Abstract

A high-speed, high-resolution, and large-scanning-range three-dimensional measurement system was demonstrated using an electronically controlled wavelength-tunable orthogonally polarized high-power ultrashort twin pulse source and an all-fiber interferometer. Thanks to the high peak power, the ultrashort optical pulses propagated along a fiber while maintaining the pulse shape by means of the soliton effect, allowing us to demonstrate high-speed, high-resolution, and large-scanning-range measurement. First, the interference was analyzed by numerical calculations and then the measurement system was demonstrated experimentally. A longitudinal scanning range of about 25 mm, a longitudinal resolution of 33μm, and a scanning speed of 1000 points/s were achieved without moving parts. For a measurement distance of 0.5 m, a sensitivity of 60 dB was obtained. Clear three-dimensional images of a 100 yen Japanese coin and metal samples were obtained using this system.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. (Bellingham) 39, 10-22 (2000).
    [CrossRef]
  2. M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. (Bellingham) 40, 10-19 (2001).
    [CrossRef]
  3. Y.-Y. Cheng and C. Wyant, “Multiple-wavelength phase-shifting interferometry,” Appl. Opt. 24, 804-807 (1985).
    [CrossRef] [PubMed]
  4. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
    [CrossRef]
  5. T. Ohta, N. Nishizawa, T. Ozawa, and K. Itoh, “Highly-sensitive and high-resolution all-fiber three-dimensional measurement system,” Appl. Opt. 47, 2503-2509 (2008).
    [CrossRef] [PubMed]
  6. T. Ohta, N. Nishizawa, T. Ozawa, and K. Itoh, “High-speed three-dimensional measurement using electronically controlled wavelength-tunable ultrashort pulse fiber laser,” Opt. Lett. 34, 1921-1923 (2009).
    [CrossRef] [PubMed]
  7. N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11, 325-327 (1999).
    [CrossRef]
  8. T. Hori, N. Nishizawa, M. Yoshida, and T. Goto, “Cross-correlation measurement without mechanical delay scanning using electronically controlled wavelength-tunable femtosecond soliton pulse,” Electron. Lett. 37, 1077-1078 (2001).
    [CrossRef]
  9. N. Nishizawa, R. Okamura, and T. Goto, “Simultaneous generation of wavelength tunable two-colored femtosecond soliton pulse using optical fibers,” IEEE Photon. Technol. Lett. 11, 421-423 (1999).
    [CrossRef]
  10. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  11. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  12. B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Marcel Dekker, 2002), Chap. 2.
  13. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513-3528 (2005).
    [CrossRef] [PubMed]
  14. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225-3237 (2006).
    [CrossRef] [PubMed]
  15. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17, 14880-14894 (2009).
    [CrossRef] [PubMed]
  16. Y. Mao, C. Flueraru, S. Sherif, and S. Chang, “High performance wavelength-swept laser with mode-locking technique for optical coherence tomography,” Opt. Commun. 282, 88-92 (2009).
    [CrossRef]
  17. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express 17, 9947-9961 (2009).
    [CrossRef] [PubMed]
  18. N. Nishizawa and J. Takayanagi, “Octave spanning high-quality supercontinuum generation in all-fiber system,” J. Opt. Soc. Am. B 24, 1786-1792 (2007).
    [CrossRef]

2009 (4)

2008 (1)

2007 (1)

2006 (1)

2005 (1)

2001 (2)

T. Hori, N. Nishizawa, M. Yoshida, and T. Goto, “Cross-correlation measurement without mechanical delay scanning using electronically controlled wavelength-tunable femtosecond soliton pulse,” Electron. Lett. 37, 1077-1078 (2001).
[CrossRef]

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. (Bellingham) 40, 10-19 (2001).
[CrossRef]

2000 (1)

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. (Bellingham) 39, 10-22 (2000).
[CrossRef]

1999 (2)

N. Nishizawa, R. Okamura, and T. Goto, “Simultaneous generation of wavelength tunable two-colored femtosecond soliton pulse using optical fibers,” IEEE Photon. Technol. Lett. 11, 421-423 (1999).
[CrossRef]

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11, 325-327 (1999).
[CrossRef]

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

1985 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Amann, M. -C.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. (Bellingham) 40, 10-19 (2001).
[CrossRef]

Biedermann, B. R.

Bosch, T.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. (Bellingham) 40, 10-19 (2001).
[CrossRef]

Bouma, B. E.

B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Marcel Dekker, 2002), Chap. 2.

Brown, G. M.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. (Bellingham) 39, 10-22 (2000).
[CrossRef]

Chang, S.

Y. Mao, C. Flueraru, S. Sherif, and S. Chang, “High performance wavelength-swept laser with mode-locking technique for optical coherence tomography,” Opt. Commun. 282, 88-92 (2009).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chen, F.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. (Bellingham) 39, 10-22 (2000).
[CrossRef]

Cheng, Y. -Y.

Eigenwillig, C. M.

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Fercher, A. F.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Flueraru, C.

Y. Mao, C. Flueraru, S. Sherif, and S. Chang, “High performance wavelength-swept laser with mode-locking technique for optical coherence tomography,” Opt. Commun. 282, 88-92 (2009).
[CrossRef]

Fujimoto, J. G.

Gora, M.

Goto, T.

T. Hori, N. Nishizawa, M. Yoshida, and T. Goto, “Cross-correlation measurement without mechanical delay scanning using electronically controlled wavelength-tunable femtosecond soliton pulse,” Electron. Lett. 37, 1077-1078 (2001).
[CrossRef]

N. Nishizawa, R. Okamura, and T. Goto, “Simultaneous generation of wavelength tunable two-colored femtosecond soliton pulse using optical fibers,” IEEE Photon. Technol. Lett. 11, 421-423 (1999).
[CrossRef]

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11, 325-327 (1999).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Hori, T.

T. Hori, N. Nishizawa, M. Yoshida, and T. Goto, “Cross-correlation measurement without mechanical delay scanning using electronically controlled wavelength-tunable femtosecond soliton pulse,” Electron. Lett. 37, 1077-1078 (2001).
[CrossRef]

Hsu, K.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Huber, R.

Itoh, K.

Kaluzny, B. J.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Karnowski, K.

Klein, T.

Kowalczyk, A.

Lescure, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. (Bellingham) 40, 10-19 (2001).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Mao, Y.

Y. Mao, C. Flueraru, S. Sherif, and S. Chang, “High performance wavelength-swept laser with mode-locking technique for optical coherence tomography,” Opt. Commun. 282, 88-92 (2009).
[CrossRef]

Myllylä, R.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. (Bellingham) 40, 10-19 (2001).
[CrossRef]

Nishizawa, N.

T. Ohta, N. Nishizawa, T. Ozawa, and K. Itoh, “High-speed three-dimensional measurement using electronically controlled wavelength-tunable ultrashort pulse fiber laser,” Opt. Lett. 34, 1921-1923 (2009).
[CrossRef] [PubMed]

T. Ohta, N. Nishizawa, T. Ozawa, and K. Itoh, “Highly-sensitive and high-resolution all-fiber three-dimensional measurement system,” Appl. Opt. 47, 2503-2509 (2008).
[CrossRef] [PubMed]

N. Nishizawa and J. Takayanagi, “Octave spanning high-quality supercontinuum generation in all-fiber system,” J. Opt. Soc. Am. B 24, 1786-1792 (2007).
[CrossRef]

T. Hori, N. Nishizawa, M. Yoshida, and T. Goto, “Cross-correlation measurement without mechanical delay scanning using electronically controlled wavelength-tunable femtosecond soliton pulse,” Electron. Lett. 37, 1077-1078 (2001).
[CrossRef]

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11, 325-327 (1999).
[CrossRef]

N. Nishizawa, R. Okamura, and T. Goto, “Simultaneous generation of wavelength tunable two-colored femtosecond soliton pulse using optical fibers,” IEEE Photon. Technol. Lett. 11, 421-423 (1999).
[CrossRef]

Ohta, T.

Okamura, R.

N. Nishizawa, R. Okamura, and T. Goto, “Simultaneous generation of wavelength tunable two-colored femtosecond soliton pulse using optical fibers,” IEEE Photon. Technol. Lett. 11, 421-423 (1999).
[CrossRef]

Ozawa, T.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Rioux, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. (Bellingham) 40, 10-19 (2001).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Sherif, S.

Y. Mao, C. Flueraru, S. Sherif, and S. Chang, “High performance wavelength-swept laser with mode-locking technique for optical coherence tomography,” Opt. Commun. 282, 88-92 (2009).
[CrossRef]

Song, M.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. (Bellingham) 39, 10-22 (2000).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Szkulmowski, M.

Taira, K.

Takayanagi, J.

Tearney, G. J.

B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Marcel Dekker, 2002), Chap. 2.

Wieser, W.

Wojtkowski, M.

Wyant, C.

Yoshida, M.

T. Hori, N. Nishizawa, M. Yoshida, and T. Goto, “Cross-correlation measurement without mechanical delay scanning using electronically controlled wavelength-tunable femtosecond soliton pulse,” Electron. Lett. 37, 1077-1078 (2001).
[CrossRef]

Appl. Opt. (2)

Electron. Lett. (1)

T. Hori, N. Nishizawa, M. Yoshida, and T. Goto, “Cross-correlation measurement without mechanical delay scanning using electronically controlled wavelength-tunable femtosecond soliton pulse,” Electron. Lett. 37, 1077-1078 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

N. Nishizawa, R. Okamura, and T. Goto, “Simultaneous generation of wavelength tunable two-colored femtosecond soliton pulse using optical fibers,” IEEE Photon. Technol. Lett. 11, 421-423 (1999).
[CrossRef]

N. Nishizawa and T. Goto, “Compact system of wavelength-tunable femtosecond soliton pulse generation using optical fibers,” IEEE Photon. Technol. Lett. 11, 325-327 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

Y. Mao, C. Flueraru, S. Sherif, and S. Chang, “High performance wavelength-swept laser with mode-locking technique for optical coherence tomography,” Opt. Commun. 282, 88-92 (2009).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Opt. Eng. (Bellingham) (2)

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. (Bellingham) 39, 10-22 (2000).
[CrossRef]

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. (Bellingham) 40, 10-19 (2001).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other (2)

B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Marcel Dekker, 2002), Chap. 2.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagrams of 3D measurement systems based on interferometers with (a) mechanical scanner and (b) electronic scanning system. Different color pulses represent different center wavelengths: BS, beam splitter; P.D., photodetector.

Fig. 2
Fig. 2

Calculated interference signals (a) without and (b) with the soliton effect as fiber length is increased.

Fig. 3
Fig. 3

FWHM of the interference signal, total difference of the second-order dispersion between SMF and DSF, and longitudinal scanning range versus fiber length. Δ β 2 is the difference of β 2 between the SMF and DSF at a wavelength of 1675 nm.

Fig. 4
Fig. 4

Experimental setup: EDFA, Er-doped fiber amplifier; AOM, acousto-optic modulator; PM-SMF, polarization-maintaining SMF; PM-DSF, polarization-maintaining DSF; PBC1 and PBC2, polarization beam combiners 1 and 2; PM-FC, polarization-maintaining fiber coupler; A/D, analog-to-digital converter; PC, personal computer.

Fig. 5
Fig. 5

Evolution of observed optical spectra when AOM input voltage was varied.

Fig. 6
Fig. 6

Obtained signal on (a) linear and (b) logarithmic scales.

Fig. 7
Fig. 7

Images of 100 yen Japanese coin: (a) photograph, (b) observed 3D image.

Fig. 8
Fig. 8

Images of a stacked metal washer sample: (a) photograph, (b) front-view observed image, (c) oblique-view observed image.

Fig. 9
Fig. 9

Images of a key: (a) photograph, (b) front-view observed image, (c) oblique-view observed image.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

N 2 = γ P 0 T FWHM 2 3.11 | β 2 | ,
A z + α 2 A β 1 A T + i β 2 2 2 A T 2 β 3 6 3 A T 3 = i γ ( ω ) [ | A | 2 A + i ω 0 T ( | A | 2 A ) T R A | A | 2 T ] ,
I = 1 2 ( E ref + E sig ) 2 1 2 ( E ref E sig ) 2 ,
L Δ l F rep F mod .

Metrics