Abstract

Ordinary and extraordinary refractive indices of an ɛ-GaSe crystal at terahertz (THz) frequencies are experimentally determined in this study. Fitting experimental data by THz time-domain spectroscopy (THz-TDS) and a Fourier transform infrared spectrometer (FTIR), we proposed revised complex dielectric functions and Sellmeier equations of GaSe for both ordinary and extraordinary waves from 0.2to100THz. Phonon vibrational modes and overtones in the THz frequency range are examined in detail. The high magnitude of the figure of merit (FOM103 at 1THz), the large birefringence (Δn0.76 at 1THz). and the low absorption coefficient (α0.2cm1 at 1THz) of GaSe are also identified. Potential applications to practical photonic devices such as phase shifters at THz frequencies are proposed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998), Vol. III.
  2. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1997), pp. 166-169.
  3. W. Shi and Y. J. Ding, “A monochromatic and high-power terahertz source tunable in the ranges of 2.7-38.4 and 58.2-3540 μm for variety of potential applications,” Appl. Phys. Lett. 84, 1635-1637 (2004).
    [CrossRef]
  4. R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett. 76, 3191-3193 (2000).
    [CrossRef]
  5. K. Liu, J. Xu, and X. C. Zhang, “GaSe crystals for broadband terahertz wave detection,” Appl. Phys. Lett. 85, 863-865 (2004).
    [CrossRef]
  6. S. Adachi and Y. Shindo, “Optical constants of ɛ-GaSe,” J. Appl. Phys. 71, 428-431 (1992).
    [CrossRef]
  7. N. Piccioli, R. Le Toullec, M. Mejatty, and M. Balkanski, “Refractive index of GaSe between 0.45 μm and 330 μm,” Appl. Opt. 16, 1236-1238 (1976).
    [CrossRef]
  8. V. M. Burlakov, E. A. Vinogradov, G. N. Zhizhin, N. N. Mel'nik, D. A. Rzaev, and V. A. Yakovlev, “Optical properties of GaSe films at lattice vibration frequencies,” Sov. Phys. Solid State 21, 1477-1480 (1979).
  9. K. Allakhverdiev, N. Fernelius, F. Gashimzade, J. Goldstein, E. Salaev, and Z. Salaeva, “Anisotropy of optical absorption in GaSe studied by midinfrared spectroscopy,” J. Appl. Phys. 93, 3336-3339 (2003).
    [CrossRef]
  10. C. W. Chen, Y. K. Hsu, J. Y. Huang, C. S. Chang, J. Y. Zhang, and C. L. Pan, “Generation properties of coherent infrared radiation in the optical absorption region of GaSe crystal,” Opt. Express 14, 10636-10644 (2006).
    [CrossRef] [PubMed]
  11. Y. K. Hsu, C. W. Chen, J. Y. Huang, C. L. Pan, J. Y. Zhang, and C. S. Chang, “Erbium doped GaSe crystal for mid-IR applications,” Opt. Express 14, 5484-5491 (2006).
    [CrossRef] [PubMed]
  12. B. L. Yu, F. Zeng, V. Kartazayev, R. R. Alfano, and K. C. Mandal, “Terahertz studies of the dielectric response and second-order phonons in a GaSe crystal,” Appl. Phys. Lett. 87, 182104 (2005).
    [CrossRef]
  13. T. Tanabe, K. Suto, J.-I. Nishizawa, and T. Sasaki, “Characteristics of terahertz-wave generation from GaSe crystals,” J. Phys. D 37, 155-158 (2004).
    [CrossRef]
  14. N. B. Singh, T. B. Norris, T. Buma, R. N. Singh, M. Gottlieb, D. Suhre, and J. J. Hawkins, “Properties of nonlinear optical crystals in the terahertz wavelength region,” Opt. Eng. (Bellingham) 45, 094002 (2006).
    [CrossRef]
  15. J.-I. Nishizawa, T. Sasaki, Y. Oyama, and T. Tanabe, “Aspects of point defects in coherent terahertz-wave spectroscopy,” Physica B 401-402, 677-681 (2007).
    [CrossRef]
  16. K. Allakhverdiev, T. Baykara, S. Ellialtioglu, F. Hashimzade, D. Huseinova, K. Kawamura, A. A. Kaya, A. M. Kulibekov (Gulubayov), and S. Onari, “Lattice vibrations of pure and doped GaSe,” Mater. Res. Bull. 41, 751-763 (2006).
    [CrossRef]
  17. C. L. Pan, C. F. Hsieh, R. P. Pan, M. Tanaka, F. Miyamaru, M. Tani, and M. Hangyo, “Control of enhanced THz transmission through metallic hole arrays using nematic liquid crystal,” Opt. Express 13, 3921-3930 (2005).
    [CrossRef] [PubMed]
  18. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
    [CrossRef]
  19. H. Yoshida, S. Nakashima, and A. Mitsuishi, “Phonon Raman spectra of layer compound GaSe,” Phys. Status Solidi B 59, 655-666 (1973).
    [CrossRef]
  20. M. Hayek, O. Brafman, and R. M. A. Lieth, “Splitting and coupling of lattice modes in the layer compounds GaSe, GaS, and GaSexS1−x,” Phys. Rev. B 8, 2772-2779 (1973).
    [CrossRef]
  21. K. Yamamoto, A. Masui, and H. Ishida, “Kramers-Kronig analysis of infrared reflection spectra with perpendicular polarization,” Appl. Opt. 33, 6285-6293 (1994).
    [CrossRef] [PubMed]
  22. K. L. Vodopyanov and L. A. Kulevskii, “New dispersion relationships for GaSe in the 0.65-18 μm spectral region,” Opt. Commun. 118, 375-378 (1995).
    [CrossRef]
  23. K. R. Allakhverdiev, T. Baykara, A. K. Gulubayov, A. A. Kaya, J. Goldstein, N. Fernelius, S. Hanna, and Z. Salaeva, “Corrected infrared Sellmeier coefficients for gallium selenide,” J. Appl. Phys. 98, 093515 (2005).
    [CrossRef]
  24. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett. 27, 1454-1456 (2002).
    [CrossRef]
  25. C. Kubler, R. Huber, and A. Leitenstorfer, “Ultrabroadband terahertz pulses: generation and field-resolved detection,” Semicond. Sci. Technol. 20, S128-S133 (2005).
    [CrossRef]
  26. Y. J. Ding and W. Shi, “Widely-tunable, monochromatic, and high-power terahertz sources and their applications,” J. Nonlinear Opt. Phys. Mater. 12, 557-585 (2003).
    [CrossRef]
  27. C. Y. Chen, C. F. Hsieh, Y. F. Lin, R. P. Pan, and C. L. Pan, “Magnetically tunable room-temperature 2π liquid crystal terahertz phase shifter,” Opt. Express 12, 2625-2630 (2004).
    [CrossRef] [PubMed]
  28. H. Y. Wu, C. F. Hsieh, T. T. Tang, R. P. Pan, and C. L. Pan, “Electrically tunable room-temperature 2π liquid crystal terahertz phase shifter,” IEEE Photonics Technol. Lett. 18, 1488-1490 (2006).
    [CrossRef]
  29. T. R. Tsai, C. Y. Chen, C. L. Pan, R. P. Pan, and X. C. Zhang, “THz time-domain spectroscopy studies of the optical constants of the nematic liquid crystal 5CB,” Appl. Opt. 42, 2372-2376 (2003).
    [CrossRef] [PubMed]
  30. R. P. Pan, C. F. Hsieh, C. L. Pan, and C. Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103, 093523 (2008).
    [CrossRef]

2008 (1)

R. P. Pan, C. F. Hsieh, C. L. Pan, and C. Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103, 093523 (2008).
[CrossRef]

2007 (1)

J.-I. Nishizawa, T. Sasaki, Y. Oyama, and T. Tanabe, “Aspects of point defects in coherent terahertz-wave spectroscopy,” Physica B 401-402, 677-681 (2007).
[CrossRef]

2006 (5)

K. Allakhverdiev, T. Baykara, S. Ellialtioglu, F. Hashimzade, D. Huseinova, K. Kawamura, A. A. Kaya, A. M. Kulibekov (Gulubayov), and S. Onari, “Lattice vibrations of pure and doped GaSe,” Mater. Res. Bull. 41, 751-763 (2006).
[CrossRef]

N. B. Singh, T. B. Norris, T. Buma, R. N. Singh, M. Gottlieb, D. Suhre, and J. J. Hawkins, “Properties of nonlinear optical crystals in the terahertz wavelength region,” Opt. Eng. (Bellingham) 45, 094002 (2006).
[CrossRef]

C. W. Chen, Y. K. Hsu, J. Y. Huang, C. S. Chang, J. Y. Zhang, and C. L. Pan, “Generation properties of coherent infrared radiation in the optical absorption region of GaSe crystal,” Opt. Express 14, 10636-10644 (2006).
[CrossRef] [PubMed]

Y. K. Hsu, C. W. Chen, J. Y. Huang, C. L. Pan, J. Y. Zhang, and C. S. Chang, “Erbium doped GaSe crystal for mid-IR applications,” Opt. Express 14, 5484-5491 (2006).
[CrossRef] [PubMed]

H. Y. Wu, C. F. Hsieh, T. T. Tang, R. P. Pan, and C. L. Pan, “Electrically tunable room-temperature 2π liquid crystal terahertz phase shifter,” IEEE Photonics Technol. Lett. 18, 1488-1490 (2006).
[CrossRef]

2005 (4)

K. R. Allakhverdiev, T. Baykara, A. K. Gulubayov, A. A. Kaya, J. Goldstein, N. Fernelius, S. Hanna, and Z. Salaeva, “Corrected infrared Sellmeier coefficients for gallium selenide,” J. Appl. Phys. 98, 093515 (2005).
[CrossRef]

C. Kubler, R. Huber, and A. Leitenstorfer, “Ultrabroadband terahertz pulses: generation and field-resolved detection,” Semicond. Sci. Technol. 20, S128-S133 (2005).
[CrossRef]

B. L. Yu, F. Zeng, V. Kartazayev, R. R. Alfano, and K. C. Mandal, “Terahertz studies of the dielectric response and second-order phonons in a GaSe crystal,” Appl. Phys. Lett. 87, 182104 (2005).
[CrossRef]

C. L. Pan, C. F. Hsieh, R. P. Pan, M. Tanaka, F. Miyamaru, M. Tani, and M. Hangyo, “Control of enhanced THz transmission through metallic hole arrays using nematic liquid crystal,” Opt. Express 13, 3921-3930 (2005).
[CrossRef] [PubMed]

2004 (4)

T. Tanabe, K. Suto, J.-I. Nishizawa, and T. Sasaki, “Characteristics of terahertz-wave generation from GaSe crystals,” J. Phys. D 37, 155-158 (2004).
[CrossRef]

W. Shi and Y. J. Ding, “A monochromatic and high-power terahertz source tunable in the ranges of 2.7-38.4 and 58.2-3540 μm for variety of potential applications,” Appl. Phys. Lett. 84, 1635-1637 (2004).
[CrossRef]

K. Liu, J. Xu, and X. C. Zhang, “GaSe crystals for broadband terahertz wave detection,” Appl. Phys. Lett. 85, 863-865 (2004).
[CrossRef]

C. Y. Chen, C. F. Hsieh, Y. F. Lin, R. P. Pan, and C. L. Pan, “Magnetically tunable room-temperature 2π liquid crystal terahertz phase shifter,” Opt. Express 12, 2625-2630 (2004).
[CrossRef] [PubMed]

2003 (3)

T. R. Tsai, C. Y. Chen, C. L. Pan, R. P. Pan, and X. C. Zhang, “THz time-domain spectroscopy studies of the optical constants of the nematic liquid crystal 5CB,” Appl. Opt. 42, 2372-2376 (2003).
[CrossRef] [PubMed]

Y. J. Ding and W. Shi, “Widely-tunable, monochromatic, and high-power terahertz sources and their applications,” J. Nonlinear Opt. Phys. Mater. 12, 557-585 (2003).
[CrossRef]

K. Allakhverdiev, N. Fernelius, F. Gashimzade, J. Goldstein, E. Salaev, and Z. Salaeva, “Anisotropy of optical absorption in GaSe studied by midinfrared spectroscopy,” J. Appl. Phys. 93, 3336-3339 (2003).
[CrossRef]

2002 (1)

2000 (1)

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett. 76, 3191-3193 (2000).
[CrossRef]

1995 (1)

K. L. Vodopyanov and L. A. Kulevskii, “New dispersion relationships for GaSe in the 0.65-18 μm spectral region,” Opt. Commun. 118, 375-378 (1995).
[CrossRef]

1994 (1)

1992 (1)

S. Adachi and Y. Shindo, “Optical constants of ɛ-GaSe,” J. Appl. Phys. 71, 428-431 (1992).
[CrossRef]

1979 (1)

V. M. Burlakov, E. A. Vinogradov, G. N. Zhizhin, N. N. Mel'nik, D. A. Rzaev, and V. A. Yakovlev, “Optical properties of GaSe films at lattice vibration frequencies,” Sov. Phys. Solid State 21, 1477-1480 (1979).

1976 (1)

1973 (2)

H. Yoshida, S. Nakashima, and A. Mitsuishi, “Phonon Raman spectra of layer compound GaSe,” Phys. Status Solidi B 59, 655-666 (1973).
[CrossRef]

M. Hayek, O. Brafman, and R. M. A. Lieth, “Splitting and coupling of lattice modes in the layer compounds GaSe, GaS, and GaSexS1−x,” Phys. Rev. B 8, 2772-2779 (1973).
[CrossRef]

Adachi, S.

S. Adachi and Y. Shindo, “Optical constants of ɛ-GaSe,” J. Appl. Phys. 71, 428-431 (1992).
[CrossRef]

Alfano, R. R.

B. L. Yu, F. Zeng, V. Kartazayev, R. R. Alfano, and K. C. Mandal, “Terahertz studies of the dielectric response and second-order phonons in a GaSe crystal,” Appl. Phys. Lett. 87, 182104 (2005).
[CrossRef]

Allakhverdiev, K.

K. Allakhverdiev, T. Baykara, S. Ellialtioglu, F. Hashimzade, D. Huseinova, K. Kawamura, A. A. Kaya, A. M. Kulibekov (Gulubayov), and S. Onari, “Lattice vibrations of pure and doped GaSe,” Mater. Res. Bull. 41, 751-763 (2006).
[CrossRef]

K. Allakhverdiev, N. Fernelius, F. Gashimzade, J. Goldstein, E. Salaev, and Z. Salaeva, “Anisotropy of optical absorption in GaSe studied by midinfrared spectroscopy,” J. Appl. Phys. 93, 3336-3339 (2003).
[CrossRef]

Allakhverdiev, K. R.

K. R. Allakhverdiev, T. Baykara, A. K. Gulubayov, A. A. Kaya, J. Goldstein, N. Fernelius, S. Hanna, and Z. Salaeva, “Corrected infrared Sellmeier coefficients for gallium selenide,” J. Appl. Phys. 98, 093515 (2005).
[CrossRef]

Balkanski, M.

Baykara, T.

K. Allakhverdiev, T. Baykara, S. Ellialtioglu, F. Hashimzade, D. Huseinova, K. Kawamura, A. A. Kaya, A. M. Kulibekov (Gulubayov), and S. Onari, “Lattice vibrations of pure and doped GaSe,” Mater. Res. Bull. 41, 751-763 (2006).
[CrossRef]

K. R. Allakhverdiev, T. Baykara, A. K. Gulubayov, A. A. Kaya, J. Goldstein, N. Fernelius, S. Hanna, and Z. Salaeva, “Corrected infrared Sellmeier coefficients for gallium selenide,” J. Appl. Phys. 98, 093515 (2005).
[CrossRef]

Brafman, O.

M. Hayek, O. Brafman, and R. M. A. Lieth, “Splitting and coupling of lattice modes in the layer compounds GaSe, GaS, and GaSexS1−x,” Phys. Rev. B 8, 2772-2779 (1973).
[CrossRef]

Brodschelm, A.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett. 76, 3191-3193 (2000).
[CrossRef]

Buma, T.

N. B. Singh, T. B. Norris, T. Buma, R. N. Singh, M. Gottlieb, D. Suhre, and J. J. Hawkins, “Properties of nonlinear optical crystals in the terahertz wavelength region,” Opt. Eng. (Bellingham) 45, 094002 (2006).
[CrossRef]

Burlakov, V. M.

V. M. Burlakov, E. A. Vinogradov, G. N. Zhizhin, N. N. Mel'nik, D. A. Rzaev, and V. A. Yakovlev, “Optical properties of GaSe films at lattice vibration frequencies,” Sov. Phys. Solid State 21, 1477-1480 (1979).

Chang, C. S.

Chen, C. W.

Chen, C. Y.

Ding, Y. J.

W. Shi and Y. J. Ding, “A monochromatic and high-power terahertz source tunable in the ranges of 2.7-38.4 and 58.2-3540 μm for variety of potential applications,” Appl. Phys. Lett. 84, 1635-1637 (2004).
[CrossRef]

Y. J. Ding and W. Shi, “Widely-tunable, monochromatic, and high-power terahertz sources and their applications,” J. Nonlinear Opt. Phys. Mater. 12, 557-585 (2003).
[CrossRef]

W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett. 27, 1454-1456 (2002).
[CrossRef]

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1997), pp. 166-169.

Ellialtioglu, S.

K. Allakhverdiev, T. Baykara, S. Ellialtioglu, F. Hashimzade, D. Huseinova, K. Kawamura, A. A. Kaya, A. M. Kulibekov (Gulubayov), and S. Onari, “Lattice vibrations of pure and doped GaSe,” Mater. Res. Bull. 41, 751-763 (2006).
[CrossRef]

Fernelius, N.

K. R. Allakhverdiev, T. Baykara, A. K. Gulubayov, A. A. Kaya, J. Goldstein, N. Fernelius, S. Hanna, and Z. Salaeva, “Corrected infrared Sellmeier coefficients for gallium selenide,” J. Appl. Phys. 98, 093515 (2005).
[CrossRef]

K. Allakhverdiev, N. Fernelius, F. Gashimzade, J. Goldstein, E. Salaev, and Z. Salaeva, “Anisotropy of optical absorption in GaSe studied by midinfrared spectroscopy,” J. Appl. Phys. 93, 3336-3339 (2003).
[CrossRef]

W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett. 27, 1454-1456 (2002).
[CrossRef]

Gashimzade, F.

K. Allakhverdiev, N. Fernelius, F. Gashimzade, J. Goldstein, E. Salaev, and Z. Salaeva, “Anisotropy of optical absorption in GaSe studied by midinfrared spectroscopy,” J. Appl. Phys. 93, 3336-3339 (2003).
[CrossRef]

Goldstein, J.

K. R. Allakhverdiev, T. Baykara, A. K. Gulubayov, A. A. Kaya, J. Goldstein, N. Fernelius, S. Hanna, and Z. Salaeva, “Corrected infrared Sellmeier coefficients for gallium selenide,” J. Appl. Phys. 98, 093515 (2005).
[CrossRef]

K. Allakhverdiev, N. Fernelius, F. Gashimzade, J. Goldstein, E. Salaev, and Z. Salaeva, “Anisotropy of optical absorption in GaSe studied by midinfrared spectroscopy,” J. Appl. Phys. 93, 3336-3339 (2003).
[CrossRef]

Gottlieb, M.

N. B. Singh, T. B. Norris, T. Buma, R. N. Singh, M. Gottlieb, D. Suhre, and J. J. Hawkins, “Properties of nonlinear optical crystals in the terahertz wavelength region,” Opt. Eng. (Bellingham) 45, 094002 (2006).
[CrossRef]

Gulubayov, A. K.

K. R. Allakhverdiev, T. Baykara, A. K. Gulubayov, A. A. Kaya, J. Goldstein, N. Fernelius, S. Hanna, and Z. Salaeva, “Corrected infrared Sellmeier coefficients for gallium selenide,” J. Appl. Phys. 98, 093515 (2005).
[CrossRef]

Gurzadyan, G. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1997), pp. 166-169.

Hangyo, M.

Hanna, S.

K. R. Allakhverdiev, T. Baykara, A. K. Gulubayov, A. A. Kaya, J. Goldstein, N. Fernelius, S. Hanna, and Z. Salaeva, “Corrected infrared Sellmeier coefficients for gallium selenide,” J. Appl. Phys. 98, 093515 (2005).
[CrossRef]

Hashimzade, F.

K. Allakhverdiev, T. Baykara, S. Ellialtioglu, F. Hashimzade, D. Huseinova, K. Kawamura, A. A. Kaya, A. M. Kulibekov (Gulubayov), and S. Onari, “Lattice vibrations of pure and doped GaSe,” Mater. Res. Bull. 41, 751-763 (2006).
[CrossRef]

Hawkins, J. J.

N. B. Singh, T. B. Norris, T. Buma, R. N. Singh, M. Gottlieb, D. Suhre, and J. J. Hawkins, “Properties of nonlinear optical crystals in the terahertz wavelength region,” Opt. Eng. (Bellingham) 45, 094002 (2006).
[CrossRef]

Hayek, M.

M. Hayek, O. Brafman, and R. M. A. Lieth, “Splitting and coupling of lattice modes in the layer compounds GaSe, GaS, and GaSexS1−x,” Phys. Rev. B 8, 2772-2779 (1973).
[CrossRef]

Hsieh, C. F.

R. P. Pan, C. F. Hsieh, C. L. Pan, and C. Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103, 093523 (2008).
[CrossRef]

H. Y. Wu, C. F. Hsieh, T. T. Tang, R. P. Pan, and C. L. Pan, “Electrically tunable room-temperature 2π liquid crystal terahertz phase shifter,” IEEE Photonics Technol. Lett. 18, 1488-1490 (2006).
[CrossRef]

C. L. Pan, C. F. Hsieh, R. P. Pan, M. Tanaka, F. Miyamaru, M. Tani, and M. Hangyo, “Control of enhanced THz transmission through metallic hole arrays using nematic liquid crystal,” Opt. Express 13, 3921-3930 (2005).
[CrossRef] [PubMed]

C. Y. Chen, C. F. Hsieh, Y. F. Lin, R. P. Pan, and C. L. Pan, “Magnetically tunable room-temperature 2π liquid crystal terahertz phase shifter,” Opt. Express 12, 2625-2630 (2004).
[CrossRef] [PubMed]

Hsu, Y. K.

Huang, J. Y.

Huber, R.

C. Kubler, R. Huber, and A. Leitenstorfer, “Ultrabroadband terahertz pulses: generation and field-resolved detection,” Semicond. Sci. Technol. 20, S128-S133 (2005).
[CrossRef]

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett. 76, 3191-3193 (2000).
[CrossRef]

Huseinova, D.

K. Allakhverdiev, T. Baykara, S. Ellialtioglu, F. Hashimzade, D. Huseinova, K. Kawamura, A. A. Kaya, A. M. Kulibekov (Gulubayov), and S. Onari, “Lattice vibrations of pure and doped GaSe,” Mater. Res. Bull. 41, 751-763 (2006).
[CrossRef]

Ishida, H.

Kartazayev, V.

B. L. Yu, F. Zeng, V. Kartazayev, R. R. Alfano, and K. C. Mandal, “Terahertz studies of the dielectric response and second-order phonons in a GaSe crystal,” Appl. Phys. Lett. 87, 182104 (2005).
[CrossRef]

Kawamura, K.

K. Allakhverdiev, T. Baykara, S. Ellialtioglu, F. Hashimzade, D. Huseinova, K. Kawamura, A. A. Kaya, A. M. Kulibekov (Gulubayov), and S. Onari, “Lattice vibrations of pure and doped GaSe,” Mater. Res. Bull. 41, 751-763 (2006).
[CrossRef]

Kaya, A. A.

K. Allakhverdiev, T. Baykara, S. Ellialtioglu, F. Hashimzade, D. Huseinova, K. Kawamura, A. A. Kaya, A. M. Kulibekov (Gulubayov), and S. Onari, “Lattice vibrations of pure and doped GaSe,” Mater. Res. Bull. 41, 751-763 (2006).
[CrossRef]

K. R. Allakhverdiev, T. Baykara, A. K. Gulubayov, A. A. Kaya, J. Goldstein, N. Fernelius, S. Hanna, and Z. Salaeva, “Corrected infrared Sellmeier coefficients for gallium selenide,” J. Appl. Phys. 98, 093515 (2005).
[CrossRef]

Kubler, C.

C. Kubler, R. Huber, and A. Leitenstorfer, “Ultrabroadband terahertz pulses: generation and field-resolved detection,” Semicond. Sci. Technol. 20, S128-S133 (2005).
[CrossRef]

Kulevskii, L. A.

K. L. Vodopyanov and L. A. Kulevskii, “New dispersion relationships for GaSe in the 0.65-18 μm spectral region,” Opt. Commun. 118, 375-378 (1995).
[CrossRef]

Kulibekov (Gulubayov), A. M.

K. Allakhverdiev, T. Baykara, S. Ellialtioglu, F. Hashimzade, D. Huseinova, K. Kawamura, A. A. Kaya, A. M. Kulibekov (Gulubayov), and S. Onari, “Lattice vibrations of pure and doped GaSe,” Mater. Res. Bull. 41, 751-763 (2006).
[CrossRef]

Le Toullec, R.

Leitenstorfer, A.

C. Kubler, R. Huber, and A. Leitenstorfer, “Ultrabroadband terahertz pulses: generation and field-resolved detection,” Semicond. Sci. Technol. 20, S128-S133 (2005).
[CrossRef]

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett. 76, 3191-3193 (2000).
[CrossRef]

Lieth, R. M. A.

M. Hayek, O. Brafman, and R. M. A. Lieth, “Splitting and coupling of lattice modes in the layer compounds GaSe, GaS, and GaSexS1−x,” Phys. Rev. B 8, 2772-2779 (1973).
[CrossRef]

Lin, Y. F.

Liu, K.

K. Liu, J. Xu, and X. C. Zhang, “GaSe crystals for broadband terahertz wave detection,” Appl. Phys. Lett. 85, 863-865 (2004).
[CrossRef]

Mandal, K. C.

B. L. Yu, F. Zeng, V. Kartazayev, R. R. Alfano, and K. C. Mandal, “Terahertz studies of the dielectric response and second-order phonons in a GaSe crystal,” Appl. Phys. Lett. 87, 182104 (2005).
[CrossRef]

Masui, A.

Mejatty, M.

Mel'nik, N. N.

V. M. Burlakov, E. A. Vinogradov, G. N. Zhizhin, N. N. Mel'nik, D. A. Rzaev, and V. A. Yakovlev, “Optical properties of GaSe films at lattice vibration frequencies,” Sov. Phys. Solid State 21, 1477-1480 (1979).

Mitsuishi, A.

H. Yoshida, S. Nakashima, and A. Mitsuishi, “Phonon Raman spectra of layer compound GaSe,” Phys. Status Solidi B 59, 655-666 (1973).
[CrossRef]

Miyamaru, F.

Nakashima, S.

H. Yoshida, S. Nakashima, and A. Mitsuishi, “Phonon Raman spectra of layer compound GaSe,” Phys. Status Solidi B 59, 655-666 (1973).
[CrossRef]

Nikogosyan, D. N.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1997), pp. 166-169.

Nishizawa, J.-I.

J.-I. Nishizawa, T. Sasaki, Y. Oyama, and T. Tanabe, “Aspects of point defects in coherent terahertz-wave spectroscopy,” Physica B 401-402, 677-681 (2007).
[CrossRef]

T. Tanabe, K. Suto, J.-I. Nishizawa, and T. Sasaki, “Characteristics of terahertz-wave generation from GaSe crystals,” J. Phys. D 37, 155-158 (2004).
[CrossRef]

Norris, T. B.

N. B. Singh, T. B. Norris, T. Buma, R. N. Singh, M. Gottlieb, D. Suhre, and J. J. Hawkins, “Properties of nonlinear optical crystals in the terahertz wavelength region,” Opt. Eng. (Bellingham) 45, 094002 (2006).
[CrossRef]

Onari, S.

K. Allakhverdiev, T. Baykara, S. Ellialtioglu, F. Hashimzade, D. Huseinova, K. Kawamura, A. A. Kaya, A. M. Kulibekov (Gulubayov), and S. Onari, “Lattice vibrations of pure and doped GaSe,” Mater. Res. Bull. 41, 751-763 (2006).
[CrossRef]

Oyama, Y.

J.-I. Nishizawa, T. Sasaki, Y. Oyama, and T. Tanabe, “Aspects of point defects in coherent terahertz-wave spectroscopy,” Physica B 401-402, 677-681 (2007).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998), Vol. III.

Pan, C. L.

R. P. Pan, C. F. Hsieh, C. L. Pan, and C. Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103, 093523 (2008).
[CrossRef]

H. Y. Wu, C. F. Hsieh, T. T. Tang, R. P. Pan, and C. L. Pan, “Electrically tunable room-temperature 2π liquid crystal terahertz phase shifter,” IEEE Photonics Technol. Lett. 18, 1488-1490 (2006).
[CrossRef]

Y. K. Hsu, C. W. Chen, J. Y. Huang, C. L. Pan, J. Y. Zhang, and C. S. Chang, “Erbium doped GaSe crystal for mid-IR applications,” Opt. Express 14, 5484-5491 (2006).
[CrossRef] [PubMed]

C. W. Chen, Y. K. Hsu, J. Y. Huang, C. S. Chang, J. Y. Zhang, and C. L. Pan, “Generation properties of coherent infrared radiation in the optical absorption region of GaSe crystal,” Opt. Express 14, 10636-10644 (2006).
[CrossRef] [PubMed]

C. L. Pan, C. F. Hsieh, R. P. Pan, M. Tanaka, F. Miyamaru, M. Tani, and M. Hangyo, “Control of enhanced THz transmission through metallic hole arrays using nematic liquid crystal,” Opt. Express 13, 3921-3930 (2005).
[CrossRef] [PubMed]

C. Y. Chen, C. F. Hsieh, Y. F. Lin, R. P. Pan, and C. L. Pan, “Magnetically tunable room-temperature 2π liquid crystal terahertz phase shifter,” Opt. Express 12, 2625-2630 (2004).
[CrossRef] [PubMed]

T. R. Tsai, C. Y. Chen, C. L. Pan, R. P. Pan, and X. C. Zhang, “THz time-domain spectroscopy studies of the optical constants of the nematic liquid crystal 5CB,” Appl. Opt. 42, 2372-2376 (2003).
[CrossRef] [PubMed]

Pan, R. P.

Piccioli, N.

Rzaev, D. A.

V. M. Burlakov, E. A. Vinogradov, G. N. Zhizhin, N. N. Mel'nik, D. A. Rzaev, and V. A. Yakovlev, “Optical properties of GaSe films at lattice vibration frequencies,” Sov. Phys. Solid State 21, 1477-1480 (1979).

Salaev, E.

K. Allakhverdiev, N. Fernelius, F. Gashimzade, J. Goldstein, E. Salaev, and Z. Salaeva, “Anisotropy of optical absorption in GaSe studied by midinfrared spectroscopy,” J. Appl. Phys. 93, 3336-3339 (2003).
[CrossRef]

Salaeva, Z.

K. R. Allakhverdiev, T. Baykara, A. K. Gulubayov, A. A. Kaya, J. Goldstein, N. Fernelius, S. Hanna, and Z. Salaeva, “Corrected infrared Sellmeier coefficients for gallium selenide,” J. Appl. Phys. 98, 093515 (2005).
[CrossRef]

K. Allakhverdiev, N. Fernelius, F. Gashimzade, J. Goldstein, E. Salaev, and Z. Salaeva, “Anisotropy of optical absorption in GaSe studied by midinfrared spectroscopy,” J. Appl. Phys. 93, 3336-3339 (2003).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
[CrossRef]

Sasaki, T.

J.-I. Nishizawa, T. Sasaki, Y. Oyama, and T. Tanabe, “Aspects of point defects in coherent terahertz-wave spectroscopy,” Physica B 401-402, 677-681 (2007).
[CrossRef]

T. Tanabe, K. Suto, J.-I. Nishizawa, and T. Sasaki, “Characteristics of terahertz-wave generation from GaSe crystals,” J. Phys. D 37, 155-158 (2004).
[CrossRef]

Shi, W.

W. Shi and Y. J. Ding, “A monochromatic and high-power terahertz source tunable in the ranges of 2.7-38.4 and 58.2-3540 μm for variety of potential applications,” Appl. Phys. Lett. 84, 1635-1637 (2004).
[CrossRef]

Y. J. Ding and W. Shi, “Widely-tunable, monochromatic, and high-power terahertz sources and their applications,” J. Nonlinear Opt. Phys. Mater. 12, 557-585 (2003).
[CrossRef]

W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal,” Opt. Lett. 27, 1454-1456 (2002).
[CrossRef]

Shindo, Y.

S. Adachi and Y. Shindo, “Optical constants of ɛ-GaSe,” J. Appl. Phys. 71, 428-431 (1992).
[CrossRef]

Singh, N. B.

N. B. Singh, T. B. Norris, T. Buma, R. N. Singh, M. Gottlieb, D. Suhre, and J. J. Hawkins, “Properties of nonlinear optical crystals in the terahertz wavelength region,” Opt. Eng. (Bellingham) 45, 094002 (2006).
[CrossRef]

Singh, R. N.

N. B. Singh, T. B. Norris, T. Buma, R. N. Singh, M. Gottlieb, D. Suhre, and J. J. Hawkins, “Properties of nonlinear optical crystals in the terahertz wavelength region,” Opt. Eng. (Bellingham) 45, 094002 (2006).
[CrossRef]

Suhre, D.

N. B. Singh, T. B. Norris, T. Buma, R. N. Singh, M. Gottlieb, D. Suhre, and J. J. Hawkins, “Properties of nonlinear optical crystals in the terahertz wavelength region,” Opt. Eng. (Bellingham) 45, 094002 (2006).
[CrossRef]

Suto, K.

T. Tanabe, K. Suto, J.-I. Nishizawa, and T. Sasaki, “Characteristics of terahertz-wave generation from GaSe crystals,” J. Phys. D 37, 155-158 (2004).
[CrossRef]

Tanabe, T.

J.-I. Nishizawa, T. Sasaki, Y. Oyama, and T. Tanabe, “Aspects of point defects in coherent terahertz-wave spectroscopy,” Physica B 401-402, 677-681 (2007).
[CrossRef]

T. Tanabe, K. Suto, J.-I. Nishizawa, and T. Sasaki, “Characteristics of terahertz-wave generation from GaSe crystals,” J. Phys. D 37, 155-158 (2004).
[CrossRef]

Tanaka, M.

Tang, T. T.

H. Y. Wu, C. F. Hsieh, T. T. Tang, R. P. Pan, and C. L. Pan, “Electrically tunable room-temperature 2π liquid crystal terahertz phase shifter,” IEEE Photonics Technol. Lett. 18, 1488-1490 (2006).
[CrossRef]

Tani, M.

Tauser, F.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett. 76, 3191-3193 (2000).
[CrossRef]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
[CrossRef]

Tsai, T. R.

Vinogradov, E. A.

V. M. Burlakov, E. A. Vinogradov, G. N. Zhizhin, N. N. Mel'nik, D. A. Rzaev, and V. A. Yakovlev, “Optical properties of GaSe films at lattice vibration frequencies,” Sov. Phys. Solid State 21, 1477-1480 (1979).

Vodopyanov, K.

Vodopyanov, K. L.

K. L. Vodopyanov and L. A. Kulevskii, “New dispersion relationships for GaSe in the 0.65-18 μm spectral region,” Opt. Commun. 118, 375-378 (1995).
[CrossRef]

Wu, H. Y.

H. Y. Wu, C. F. Hsieh, T. T. Tang, R. P. Pan, and C. L. Pan, “Electrically tunable room-temperature 2π liquid crystal terahertz phase shifter,” IEEE Photonics Technol. Lett. 18, 1488-1490 (2006).
[CrossRef]

Xu, J.

K. Liu, J. Xu, and X. C. Zhang, “GaSe crystals for broadband terahertz wave detection,” Appl. Phys. Lett. 85, 863-865 (2004).
[CrossRef]

Yakovlev, V. A.

V. M. Burlakov, E. A. Vinogradov, G. N. Zhizhin, N. N. Mel'nik, D. A. Rzaev, and V. A. Yakovlev, “Optical properties of GaSe films at lattice vibration frequencies,” Sov. Phys. Solid State 21, 1477-1480 (1979).

Yamamoto, K.

Yoshida, H.

H. Yoshida, S. Nakashima, and A. Mitsuishi, “Phonon Raman spectra of layer compound GaSe,” Phys. Status Solidi B 59, 655-666 (1973).
[CrossRef]

Yu, B. L.

B. L. Yu, F. Zeng, V. Kartazayev, R. R. Alfano, and K. C. Mandal, “Terahertz studies of the dielectric response and second-order phonons in a GaSe crystal,” Appl. Phys. Lett. 87, 182104 (2005).
[CrossRef]

Zeng, F.

B. L. Yu, F. Zeng, V. Kartazayev, R. R. Alfano, and K. C. Mandal, “Terahertz studies of the dielectric response and second-order phonons in a GaSe crystal,” Appl. Phys. Lett. 87, 182104 (2005).
[CrossRef]

Zhang, J. Y.

Zhang, X. C.

Zhizhin, G. N.

V. M. Burlakov, E. A. Vinogradov, G. N. Zhizhin, N. N. Mel'nik, D. A. Rzaev, and V. A. Yakovlev, “Optical properties of GaSe films at lattice vibration frequencies,” Sov. Phys. Solid State 21, 1477-1480 (1979).

Appl. Opt. (3)

Appl. Phys. Lett. (4)

W. Shi and Y. J. Ding, “A monochromatic and high-power terahertz source tunable in the ranges of 2.7-38.4 and 58.2-3540 μm for variety of potential applications,” Appl. Phys. Lett. 84, 1635-1637 (2004).
[CrossRef]

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, “Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,” Appl. Phys. Lett. 76, 3191-3193 (2000).
[CrossRef]

K. Liu, J. Xu, and X. C. Zhang, “GaSe crystals for broadband terahertz wave detection,” Appl. Phys. Lett. 85, 863-865 (2004).
[CrossRef]

B. L. Yu, F. Zeng, V. Kartazayev, R. R. Alfano, and K. C. Mandal, “Terahertz studies of the dielectric response and second-order phonons in a GaSe crystal,” Appl. Phys. Lett. 87, 182104 (2005).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

H. Y. Wu, C. F. Hsieh, T. T. Tang, R. P. Pan, and C. L. Pan, “Electrically tunable room-temperature 2π liquid crystal terahertz phase shifter,” IEEE Photonics Technol. Lett. 18, 1488-1490 (2006).
[CrossRef]

J. Appl. Phys. (4)

R. P. Pan, C. F. Hsieh, C. L. Pan, and C. Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103, 093523 (2008).
[CrossRef]

K. R. Allakhverdiev, T. Baykara, A. K. Gulubayov, A. A. Kaya, J. Goldstein, N. Fernelius, S. Hanna, and Z. Salaeva, “Corrected infrared Sellmeier coefficients for gallium selenide,” J. Appl. Phys. 98, 093515 (2005).
[CrossRef]

K. Allakhverdiev, N. Fernelius, F. Gashimzade, J. Goldstein, E. Salaev, and Z. Salaeva, “Anisotropy of optical absorption in GaSe studied by midinfrared spectroscopy,” J. Appl. Phys. 93, 3336-3339 (2003).
[CrossRef]

S. Adachi and Y. Shindo, “Optical constants of ɛ-GaSe,” J. Appl. Phys. 71, 428-431 (1992).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

Y. J. Ding and W. Shi, “Widely-tunable, monochromatic, and high-power terahertz sources and their applications,” J. Nonlinear Opt. Phys. Mater. 12, 557-585 (2003).
[CrossRef]

J. Phys. D (1)

T. Tanabe, K. Suto, J.-I. Nishizawa, and T. Sasaki, “Characteristics of terahertz-wave generation from GaSe crystals,” J. Phys. D 37, 155-158 (2004).
[CrossRef]

Mater. Res. Bull. (1)

K. Allakhverdiev, T. Baykara, S. Ellialtioglu, F. Hashimzade, D. Huseinova, K. Kawamura, A. A. Kaya, A. M. Kulibekov (Gulubayov), and S. Onari, “Lattice vibrations of pure and doped GaSe,” Mater. Res. Bull. 41, 751-763 (2006).
[CrossRef]

Opt. Commun. (1)

K. L. Vodopyanov and L. A. Kulevskii, “New dispersion relationships for GaSe in the 0.65-18 μm spectral region,” Opt. Commun. 118, 375-378 (1995).
[CrossRef]

Opt. Eng. (Bellingham) (1)

N. B. Singh, T. B. Norris, T. Buma, R. N. Singh, M. Gottlieb, D. Suhre, and J. J. Hawkins, “Properties of nonlinear optical crystals in the terahertz wavelength region,” Opt. Eng. (Bellingham) 45, 094002 (2006).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (1)

M. Hayek, O. Brafman, and R. M. A. Lieth, “Splitting and coupling of lattice modes in the layer compounds GaSe, GaS, and GaSexS1−x,” Phys. Rev. B 8, 2772-2779 (1973).
[CrossRef]

Phys. Status Solidi B (1)

H. Yoshida, S. Nakashima, and A. Mitsuishi, “Phonon Raman spectra of layer compound GaSe,” Phys. Status Solidi B 59, 655-666 (1973).
[CrossRef]

Physica B (1)

J.-I. Nishizawa, T. Sasaki, Y. Oyama, and T. Tanabe, “Aspects of point defects in coherent terahertz-wave spectroscopy,” Physica B 401-402, 677-681 (2007).
[CrossRef]

Semicond. Sci. Technol. (1)

C. Kubler, R. Huber, and A. Leitenstorfer, “Ultrabroadband terahertz pulses: generation and field-resolved detection,” Semicond. Sci. Technol. 20, S128-S133 (2005).
[CrossRef]

Sov. Phys. Solid State (1)

V. M. Burlakov, E. A. Vinogradov, G. N. Zhizhin, N. N. Mel'nik, D. A. Rzaev, and V. A. Yakovlev, “Optical properties of GaSe films at lattice vibration frequencies,” Sov. Phys. Solid State 21, 1477-1480 (1979).

Other (3)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998), Vol. III.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1997), pp. 166-169.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Waveforms of the THz pulse transmitted through GaSe crystal of thickness d = 1.110 mm (solid curve) and the reference pulse (dashed curve). (b) Real part of the complex refractive index of the GaSe crystal for ordinary wave n o . (c) Imaginary part of the complex refractive index of the GaSe crystal for ordinary wave k o .

Fig. 2
Fig. 2

Absorption spectrum of pure GaSe crystal from 3 μ m to 700 μ m . Data from FTIR and THz-TDS are combined.

Fig. 3
Fig. 3

Power reflectance of GaSe from 0.2 to 15 THz . A strong infrared absorption peak in the range 6 8 THz , the reststrahlen band, is identified. The open circles are experimentally measured values. The solid curve is the best-fit curve.

Fig. 4
Fig. 4

(a) Comparisons of ordinary refractive indices n o of GaSe herein and published values. Fitting curve is obtained by fitting with the dielectric function in this work. (b) Comparison of ordinary absorption coefficient α of GaSe herein and published values. Fitting curve is obtained by fitting with the dielectric function in this work.

Fig. 5
Fig. 5

(a) Fitting of the phase-matching curve for difference frequency generation (DFG) in the infrared range [10] to obtain the extraordinary refractive index n e of GaSe. (b) Fitting of the phase-matching curve for generation of THz radiation by DFG in [13, 15]. (c) Fitting of the phase matching curve for generation of THz radiation by DFG in [24].

Fig. 6
Fig. 6

(a) Comparisons of extraordinary refractive indices n e of GaSe herein and published values. The solid curves are obtained by fitting with the dielectric function and Sellmeier equations in this work. (b) The extraordinary refractive index of GaSe from 0.2 to 100 THz . The meanings of the symbols are the same as in Fig. 6a. Resonance due to the transverse phonon is clearly represented.

Fig. 7
Fig. 7

(a) Comparison of FOM of GaSe and Li Nb O 3 crystals in the THz frequency range. Open circles are FOM of GaSe using the experimental data of this work. Solid curve is fitting of the experimental data by the dielectric function. Open squares are values of FOM for Li Nb O 3 . (b) Birefringence of GaSe crystal at terahertz frequencies.

Tables (2)

Tables Icon

Table 1 Parameters Used in the Calculation of the Dielectric Functions for ε - Ga Se in Eqs. (5, 6) with Corresponding Values from the Handbook [1] for Comparison

Tables Icon

Table 2 Parameters Used in the Calculation of the Sellmeier Equations for ε - Ga Se in Eqs. (7, 8) with Corresponding Values from [22] for Comparison

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

T e i φ = E s ( f ) E r ( f ) = [ t ̃ A S t ̃ S A m = 0 N [ r ̃ S A e i 2 π f ( n ̃ S d S c ) ] 2 m e 2 π f c [ ( k S k A ) d S ] ] × e i 2 π f c [ ( n S n A ) d S ] .
n S = 1 2 π f d S c [ φ arg ( t ̃ A S t ̃ S A m = 0 N [ r ̃ S A e i 2 π f ( n ̃ S d S c ) ] 2 m e 2 π f c [ ( k S k A ) d S ] ) ] + n A ,
k S = 1 2 π f d S c ln [ T t ̃ A S t ̃ S A m = 0 N [ r ̃ S A e i 2 π f ( n ̃ S d S c ) ] 2 m e 2 π f c [ ( k S k A ) d S ] ] + k A .
R ( ω ) = [ n A cos θ 0 ( n s ( ω ) + i k s ( ω ) ) 2 ( n A sin θ 0 ) 2 n A cos θ 0 + ( n s ( ω ) + i k s ( ω ) ) 2 ( n A sin θ 0 ) 2 ] 2       ,
ɛ o ( ω ) = A ω 6 + B ω 4 + C ω 2 + S 1 + ( ω L 2 ω T 2 ) S 1 ω T 2 ω 2 i Γ 1 ω + ω t 2 S 2 ω t 2 ω 2 i Γ 2 ω     ,
ɛ e ( ω ) = A ω 6 + B ω 4 + C ω 2 + S 3 + ( ω L 2 ω T 2 ) S 3 ω T 2 ω 2 i Γ 3 ω     ,
n o 2 = A + B λ 2 + C λ 4 + D λ 6 + E λ 2 λ 2 F + G λ 2 λ 2 H       ,
n e 2 = A + B λ 2 + C λ 4 + D λ 6 + E λ 2 λ 2 F       ,

Metrics