P. Prineas, C. Ell, P. Brick, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, “Optical lattices achieved by excitons in periodic quantum well structures,” Phys. Rev. Lett. 83, 28412844 (1999).
[Crossref] 
E. L. Ivchenko, M. M. Voronov, M. V. Erementchouk, L. I. Deych, and A. A. Lisyansky, “Multiplequantumwellbased photonic crystals with simple and compound elementary supercells,” Phys. Rev. B 70, 195106 (2004).
[Crossref] 
K. Kuroda, T. Sawada, T. Kuroda, K. Watanabe, and K. Sakoda, “Doubly enhanced spontaneous emission due to increased photon density of states at photonic band edge frequencies,” Opt. Express 17, 1316813177 (2009).
[Crossref] [PubMed] 
P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654657 (2004).
[Crossref] [PubMed] 
M. D. Tocci, M. Scalora, M. J. Bloemer, J. P. Dowling, and C. M. Bowden, “Measurement of spontaneousemission enhancement near the onedimensional photonic band edge of semiconductor heterostructures,” Phys. Rev. A 53, 27992803 (1996).
[Crossref] [PubMed] 
J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 18961899 (1994).
[Crossref] 
M. Scalora, J. P. Dowling, M. Tocci, M. J. Bloemer, C. M. Bowden, and J. W. Haus, “Dipole emission rates in onedimensional photonic bandgap materials,” Appl. Phys. B 60, S57S61 (1995).

Y. Matsuhisa, Y. Huang, Y. Zhou, S.T. Wu, Y. Takao, A. Fujii, and M. Ozaki, “Cholesteric liquid crystal laser in a dielectric mirror cavity upon bandedge excitation,” Opt. Express 15, 616622 (2007).
[Crossref] [PubMed] 
M. Astic, Ph. Delaye, R. Frey, G. Roosen, R. André, N. Belabas, I. Sagnes, and R. Raj, “Time resolved nonlinear spectroscopy at the band edge of 1D photonic crystals,” J. Phys. D 41, 224005 (2008).
[Crossref]
2009 (1)
K. Kuroda, T. Sawada, T. Kuroda, K. Watanabe, and K. Sakoda, “Doubly enhanced spontaneous emission due to increased photon density of states at photonic band edge frequencies,” Opt. Express 17, 1316813177 (2009).
[Crossref]
[PubMed]
2008 (1)
M. Astic, Ph. Delaye, R. Frey, G. Roosen, R. André, N. Belabas, I. Sagnes, and R. Raj, “Time resolved nonlinear spectroscopy at the band edge of 1D photonic crystals,” J. Phys. D 41, 224005 (2008).
[Crossref]
2007 (1)
Y. Matsuhisa, Y. Huang, Y. Zhou, S.T. Wu, Y. Takao, A. Fujii, and M. Ozaki, “Cholesteric liquid crystal laser in a dielectric mirror cavity upon bandedge excitation,” Opt. Express 15, 616622 (2007).
[Crossref]
[PubMed]
2004 (2)
E. L. Ivchenko, M. M. Voronov, M. V. Erementchouk, L. I. Deych, and A. A. Lisyansky, “Multiplequantumwellbased photonic crystals with simple and compound elementary supercells,” Phys. Rev. B 70, 195106 (2004).
[Crossref]
P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654657 (2004).
[Crossref]
[PubMed]
1999 (2)
K. Sakoda, “Optics of photonic crystals,” Opt. Rev. 6, 381392 (1999).
[Crossref]
M. Hübner, J. P. Prineas, C. Ell, P. Brick, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, “Optical lattices achieved by excitons in periodic quantum well structures,” Phys. Rev. Lett. 83, 28412844 (1999).
[Crossref]
1996 (1)
M. D. Tocci, M. Scalora, M. J. Bloemer, J. P. Dowling, and C. M. Bowden, “Measurement of spontaneousemission enhancement near the onedimensional photonic band edge of semiconductor heterostructures,” Phys. Rev. A 53, 27992803 (1996).
[Crossref]
[PubMed]
1995 (1)
M. Scalora, J. P. Dowling, M. Tocci, M. J. Bloemer, C. M. Bowden, and J. W. Haus, “Dipole emission rates in onedimensional photonic bandgap materials,” Appl. Phys. B 60, S57S61 (1995).
1994 (1)
J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 18961899 (1994).
[Crossref]
André, R.
M. Astic, Ph. Delaye, R. Frey, G. Roosen, R. André, N. Belabas, I. Sagnes, and R. Raj, “Time resolved nonlinear spectroscopy at the band edge of 1D photonic crystals,” J. Phys. D 41, 224005 (2008).
[Crossref]
Astic, M.
M. Astic, Ph. Delaye, R. Frey, G. Roosen, R. André, N. Belabas, I. Sagnes, and R. Raj, “Time resolved nonlinear spectroscopy at the band edge of 1D photonic crystals,” J. Phys. D 41, 224005 (2008).
[Crossref]
Belabas, N.
M. Astic, Ph. Delaye, R. Frey, G. Roosen, R. André, N. Belabas, I. Sagnes, and R. Raj, “Time resolved nonlinear spectroscopy at the band edge of 1D photonic crystals,” J. Phys. D 41, 224005 (2008).
[Crossref]
Bloemer, M. J.
M. D. Tocci, M. Scalora, M. J. Bloemer, J. P. Dowling, and C. M. Bowden, “Measurement of spontaneousemission enhancement near the onedimensional photonic band edge of semiconductor heterostructures,” Phys. Rev. A 53, 27992803 (1996).
[Crossref]
[PubMed]
M. Scalora, J. P. Dowling, M. Tocci, M. J. Bloemer, C. M. Bowden, and J. W. Haus, “Dipole emission rates in onedimensional photonic bandgap materials,” Appl. Phys. B 60, S57S61 (1995).
J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 18961899 (1994).
[Crossref]
Bowden, C. M.
M. D. Tocci, M. Scalora, M. J. Bloemer, J. P. Dowling, and C. M. Bowden, “Measurement of spontaneousemission enhancement near the onedimensional photonic band edge of semiconductor heterostructures,” Phys. Rev. A 53, 27992803 (1996).
[Crossref]
[PubMed]
M. Scalora, J. P. Dowling, M. Tocci, M. J. Bloemer, C. M. Bowden, and J. W. Haus, “Dipole emission rates in onedimensional photonic bandgap materials,” Appl. Phys. B 60, S57S61 (1995).
J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 18961899 (1994).
[Crossref]
Brick, P.
M. Hübner, J. P. Prineas, C. Ell, P. Brick, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, “Optical lattices achieved by excitons in periodic quantum well structures,” Phys. Rev. Lett. 83, 28412844 (1999).
[Crossref]
Delaye, Ph.
M. Astic, Ph. Delaye, R. Frey, G. Roosen, R. André, N. Belabas, I. Sagnes, and R. Raj, “Time resolved nonlinear spectroscopy at the band edge of 1D photonic crystals,” J. Phys. D 41, 224005 (2008).
[Crossref]
Deych, L. I.
E. L. Ivchenko, M. M. Voronov, M. V. Erementchouk, L. I. Deych, and A. A. Lisyansky, “Multiplequantumwellbased photonic crystals with simple and compound elementary supercells,” Phys. Rev. B 70, 195106 (2004).
[Crossref]
Dowling, J. P.
M. D. Tocci, M. Scalora, M. J. Bloemer, J. P. Dowling, and C. M. Bowden, “Measurement of spontaneousemission enhancement near the onedimensional photonic band edge of semiconductor heterostructures,” Phys. Rev. A 53, 27992803 (1996).
[Crossref]
[PubMed]
M. Scalora, J. P. Dowling, M. Tocci, M. J. Bloemer, C. M. Bowden, and J. W. Haus, “Dipole emission rates in onedimensional photonic bandgap materials,” Appl. Phys. B 60, S57S61 (1995).
J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 18961899 (1994).
[Crossref]
Ell, C.
M. Hübner, J. P. Prineas, C. Ell, P. Brick, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, “Optical lattices achieved by excitons in periodic quantum well structures,” Phys. Rev. Lett. 83, 28412844 (1999).
[Crossref]
Erementchouk, M. V.
E. L. Ivchenko, M. M. Voronov, M. V. Erementchouk, L. I. Deych, and A. A. Lisyansky, “Multiplequantumwellbased photonic crystals with simple and compound elementary supercells,” Phys. Rev. B 70, 195106 (2004).
[Crossref]
Frey, R.
M. Astic, Ph. Delaye, R. Frey, G. Roosen, R. André, N. Belabas, I. Sagnes, and R. Raj, “Time resolved nonlinear spectroscopy at the band edge of 1D photonic crystals,” J. Phys. D 41, 224005 (2008).
[Crossref]
Fujii, A.
Y. Matsuhisa, Y. Huang, Y. Zhou, S.T. Wu, Y. Takao, A. Fujii, and M. Ozaki, “Cholesteric liquid crystal laser in a dielectric mirror cavity upon bandedge excitation,” Opt. Express 15, 616622 (2007).
[Crossref]
[PubMed]
Gibbs, H. M.
M. Hübner, J. P. Prineas, C. Ell, P. Brick, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, “Optical lattices achieved by excitons in periodic quantum well structures,” Phys. Rev. Lett. 83, 28412844 (1999).
[Crossref]
Haus, J. W.
M. Scalora, J. P. Dowling, M. Tocci, M. J. Bloemer, C. M. Bowden, and J. W. Haus, “Dipole emission rates in onedimensional photonic bandgap materials,” Appl. Phys. B 60, S57S61 (1995).
Huang, Y.
Y. Matsuhisa, Y. Huang, Y. Zhou, S.T. Wu, Y. Takao, A. Fujii, and M. Ozaki, “Cholesteric liquid crystal laser in a dielectric mirror cavity upon bandedge excitation,” Opt. Express 15, 616622 (2007).
[Crossref]
[PubMed]
Hübner, M.
M. Hübner, J. P. Prineas, C. Ell, P. Brick, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, “Optical lattices achieved by excitons in periodic quantum well structures,” Phys. Rev. Lett. 83, 28412844 (1999).
[Crossref]
Irman, A.
P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654657 (2004).
[Crossref]
[PubMed]
Ivchenko, E. L.
E. L. Ivchenko, M. M. Voronov, M. V. Erementchouk, L. I. Deych, and A. A. Lisyansky, “Multiplequantumwellbased photonic crystals with simple and compound elementary supercells,” Phys. Rev. B 70, 195106 (2004).
[Crossref]
Joannopoulos, J. D.
J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995).
Khitrova, G.
M. Hübner, J. P. Prineas, C. Ell, P. Brick, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, “Optical lattices achieved by excitons in periodic quantum well structures,” Phys. Rev. Lett. 83, 28412844 (1999).
[Crossref]
Koch, S. W.
M. Hübner, J. P. Prineas, C. Ell, P. Brick, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, “Optical lattices achieved by excitons in periodic quantum well structures,” Phys. Rev. Lett. 83, 28412844 (1999).
[Crossref]
Kuroda, K.
K. Kuroda, T. Sawada, T. Kuroda, K. Watanabe, and K. Sakoda, “Doubly enhanced spontaneous emission due to increased photon density of states at photonic band edge frequencies,” Opt. Express 17, 1316813177 (2009).
[Crossref]
[PubMed]
Kuroda, T.
K. Kuroda, T. Sawada, T. Kuroda, K. Watanabe, and K. Sakoda, “Doubly enhanced spontaneous emission due to increased photon density of states at photonic band edge frequencies,” Opt. Express 17, 1316813177 (2009).
[Crossref]
[PubMed]
Lee, E. S.
M. Hübner, J. P. Prineas, C. Ell, P. Brick, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, “Optical lattices achieved by excitons in periodic quantum well structures,” Phys. Rev. Lett. 83, 28412844 (1999).
[Crossref]
Lisyansky, A. A.
E. L. Ivchenko, M. M. Voronov, M. V. Erementchouk, L. I. Deych, and A. A. Lisyansky, “Multiplequantumwellbased photonic crystals with simple and compound elementary supercells,” Phys. Rev. B 70, 195106 (2004).
[Crossref]
Lodahl, P.
P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654657 (2004).
[Crossref]
[PubMed]
Matsuhisa, Y.
Y. Matsuhisa, Y. Huang, Y. Zhou, S.T. Wu, Y. Takao, A. Fujii, and M. Ozaki, “Cholesteric liquid crystal laser in a dielectric mirror cavity upon bandedge excitation,” Opt. Express 15, 616622 (2007).
[Crossref]
[PubMed]
Meade, R. D.
J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995).
Nikolaev, I. S.
P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654657 (2004).
[Crossref]
[PubMed]
Overgaag, K.
P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654657 (2004).
[Crossref]
[PubMed]
Ozaki, M.
Y. Matsuhisa, Y. Huang, Y. Zhou, S.T. Wu, Y. Takao, A. Fujii, and M. Ozaki, “Cholesteric liquid crystal laser in a dielectric mirror cavity upon bandedge excitation,” Opt. Express 15, 616622 (2007).
[Crossref]
[PubMed]
Prineas, J. P.
M. Hübner, J. P. Prineas, C. Ell, P. Brick, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, “Optical lattices achieved by excitons in periodic quantum well structures,” Phys. Rev. Lett. 83, 28412844 (1999).
[Crossref]
Raj, R.
M. Astic, Ph. Delaye, R. Frey, G. Roosen, R. André, N. Belabas, I. Sagnes, and R. Raj, “Time resolved nonlinear spectroscopy at the band edge of 1D photonic crystals,” J. Phys. D 41, 224005 (2008).
[Crossref]
Roosen, G.
M. Astic, Ph. Delaye, R. Frey, G. Roosen, R. André, N. Belabas, I. Sagnes, and R. Raj, “Time resolved nonlinear spectroscopy at the band edge of 1D photonic crystals,” J. Phys. D 41, 224005 (2008).
[Crossref]
Sagnes, I.
M. Astic, Ph. Delaye, R. Frey, G. Roosen, R. André, N. Belabas, I. Sagnes, and R. Raj, “Time resolved nonlinear spectroscopy at the band edge of 1D photonic crystals,” J. Phys. D 41, 224005 (2008).
[Crossref]
Sakoda, K.
K. Kuroda, T. Sawada, T. Kuroda, K. Watanabe, and K. Sakoda, “Doubly enhanced spontaneous emission due to increased photon density of states at photonic band edge frequencies,” Opt. Express 17, 1316813177 (2009).
[Crossref]
[PubMed]
K. Sakoda, “Optics of photonic crystals,” Opt. Rev. 6, 381392 (1999).
[Crossref]
K. Sakoda, Optical Properties of Photonic Crystals, 2nd ed. (Springer, 2004).
Sawada, T.
K. Kuroda, T. Sawada, T. Kuroda, K. Watanabe, and K. Sakoda, “Doubly enhanced spontaneous emission due to increased photon density of states at photonic band edge frequencies,” Opt. Express 17, 1316813177 (2009).
[Crossref]
[PubMed]
Scalora, M.
M. D. Tocci, M. Scalora, M. J. Bloemer, J. P. Dowling, and C. M. Bowden, “Measurement of spontaneousemission enhancement near the onedimensional photonic band edge of semiconductor heterostructures,” Phys. Rev. A 53, 27992803 (1996).
[Crossref]
[PubMed]
M. Scalora, J. P. Dowling, M. Tocci, M. J. Bloemer, C. M. Bowden, and J. W. Haus, “Dipole emission rates in onedimensional photonic bandgap materials,” Appl. Phys. B 60, S57S61 (1995).
J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 18961899 (1994).
[Crossref]
Takao, Y.
Y. Matsuhisa, Y. Huang, Y. Zhou, S.T. Wu, Y. Takao, A. Fujii, and M. Ozaki, “Cholesteric liquid crystal laser in a dielectric mirror cavity upon bandedge excitation,” Opt. Express 15, 616622 (2007).
[Crossref]
[PubMed]
Tocci, M.
M. Scalora, J. P. Dowling, M. Tocci, M. J. Bloemer, C. M. Bowden, and J. W. Haus, “Dipole emission rates in onedimensional photonic bandgap materials,” Appl. Phys. B 60, S57S61 (1995).
Tocci, M. D.
M. D. Tocci, M. Scalora, M. J. Bloemer, J. P. Dowling, and C. M. Bowden, “Measurement of spontaneousemission enhancement near the onedimensional photonic band edge of semiconductor heterostructures,” Phys. Rev. A 53, 27992803 (1996).
[Crossref]
[PubMed]
van Driel, A. F.
P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654657 (2004).
[Crossref]
[PubMed]
Vanmaekelbergh, D.
P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654657 (2004).
[Crossref]
[PubMed]
Voronov, M. M.
E. L. Ivchenko, M. M. Voronov, M. V. Erementchouk, L. I. Deych, and A. A. Lisyansky, “Multiplequantumwellbased photonic crystals with simple and compound elementary supercells,” Phys. Rev. B 70, 195106 (2004).
[Crossref]
Vos, W. L.
P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654657 (2004).
[Crossref]
[PubMed]
Watanabe, K.
K. Kuroda, T. Sawada, T. Kuroda, K. Watanabe, and K. Sakoda, “Doubly enhanced spontaneous emission due to increased photon density of states at photonic band edge frequencies,” Opt. Express 17, 1316813177 (2009).
[Crossref]
[PubMed]
Winn, J. N.
J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995).
Wu, S.T.
Y. Matsuhisa, Y. Huang, Y. Zhou, S.T. Wu, Y. Takao, A. Fujii, and M. Ozaki, “Cholesteric liquid crystal laser in a dielectric mirror cavity upon bandedge excitation,” Opt. Express 15, 616622 (2007).
[Crossref]
[PubMed]
Zhou, Y.
Appl. Phys. B (1)
M. Scalora, J. P. Dowling, M. Tocci, M. J. Bloemer, C. M. Bowden, and J. W. Haus, “Dipole emission rates in onedimensional photonic bandgap materials,” Appl. Phys. B 60, S57S61 (1995).
J. Appl. Phys. (1)
J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 18961899 (1994).
[Crossref]
J. Phys. D (1)
M. Astic, Ph. Delaye, R. Frey, G. Roosen, R. André, N. Belabas, I. Sagnes, and R. Raj, “Time resolved nonlinear spectroscopy at the band edge of 1D photonic crystals,” J. Phys. D 41, 224005 (2008).
[Crossref]
Nature (1)
P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654657 (2004).
[Crossref]
[PubMed]
Opt. Express (2)
K. Kuroda, T. Sawada, T. Kuroda, K. Watanabe, and K. Sakoda, “Doubly enhanced spontaneous emission due to increased photon density of states at photonic band edge frequencies,” Opt. Express 17, 1316813177 (2009).
[Crossref]
[PubMed]
Y. Matsuhisa, Y. Huang, Y. Zhou, S.T. Wu, Y. Takao, A. Fujii, and M. Ozaki, “Cholesteric liquid crystal laser in a dielectric mirror cavity upon bandedge excitation,” Opt. Express 15, 616622 (2007).
[Crossref]
[PubMed]
Opt. Rev. (1)
K. Sakoda, “Optics of photonic crystals,” Opt. Rev. 6, 381392 (1999).
[Crossref]
Phys. Rev. A (1)
M. D. Tocci, M. Scalora, M. J. Bloemer, J. P. Dowling, and C. M. Bowden, “Measurement of spontaneousemission enhancement near the onedimensional photonic band edge of semiconductor heterostructures,” Phys. Rev. A 53, 27992803 (1996).
[Crossref]
[PubMed]
Phys. Rev. B (1)
E. L. Ivchenko, M. M. Voronov, M. V. Erementchouk, L. I. Deych, and A. A. Lisyansky, “Multiplequantumwellbased photonic crystals with simple and compound elementary supercells,” Phys. Rev. B 70, 195106 (2004).
[Crossref]
Phys. Rev. Lett. (1)
M. Hübner, J. P. Prineas, C. Ell, P. Brick, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, “Optical lattices achieved by excitons in periodic quantum well structures,” Phys. Rev. Lett. 83, 28412844 (1999).
[Crossref]
Other (2)
J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995).
K. Sakoda, Optical Properties of Photonic Crystals, 2nd ed. (Springer, 2004).
Cited By
OSA participates in Crossref's CitedBy Linking service. Citing articles from OSA journals and other participating publishers are listed here.
Alert me when this article is cited.
Figures (6)
Schematic illustration of the experimental configuration.
Calculated emission spectra of
Emission spectra in the normal direction
Curve fitting for the shorter wavelength peak with a Lorentzian function and (b) that for the longer wavelength peak. (c) Excitation intensity dependence of the emission intensity. Open circles, solid circles, and open squares denote the longer wavelength peak, the shorter wavelength peak, and the mean value between 680 and
Polarized emission spectra for
Magnified view of the longer wavelength peaks of the
Equations (20)
Equations on this page are rendered with MathJax. Learn more.