Abstract

We investigate second-harmonic generation (SHG) in a photorefractive photovoltaic medium such as lithium niobate. Our numerical model reveals the complex dynamics of the parametric process during the buildup of the index modification due to the photorefractive (PR) nonlinearity. We investigate a condition in which no external field is applied to the crystal, resulting in a defocusing nonlinearity, as well as the case in which an external bias is applied, producing a self-focusing effect that can enhance the conversion efficiency of the parametric process. We also find the conditions for the initial phase matching and for the background illumination leading to a stable self-confined propagation of the second-harmonic generated light. The developed numerical model shows that as a general case SHG in a self-focusing PR medium results in mode beating inside the generated waveguide, as experimentally observed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley-Interscience, 1993).
  2. M.-F. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, and P. Di Porto, “Observation of two-dimensional steady-state photorefractive screening solitons,” Electron. Lett. 31, 826-827 (1995).
    [CrossRef]
  3. M. Mitchell, M. Segev, and D. C. Christodoulides, “Observation of multihump multimode solitons,” Phys. Rev. Lett. 80, 4657-4660 (1998).
    [CrossRef]
  4. D. Neshev, E. Ostrovskaya, Y. Kivshar, and W. Krolikowski, “Spatial solitons in optically induced gratings,” Opt. Lett. 28, 710-712 (2003).
    [CrossRef] [PubMed]
  5. J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically induced real time waveguide arrays,” Phys. Rev. Lett. 90, 023902 (2003).
    [CrossRef] [PubMed]
  6. Z. Chen and K. McCarthy, “Spatial soliton pixels from partially incoherent light,” Opt. Lett. 27, 2019-2021 (2002).
    [CrossRef]
  7. D. Trager, N. Sagemerten, and C. Denz, “Guiding of dynamically modulated signals in arrays of photorefractive spatial solitons,” IEEE J. Sel. Top. Quantum Electron. 12, 383-387 (2006).
    [CrossRef]
  8. V. Coda, M. Chauvet, F. Pettazzi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett. 42, 463-465 (2006).
    [CrossRef]
  9. M. Klotz, H. Meng, G. J. Salamo, M. Segev, and S. R. Montgomery, “Fixing the photorefractive soliton,” Opt. Lett. 24, 77-79 (1999).
    [CrossRef]
  10. M.-F. Shih, Z. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. P. Wilde, “Waveguides induced by photorefractive screening solitons,” J. Opt. Soc. Am. B 14, 3091-3101 (1997).
    [CrossRef]
  11. W. Sohler and H. Suche, “Second-harmonic generation in Ti-diffused LiNbO3 optical waveguides with 25% conversion efficiency,” Appl. Phys. Lett. 33, 518-519 (1978).
    [CrossRef]
  12. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-μm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett. 23, 1004-1006 (1998).
    [CrossRef]
  13. R. Regener and W. Sohler, “Efficient second-harmonic generation in Ti:LiNbO3 channel waveguide resonators,” J. Opt. Soc. Am. B 5, 267-277 (1988).
    [CrossRef]
  14. R. Schiek, Y. Baek, and G. I. Stegeman, “Second-harmonic generation and cascaded nonlinearity in titanium-indiffused lithium niobate channel waveguides,” J. Opt. Soc. Am. B 15, 2255-2568 (1998).
    [CrossRef]
  15. G. Assanto and G. I. Stegeman, “Simple physics of quadratic spatial solitons,” Opt. Express 10, 388-396 (2002).
    [PubMed]
  16. A. V. Buryak and Y. S. Kivshar, “Spatial optical solitons governed by quadratic nonlinearity,” Opt. Lett. 19, 1612-1614 (1994).
    [CrossRef] [PubMed]
  17. S. Orlov, A. Yariv, and M. Segev, “Nonlinear self-phase matching of optical second harmonic generation in lithium niobate,” Appl. Phys. Lett. 68, 1610-1612 (1996).
    [CrossRef]
  18. E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
    [CrossRef]
  19. C. Lou, J. Xu, H. Qiao, X. Zhang, Y. Chen, and Z. Chen, “Enhanced second-harmonic generation by means of high power confinement in a photovoltaic soliton-induced waveguide,” Opt. Lett. 29, 953-955 (2004).
    [CrossRef] [PubMed]
  20. J. Liu and L. Keqing, “Screening-photovoltaic spatial solitons in biased photovoltaic-photorefractive crystals and their self-deflection,” J. Opt. Soc. Am. B 16, 550-555 (1999).
    [CrossRef]
  21. A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51, 1520-1531 (1995).
    [CrossRef] [PubMed]
  22. S. Lan, M.-F. Shih, G. Mizell, J. A. Giordmaine, Z. Chen, C. Anastassiou, J. Martin, and M. Segev, “Second-harmonic generation in waveguides induced by photorefractive spatial solitons,” Opt. Lett. 24, 1145-1147 (1999).
    [CrossRef]
  23. A. D. Boardman, W. Ileki, and Y. Liu, “Spatial solitons in a photorefractive medium sustaining second-harmonic generation,” J. Opt. Soc. Am. B 19, 832-838 (2002).
    [CrossRef]
  24. R. L. Byer, Y. K. Park, R. S. Feigelson, and W. L. Kway, “Efficient second-harmonic generation of Nd:YAG laser radiation using warm phasematching LiNbO3,” Appl. Phys. Lett. 39, 17-19 (1981).
    [CrossRef]
  25. N. Uesugi, K. Daikoku, and K. Kubota, “Electric field tuning of second-harmonic generation in a three-dimensional LiNbO3 optical waveguide,” Appl. Phys. Lett. 34, 60-62 (1979).
    [CrossRef]
  26. U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613-15620 (1993).
    [CrossRef]
  27. D. N. Christodoulides and M. I. Carvalho, “Bright, dark, and gray spatial soliton states in photorefractive media,” J. Opt. Soc. Am. B 12, 1628-1633 (1995).
    [CrossRef]
  28. M. Chauvet, V. Coda, H. Maillotte, E. Fazio, and G. Salamo, “Large self-deflection of soliton beams in LiNbO3,” Opt. Lett. 30, 1977-1979 (2005).
    [CrossRef] [PubMed]
  29. R. C. Miller and A. Savage, “Temperature dependence of the optical properties of ferroelectric LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 169-171 (1966).
    [CrossRef]
  30. T. Fujihara, M. Tokuue, S. Umegaki, T. Sassa, and M. Yokoyama, “Formation of an anti-guide structure and observation of enhanced SHG in photorefractive materials,” Opt. Mater. 21, 51-54 (2003).
    [CrossRef]
  31. A. W. Snyder, S. J. Hewlett, and D. J. Mitchell, “Periodic solitons in optics,” Phys. Rev. E 51, 6297-6300 (1995).
    [CrossRef]
  32. N. Fressengeas, M. Maufoy, and K. Kugel, “Temporal behavior of bidimensional photorefractive bright spatial solitons,” Phys. Rev. E 54, 6866-6875 (1996).
    [CrossRef]
  33. K. Lu, M.-Z. Zhang, W. Zhao, Y.-L. Yang, Y.-H. Zhang,X.-M. Liu, Y.-P. Zhang, and J.-P. Song, “Waveguides induced by screening-photovoltaic solitons in biased photorefractive-photovoltaic crystals,” Chin. Phys. Lett. 23, 2770-2772 (2006).
    [CrossRef]
  34. F. Pettazzi, V. Coda, M. Chauvet, and E. Fazio, “Frequency-doubling in self-induced waveguides in lithium niobate,” Opt. Commun. 272, 238-241 (2007).
    [CrossRef]
  35. F. Jermann, M. Simon, and E. Kratzig, “Photorefractive properties of congruent and stoichiometric lithium niobate at high light intensities,” J. Opt. Soc. Am. B 12, 2066-2070 (1995).
    [CrossRef]
  36. K. Buse, “Light-induced charge transport processes in photorefractive crystals II: materials,” Appl. Phys. B 64, 391-407 (1997).
    [CrossRef]
  37. M. Carrascosa, J. Villaroel, J. Carnicero, A. Garcia-Cabanes, and J. M. Cabrera, “Understanding light intensity thresholds for catastrophic optical damage in LiNbO3,” Opt. Express 16, 115-120 (2008).
    [CrossRef] [PubMed]

2008 (1)

2007 (1)

F. Pettazzi, V. Coda, M. Chauvet, and E. Fazio, “Frequency-doubling in self-induced waveguides in lithium niobate,” Opt. Commun. 272, 238-241 (2007).
[CrossRef]

2006 (3)

D. Trager, N. Sagemerten, and C. Denz, “Guiding of dynamically modulated signals in arrays of photorefractive spatial solitons,” IEEE J. Sel. Top. Quantum Electron. 12, 383-387 (2006).
[CrossRef]

V. Coda, M. Chauvet, F. Pettazzi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett. 42, 463-465 (2006).
[CrossRef]

K. Lu, M.-Z. Zhang, W. Zhao, Y.-L. Yang, Y.-H. Zhang,X.-M. Liu, Y.-P. Zhang, and J.-P. Song, “Waveguides induced by screening-photovoltaic solitons in biased photorefractive-photovoltaic crystals,” Chin. Phys. Lett. 23, 2770-2772 (2006).
[CrossRef]

2005 (1)

2004 (2)

C. Lou, J. Xu, H. Qiao, X. Zhang, Y. Chen, and Z. Chen, “Enhanced second-harmonic generation by means of high power confinement in a photovoltaic soliton-induced waveguide,” Opt. Lett. 29, 953-955 (2004).
[CrossRef] [PubMed]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

2003 (3)

T. Fujihara, M. Tokuue, S. Umegaki, T. Sassa, and M. Yokoyama, “Formation of an anti-guide structure and observation of enhanced SHG in photorefractive materials,” Opt. Mater. 21, 51-54 (2003).
[CrossRef]

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically induced real time waveguide arrays,” Phys. Rev. Lett. 90, 023902 (2003).
[CrossRef] [PubMed]

D. Neshev, E. Ostrovskaya, Y. Kivshar, and W. Krolikowski, “Spatial solitons in optically induced gratings,” Opt. Lett. 28, 710-712 (2003).
[CrossRef] [PubMed]

2002 (3)

1999 (3)

1998 (3)

1997 (2)

1996 (2)

S. Orlov, A. Yariv, and M. Segev, “Nonlinear self-phase matching of optical second harmonic generation in lithium niobate,” Appl. Phys. Lett. 68, 1610-1612 (1996).
[CrossRef]

N. Fressengeas, M. Maufoy, and K. Kugel, “Temporal behavior of bidimensional photorefractive bright spatial solitons,” Phys. Rev. E 54, 6866-6875 (1996).
[CrossRef]

1995 (5)

A. W. Snyder, S. J. Hewlett, and D. J. Mitchell, “Periodic solitons in optics,” Phys. Rev. E 51, 6297-6300 (1995).
[CrossRef]

M.-F. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, and P. Di Porto, “Observation of two-dimensional steady-state photorefractive screening solitons,” Electron. Lett. 31, 826-827 (1995).
[CrossRef]

A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51, 1520-1531 (1995).
[CrossRef] [PubMed]

D. N. Christodoulides and M. I. Carvalho, “Bright, dark, and gray spatial soliton states in photorefractive media,” J. Opt. Soc. Am. B 12, 1628-1633 (1995).
[CrossRef]

F. Jermann, M. Simon, and E. Kratzig, “Photorefractive properties of congruent and stoichiometric lithium niobate at high light intensities,” J. Opt. Soc. Am. B 12, 2066-2070 (1995).
[CrossRef]

1994 (1)

1993 (1)

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613-15620 (1993).
[CrossRef]

1988 (1)

1981 (1)

R. L. Byer, Y. K. Park, R. S. Feigelson, and W. L. Kway, “Efficient second-harmonic generation of Nd:YAG laser radiation using warm phasematching LiNbO3,” Appl. Phys. Lett. 39, 17-19 (1981).
[CrossRef]

1979 (1)

N. Uesugi, K. Daikoku, and K. Kubota, “Electric field tuning of second-harmonic generation in a three-dimensional LiNbO3 optical waveguide,” Appl. Phys. Lett. 34, 60-62 (1979).
[CrossRef]

1978 (1)

W. Sohler and H. Suche, “Second-harmonic generation in Ti-diffused LiNbO3 optical waveguides with 25% conversion efficiency,” Appl. Phys. Lett. 33, 518-519 (1978).
[CrossRef]

1966 (1)

R. C. Miller and A. Savage, “Temperature dependence of the optical properties of ferroelectric LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 169-171 (1966).
[CrossRef]

Anastassiou, C.

Anderson, D. Z.

A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51, 1520-1531 (1995).
[CrossRef] [PubMed]

Arbore, M. A.

Assanto, G.

Baek, Y.

Bertolotti, M.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Betzler, K.

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613-15620 (1993).
[CrossRef]

Boardman, A. D.

Buryak, A. V.

Buse, K.

K. Buse, “Light-induced charge transport processes in photorefractive crystals II: materials,” Appl. Phys. B 64, 391-407 (1997).
[CrossRef]

Byer, R. L.

R. L. Byer, Y. K. Park, R. S. Feigelson, and W. L. Kway, “Efficient second-harmonic generation of Nd:YAG laser radiation using warm phasematching LiNbO3,” Appl. Phys. Lett. 39, 17-19 (1981).
[CrossRef]

Cabrera, J. M.

Carmon, T.

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically induced real time waveguide arrays,” Phys. Rev. Lett. 90, 023902 (2003).
[CrossRef] [PubMed]

Carnicero, J.

Carrascosa, M.

Carvalho, M. I.

Chauvet, M.

F. Pettazzi, V. Coda, M. Chauvet, and E. Fazio, “Frequency-doubling in self-induced waveguides in lithium niobate,” Opt. Commun. 272, 238-241 (2007).
[CrossRef]

V. Coda, M. Chauvet, F. Pettazzi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett. 42, 463-465 (2006).
[CrossRef]

M. Chauvet, V. Coda, H. Maillotte, E. Fazio, and G. Salamo, “Large self-deflection of soliton beams in LiNbO3,” Opt. Lett. 30, 1977-1979 (2005).
[CrossRef] [PubMed]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Chen, Y.

Chen, Z.

Chou, M. H.

Christodoulides, D. C.

M. Mitchell, M. Segev, and D. C. Christodoulides, “Observation of multihump multimode solitons,” Phys. Rev. Lett. 80, 4657-4660 (1998).
[CrossRef]

Christodoulides, D. N.

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically induced real time waveguide arrays,” Phys. Rev. Lett. 90, 023902 (2003).
[CrossRef] [PubMed]

D. N. Christodoulides and M. I. Carvalho, “Bright, dark, and gray spatial soliton states in photorefractive media,” J. Opt. Soc. Am. B 12, 1628-1633 (1995).
[CrossRef]

Coda, V.

F. Pettazzi, V. Coda, M. Chauvet, and E. Fazio, “Frequency-doubling in self-induced waveguides in lithium niobate,” Opt. Commun. 272, 238-241 (2007).
[CrossRef]

V. Coda, M. Chauvet, F. Pettazzi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett. 42, 463-465 (2006).
[CrossRef]

M. Chauvet, V. Coda, H. Maillotte, E. Fazio, and G. Salamo, “Large self-deflection of soliton beams in LiNbO3,” Opt. Lett. 30, 1977-1979 (2005).
[CrossRef] [PubMed]

Crosignani, B.

M.-F. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, and P. Di Porto, “Observation of two-dimensional steady-state photorefractive screening solitons,” Electron. Lett. 31, 826-827 (1995).
[CrossRef]

Daikoku, K.

N. Uesugi, K. Daikoku, and K. Kubota, “Electric field tuning of second-harmonic generation in a three-dimensional LiNbO3 optical waveguide,” Appl. Phys. Lett. 34, 60-62 (1979).
[CrossRef]

Denz, C.

D. Trager, N. Sagemerten, and C. Denz, “Guiding of dynamically modulated signals in arrays of photorefractive spatial solitons,” IEEE J. Sel. Top. Quantum Electron. 12, 383-387 (2006).
[CrossRef]

Di Porto, P.

M.-F. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, and P. Di Porto, “Observation of two-dimensional steady-state photorefractive screening solitons,” Electron. Lett. 31, 826-827 (1995).
[CrossRef]

Efremidis, N. K.

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically induced real time waveguide arrays,” Phys. Rev. Lett. 90, 023902 (2003).
[CrossRef] [PubMed]

Fazio, E.

F. Pettazzi, V. Coda, M. Chauvet, and E. Fazio, “Frequency-doubling in self-induced waveguides in lithium niobate,” Opt. Commun. 272, 238-241 (2007).
[CrossRef]

V. Coda, M. Chauvet, F. Pettazzi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett. 42, 463-465 (2006).
[CrossRef]

M. Chauvet, V. Coda, H. Maillotte, E. Fazio, and G. Salamo, “Large self-deflection of soliton beams in LiNbO3,” Opt. Lett. 30, 1977-1979 (2005).
[CrossRef] [PubMed]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Feigelson, R. S.

M.-F. Shih, Z. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. P. Wilde, “Waveguides induced by photorefractive screening solitons,” J. Opt. Soc. Am. B 14, 3091-3101 (1997).
[CrossRef]

R. L. Byer, Y. K. Park, R. S. Feigelson, and W. L. Kway, “Efficient second-harmonic generation of Nd:YAG laser radiation using warm phasematching LiNbO3,” Appl. Phys. Lett. 39, 17-19 (1981).
[CrossRef]

Fejer, M. M.

Fleischer, J. W.

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically induced real time waveguide arrays,” Phys. Rev. Lett. 90, 023902 (2003).
[CrossRef] [PubMed]

Fressengeas, N.

N. Fressengeas, M. Maufoy, and K. Kugel, “Temporal behavior of bidimensional photorefractive bright spatial solitons,” Phys. Rev. E 54, 6866-6875 (1996).
[CrossRef]

Fujihara, T.

T. Fujihara, M. Tokuue, S. Umegaki, T. Sassa, and M. Yokoyama, “Formation of an anti-guide structure and observation of enhanced SHG in photorefractive materials,” Opt. Mater. 21, 51-54 (2003).
[CrossRef]

Garcia-Cabanes, A.

Giordmaine, J. A.

Hauden, J.

Hewlett, S. J.

A. W. Snyder, S. J. Hewlett, and D. J. Mitchell, “Periodic solitons in optics,” Phys. Rev. E 51, 6297-6300 (1995).
[CrossRef]

Ileki, W.

Jermann, F.

Keqing, L.

Kivshar, Y.

Kivshar, Y. S.

Klotz, M.

Kratzig, E.

Krolikowski, W.

Kubota, K.

N. Uesugi, K. Daikoku, and K. Kubota, “Electric field tuning of second-harmonic generation in a three-dimensional LiNbO3 optical waveguide,” Appl. Phys. Lett. 34, 60-62 (1979).
[CrossRef]

Kugel, K.

N. Fressengeas, M. Maufoy, and K. Kugel, “Temporal behavior of bidimensional photorefractive bright spatial solitons,” Phys. Rev. E 54, 6866-6875 (1996).
[CrossRef]

Kway, W. L.

R. L. Byer, Y. K. Park, R. S. Feigelson, and W. L. Kway, “Efficient second-harmonic generation of Nd:YAG laser radiation using warm phasematching LiNbO3,” Appl. Phys. Lett. 39, 17-19 (1981).
[CrossRef]

Lan, S.

Lee, H.

Liu, J.

Liu, X. -M.

K. Lu, M.-Z. Zhang, W. Zhao, Y.-L. Yang, Y.-H. Zhang,X.-M. Liu, Y.-P. Zhang, and J.-P. Song, “Waveguides induced by screening-photovoltaic solitons in biased photorefractive-photovoltaic crystals,” Chin. Phys. Lett. 23, 2770-2772 (2006).
[CrossRef]

Liu, Y.

Lou, C.

Lu, K.

K. Lu, M.-Z. Zhang, W. Zhao, Y.-L. Yang, Y.-H. Zhang,X.-M. Liu, Y.-P. Zhang, and J.-P. Song, “Waveguides induced by screening-photovoltaic solitons in biased photorefractive-photovoltaic crystals,” Chin. Phys. Lett. 23, 2770-2772 (2006).
[CrossRef]

Maillotte, H.

Martin, J.

Maufoy, M.

N. Fressengeas, M. Maufoy, and K. Kugel, “Temporal behavior of bidimensional photorefractive bright spatial solitons,” Phys. Rev. E 54, 6866-6875 (1996).
[CrossRef]

McCarthy, K.

Meng, H.

Miller, R. C.

R. C. Miller and A. Savage, “Temperature dependence of the optical properties of ferroelectric LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 169-171 (1966).
[CrossRef]

Mitchell, D. J.

A. W. Snyder, S. J. Hewlett, and D. J. Mitchell, “Periodic solitons in optics,” Phys. Rev. E 51, 6297-6300 (1995).
[CrossRef]

Mitchell, M.

Mizell, G.

Montgomery, S. R.

Neshev, D.

Orlov, S.

S. Orlov, A. Yariv, and M. Segev, “Nonlinear self-phase matching of optical second harmonic generation in lithium niobate,” Appl. Phys. Lett. 68, 1610-1612 (1996).
[CrossRef]

Ostrovskaya, E.

Park, Y. K.

R. L. Byer, Y. K. Park, R. S. Feigelson, and W. L. Kway, “Efficient second-harmonic generation of Nd:YAG laser radiation using warm phasematching LiNbO3,” Appl. Phys. Lett. 39, 17-19 (1981).
[CrossRef]

Petris, A.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Pettazzi, F.

F. Pettazzi, V. Coda, M. Chauvet, and E. Fazio, “Frequency-doubling in self-induced waveguides in lithium niobate,” Opt. Commun. 272, 238-241 (2007).
[CrossRef]

V. Coda, M. Chauvet, F. Pettazzi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett. 42, 463-465 (2006).
[CrossRef]

Qiao, H.

Ramadan, W.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Regener, R.

Renzi, F.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Rinaldi, R.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Sagemerten, N.

D. Trager, N. Sagemerten, and C. Denz, “Guiding of dynamically modulated signals in arrays of photorefractive spatial solitons,” IEEE J. Sel. Top. Quantum Electron. 12, 383-387 (2006).
[CrossRef]

Salamo, G.

M. Chauvet, V. Coda, H. Maillotte, E. Fazio, and G. Salamo, “Large self-deflection of soliton beams in LiNbO3,” Opt. Lett. 30, 1977-1979 (2005).
[CrossRef] [PubMed]

M.-F. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, and P. Di Porto, “Observation of two-dimensional steady-state photorefractive screening solitons,” Electron. Lett. 31, 826-827 (1995).
[CrossRef]

Salamo, G. J.

Sassa, T.

T. Fujihara, M. Tokuue, S. Umegaki, T. Sassa, and M. Yokoyama, “Formation of an anti-guide structure and observation of enhanced SHG in photorefractive materials,” Opt. Mater. 21, 51-54 (2003).
[CrossRef]

Savage, A.

R. C. Miller and A. Savage, “Temperature dependence of the optical properties of ferroelectric LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 169-171 (1966).
[CrossRef]

Schiek, R.

Schlarb, U.

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613-15620 (1993).
[CrossRef]

Segev, M.

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically induced real time waveguide arrays,” Phys. Rev. Lett. 90, 023902 (2003).
[CrossRef] [PubMed]

M. Klotz, H. Meng, G. J. Salamo, M. Segev, and S. R. Montgomery, “Fixing the photorefractive soliton,” Opt. Lett. 24, 77-79 (1999).
[CrossRef]

S. Lan, M.-F. Shih, G. Mizell, J. A. Giordmaine, Z. Chen, C. Anastassiou, J. Martin, and M. Segev, “Second-harmonic generation in waveguides induced by photorefractive spatial solitons,” Opt. Lett. 24, 1145-1147 (1999).
[CrossRef]

M. Mitchell, M. Segev, and D. C. Christodoulides, “Observation of multihump multimode solitons,” Phys. Rev. Lett. 80, 4657-4660 (1998).
[CrossRef]

M.-F. Shih, Z. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. P. Wilde, “Waveguides induced by photorefractive screening solitons,” J. Opt. Soc. Am. B 14, 3091-3101 (1997).
[CrossRef]

S. Orlov, A. Yariv, and M. Segev, “Nonlinear self-phase matching of optical second harmonic generation in lithium niobate,” Appl. Phys. Lett. 68, 1610-1612 (1996).
[CrossRef]

M.-F. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, and P. Di Porto, “Observation of two-dimensional steady-state photorefractive screening solitons,” Electron. Lett. 31, 826-827 (1995).
[CrossRef]

Shih, M. -F.

Simon, M.

Snyder, A. W.

A. W. Snyder, S. J. Hewlett, and D. J. Mitchell, “Periodic solitons in optics,” Phys. Rev. E 51, 6297-6300 (1995).
[CrossRef]

Sohler, W.

R. Regener and W. Sohler, “Efficient second-harmonic generation in Ti:LiNbO3 channel waveguide resonators,” J. Opt. Soc. Am. B 5, 267-277 (1988).
[CrossRef]

W. Sohler and H. Suche, “Second-harmonic generation in Ti-diffused LiNbO3 optical waveguides with 25% conversion efficiency,” Appl. Phys. Lett. 33, 518-519 (1978).
[CrossRef]

Song, J. -P.

K. Lu, M.-Z. Zhang, W. Zhao, Y.-L. Yang, Y.-H. Zhang,X.-M. Liu, Y.-P. Zhang, and J.-P. Song, “Waveguides induced by screening-photovoltaic solitons in biased photorefractive-photovoltaic crystals,” Chin. Phys. Lett. 23, 2770-2772 (2006).
[CrossRef]

Stegeman, G. I.

Suche, H.

W. Sohler and H. Suche, “Second-harmonic generation in Ti-diffused LiNbO3 optical waveguides with 25% conversion efficiency,” Appl. Phys. Lett. 33, 518-519 (1978).
[CrossRef]

Tokuue, M.

T. Fujihara, M. Tokuue, S. Umegaki, T. Sassa, and M. Yokoyama, “Formation of an anti-guide structure and observation of enhanced SHG in photorefractive materials,” Opt. Mater. 21, 51-54 (2003).
[CrossRef]

Trager, D.

D. Trager, N. Sagemerten, and C. Denz, “Guiding of dynamically modulated signals in arrays of photorefractive spatial solitons,” IEEE J. Sel. Top. Quantum Electron. 12, 383-387 (2006).
[CrossRef]

Uesugi, N.

N. Uesugi, K. Daikoku, and K. Kubota, “Electric field tuning of second-harmonic generation in a three-dimensional LiNbO3 optical waveguide,” Appl. Phys. Lett. 34, 60-62 (1979).
[CrossRef]

Umegaki, S.

T. Fujihara, M. Tokuue, S. Umegaki, T. Sassa, and M. Yokoyama, “Formation of an anti-guide structure and observation of enhanced SHG in photorefractive materials,” Opt. Mater. 21, 51-54 (2003).
[CrossRef]

Valley, G. C.

M.-F. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, and P. Di Porto, “Observation of two-dimensional steady-state photorefractive screening solitons,” Electron. Lett. 31, 826-827 (1995).
[CrossRef]

Villaroel, J.

Vlad, V. I.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

Wilde, J. P.

Xu, J.

Yang, Y. -L.

K. Lu, M.-Z. Zhang, W. Zhao, Y.-L. Yang, Y.-H. Zhang,X.-M. Liu, Y.-P. Zhang, and J.-P. Song, “Waveguides induced by screening-photovoltaic solitons in biased photorefractive-photovoltaic crystals,” Chin. Phys. Lett. 23, 2770-2772 (2006).
[CrossRef]

Yariv, A.

S. Orlov, A. Yariv, and M. Segev, “Nonlinear self-phase matching of optical second harmonic generation in lithium niobate,” Appl. Phys. Lett. 68, 1610-1612 (1996).
[CrossRef]

Yeh, P.

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley-Interscience, 1993).

Yokoyama, M.

T. Fujihara, M. Tokuue, S. Umegaki, T. Sassa, and M. Yokoyama, “Formation of an anti-guide structure and observation of enhanced SHG in photorefractive materials,” Opt. Mater. 21, 51-54 (2003).
[CrossRef]

Zhang, M. -Z.

K. Lu, M.-Z. Zhang, W. Zhao, Y.-L. Yang, Y.-H. Zhang,X.-M. Liu, Y.-P. Zhang, and J.-P. Song, “Waveguides induced by screening-photovoltaic solitons in biased photorefractive-photovoltaic crystals,” Chin. Phys. Lett. 23, 2770-2772 (2006).
[CrossRef]

Zhang, X.

Zhang, Y. -H.

K. Lu, M.-Z. Zhang, W. Zhao, Y.-L. Yang, Y.-H. Zhang,X.-M. Liu, Y.-P. Zhang, and J.-P. Song, “Waveguides induced by screening-photovoltaic solitons in biased photorefractive-photovoltaic crystals,” Chin. Phys. Lett. 23, 2770-2772 (2006).
[CrossRef]

Zhang, Y. -P.

K. Lu, M.-Z. Zhang, W. Zhao, Y.-L. Yang, Y.-H. Zhang,X.-M. Liu, Y.-P. Zhang, and J.-P. Song, “Waveguides induced by screening-photovoltaic solitons in biased photorefractive-photovoltaic crystals,” Chin. Phys. Lett. 23, 2770-2772 (2006).
[CrossRef]

Zhao, W.

K. Lu, M.-Z. Zhang, W. Zhao, Y.-L. Yang, Y.-H. Zhang,X.-M. Liu, Y.-P. Zhang, and J.-P. Song, “Waveguides induced by screening-photovoltaic solitons in biased photorefractive-photovoltaic crystals,” Chin. Phys. Lett. 23, 2770-2772 (2006).
[CrossRef]

Zozulya, A. A.

A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51, 1520-1531 (1995).
[CrossRef] [PubMed]

Appl. Phys. B (1)

K. Buse, “Light-induced charge transport processes in photorefractive crystals II: materials,” Appl. Phys. B 64, 391-407 (1997).
[CrossRef]

Appl. Phys. Lett. (6)

R. C. Miller and A. Savage, “Temperature dependence of the optical properties of ferroelectric LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 169-171 (1966).
[CrossRef]

W. Sohler and H. Suche, “Second-harmonic generation in Ti-diffused LiNbO3 optical waveguides with 25% conversion efficiency,” Appl. Phys. Lett. 33, 518-519 (1978).
[CrossRef]

S. Orlov, A. Yariv, and M. Segev, “Nonlinear self-phase matching of optical second harmonic generation in lithium niobate,” Appl. Phys. Lett. 68, 1610-1612 (1996).
[CrossRef]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[CrossRef]

R. L. Byer, Y. K. Park, R. S. Feigelson, and W. L. Kway, “Efficient second-harmonic generation of Nd:YAG laser radiation using warm phasematching LiNbO3,” Appl. Phys. Lett. 39, 17-19 (1981).
[CrossRef]

N. Uesugi, K. Daikoku, and K. Kubota, “Electric field tuning of second-harmonic generation in a three-dimensional LiNbO3 optical waveguide,” Appl. Phys. Lett. 34, 60-62 (1979).
[CrossRef]

Chin. Phys. Lett. (1)

K. Lu, M.-Z. Zhang, W. Zhao, Y.-L. Yang, Y.-H. Zhang,X.-M. Liu, Y.-P. Zhang, and J.-P. Song, “Waveguides induced by screening-photovoltaic solitons in biased photorefractive-photovoltaic crystals,” Chin. Phys. Lett. 23, 2770-2772 (2006).
[CrossRef]

Electron. Lett. (2)

M.-F. Shih, M. Segev, G. C. Valley, G. Salamo, B. Crosignani, and P. Di Porto, “Observation of two-dimensional steady-state photorefractive screening solitons,” Electron. Lett. 31, 826-827 (1995).
[CrossRef]

V. Coda, M. Chauvet, F. Pettazzi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett. 42, 463-465 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Trager, N. Sagemerten, and C. Denz, “Guiding of dynamically modulated signals in arrays of photorefractive spatial solitons,” IEEE J. Sel. Top. Quantum Electron. 12, 383-387 (2006).
[CrossRef]

J. Opt. Soc. Am. B (7)

Opt. Commun. (1)

F. Pettazzi, V. Coda, M. Chauvet, and E. Fazio, “Frequency-doubling in self-induced waveguides in lithium niobate,” Opt. Commun. 272, 238-241 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (8)

Opt. Mater. (1)

T. Fujihara, M. Tokuue, S. Umegaki, T. Sassa, and M. Yokoyama, “Formation of an anti-guide structure and observation of enhanced SHG in photorefractive materials,” Opt. Mater. 21, 51-54 (2003).
[CrossRef]

Phys. Rev. A (1)

A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51, 1520-1531 (1995).
[CrossRef] [PubMed]

Phys. Rev. B (1)

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613-15620 (1993).
[CrossRef]

Phys. Rev. E (2)

A. W. Snyder, S. J. Hewlett, and D. J. Mitchell, “Periodic solitons in optics,” Phys. Rev. E 51, 6297-6300 (1995).
[CrossRef]

N. Fressengeas, M. Maufoy, and K. Kugel, “Temporal behavior of bidimensional photorefractive bright spatial solitons,” Phys. Rev. E 54, 6866-6875 (1996).
[CrossRef]

Phys. Rev. Lett. (2)

M. Mitchell, M. Segev, and D. C. Christodoulides, “Observation of multihump multimode solitons,” Phys. Rev. Lett. 80, 4657-4660 (1998).
[CrossRef]

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of discrete solitons in optically induced real time waveguide arrays,” Phys. Rev. Lett. 90, 023902 (2003).
[CrossRef] [PubMed]

Other (1)

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley-Interscience, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Variation in the PM condition ( Δ n = n e 2 ω n o ω ) as a function of applied external field assuming a lithium content c L i = 48.41 % . In the inset the width of the resonance versus the temperature is reported for the case with no applied field.

Fig. 2
Fig. 2

Variation in the PM condition due to the NLSPM process given by the PV effect. The buildup of the space charge field can cause the complete recovery of the PM condition (continuous line arrow) or induce a switch from a positive to a negative mismatch (dashed line arrow), depending on the initial temperature (mismatch).

Fig. 3
Fig. 3

Temporal evolution of the SH light distribution in the sample for a defocusing nonlinearity at three characteristic times. Parameters of the simulation are T = 0.5 ° C , E PV = 14   kV / cm , and I 1 ( z = 0 ) = 1 × 10 4   W / cm 2 . The time of each image is reported in Fig. 4 (continuous curve).

Fig. 4
Fig. 4

SH output power evolution for two different temperatures: T = 0.5 ° C (continuous curve) and T = 1.5 ° C (dashed curve). Other parameters are E PV = 14   kV / cm , E e x t = 0   kV / cm , and I 1 ( z = 0 ) = 1 × 10 4   W / cm 2 . Marked points refer to selected times in Fig. 3.

Fig. 5
Fig. 5

Variation in the PM condition due to the NLSPM process given by the PR-PV effect. The local masking effect due to PR-PV nonlinearity can induce a switch from a negative to a positive mismatch (continuous line arrow) or lead to perfect matching (dashed line arrow) depending on the initial conditions (temperature and external field).

Fig. 6
Fig. 6

(a) Calculated SH output power evolution as a function of time and (b)–(d) corresponding SH spatial distributions for three different times marked in graph (a). Parameters are T = 3 ° C , E e x t = 40   kV / cm , E PV = 14   kV / cm , I 1 ( z = 0 ) = 1 × 10 4   W / cm 2 .

Fig. 7
Fig. 7

(a) SH output power evolution as a function of time and (b)–(d) corresponding SH spatial distributions for three different times, marked in graph (a). Parameters are T = 0.5 ° C , E e x t = 40   kV / cm , E PV = 14   kV / cm , I 1 ( z = 0 ) = 1 × 10 4   W / cm 2 .

Fig. 8
Fig. 8

(a) SH output power evolution as a function of time and (b)–(d) corresponding SH spatial distributions for three different times. Parameters are T = 3 ° C , E e x t = 40   kV / cm , E PV = 14   kV / cm . A background illumination is added in order to prevent waveguide saturation ( I d I b = 5   W / cm 2 ) .

Fig. 9
Fig. 9

FH spatial distribution (a) at the beginning and at the end of the simulation for (b) T = 0.5 ° C , E e x t = 40   kV / cm , E PV = 14   kV / cm , I 1 ( z = 0 ) = 1 × 10 4 , I d = 1 × 10 9   W / cm 2 and (c) T = 3 ° C , E e x t = 40   kV / cm , E PV = 14   kV / cm , I 1 ( z = 0 ) = 1 × 10 4 , I d = 5   W / cm 2 .

Fig. 10
Fig. 10

Experimental results performed with a 40 kV/cm applied field, a 760 μ W infrared input power, and a temperature of 5 ° C . (a) SH output power evolution and (b)–(d) SH output mode profile along the c axis taken at three different times, as marked in graph (a).

Fig. 11
Fig. 11

Results from a simulation performed with a 40 kV/cm external field, at a temperature of 5 ° C , with a propagation of 2 cm and an input FH beam diameter of 18 μ m . The PV field is E PV = 14   kV / cm and I 1 ( z = 0 ) = 2100   W / cm 2 . In (a) the SH output power evolution as a function of time is represented. In (b)–(d) the SH output mode profile along the c-axis direction taken at three different times, as reported in graph (a), is presented.

Tables (1)

Tables Icon

Table 1 LN Parameter Values Used in the Simulations

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

2 j k 1 E 1 z = 2 E 1 x 2 + 2 ( ω c ) 2 d E 1 E 2 e j Δ k z ω 2 c 2 r 13 n o 4 E s c ( I 2 ) E 1 ,
2 j k 2 E 2 z = 2 E 2 x 2 + ( 2 ω c ) 2 d E 1 2 e j Δ k z 2 ω c 2 2 r 33 n e 4 E s c ( I 2 ) E 2 ,
ϵ 0 ϵ E s c t = e μ A ( I 2 + I d ) E s c + β p h ( N D N A ) I 2 + e μ A I d E e x t .

Metrics