Abstract

In this paper, the angular dependence of terahertz (THz) emission from semiconductor surfaces photoexcited by femtosecond optical pulses is reported. Time-domain waveforms of THz emission from (100) surfaces of semi-insulating gallium arsenide (si-GaAs) and p-type indium arsenide (p-InAs) are measured at various angles after careful suppression of the nonlinear optical rectification effect. THz emission angle-frequency patterns under focusing conditions of the excitation beam are regarded as radiation from an electric dipole moment located on the semiconductor surface. Based on the experimental results in the magnetic field parallel to the semiconductor surface, we discuss the ultrafast carrier dynamics on the surfaces of both semiconductors.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Y. Han and X.-C. Zhang, “Free-space coherent broadband terahertz time-domain spectroscopy,” Meas. Sci. Technol. 12, 1747-1756 (2001).
    [CrossRef]
  2. C. A. Schmuttenmaer, “Exploring dynamics in the far-infrared with terahertz spectroscopy,” Chem. Rev. (Washington, D.C.) 104, 1759-1779 (2004).
  3. T. Kiwa, M. Tonouchi, M. Yamashita, and K. Kawase, “Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits,” Opt. Lett. 28, 2058-2060 (2003).
    [CrossRef] [PubMed]
  4. R. Inoue, N. Uchida, and M. Tonouchi, “Scanning probe laser terahertz emission microscopy system,” Jpn. J. Appl. Phys., Part 1 45, L824-L826 (2006).
    [CrossRef]
  5. J. N. Heyman, N. Coates, A. Reinhardt, and G. Strasser, “Diffusion and drift in terahertz emission at GaAs surfaces,” Appl. Phys. Lett. 83, 5476-5478 (2003).
    [CrossRef]
  6. M. Nakajima, M. Hangyo, M. Ohta, and H. Miyazaki, “Polarity reversal of terahertz waves radiated from semi-insulating InP surfaces induced by temperature,” Phys. Rev. B 67, 195308 (2003).
    [CrossRef]
  7. M. Reid and R. Fedosejevs, “Terahertz emission from (100) InAs surfaces at high excitation fluences,” Appl. Phys. Lett. 86, 011906 (2005).
    [CrossRef]
  8. S. L. Chuang, S. Schmitt-Rink, B. I. Greene, P. N. Saeta, and A. F. J. Levi, “Optical rectification at semiconductor surfaces,” Phys. Rev. Lett. 68, 102-105 (1991).
    [CrossRef]
  9. X.-C. Zhang and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys. 71, 326-338 (1992).
    [CrossRef]
  10. T. Dekorsy, H. Auer, H. J. Bakker, H. G. Roskos, and H. Kurz, “THz electromagnetic emission by coherent infrared-active phonons,” Phys. Rev. B 53, 4005-4014 (1996).
    [CrossRef]
  11. P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91, 5533-5537 (2002).
    [CrossRef]
  12. M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
    [CrossRef]
  13. K. Liu, J. Xu, T. Yuan, and X.-C. Zhang, “Terahertz radiation from InAs induced by carrier diffusion and drift,” Phys. Rev. B 73, 155330 (2006).
    [CrossRef]
  14. K. J. Chau and A. Y. Elezzabi, “Two-dimensional drift-diffusion analysis of magnetic field enhanced THz emission from semiconductor surfaces,” Opt. Commun. 242, 295-304 (2004).
    [CrossRef]
  15. J. N. Heyman, P. Neocleous, D. Hebert, P. A. Crowell, T. Müller, and K. Unterrainer, “Terahertz emission from GaAs and InAs in a magnetic field,” Phys. Rev. B 64, 085202 (2001).
    [CrossRef]
  16. M. Suzuki, M. Tonouchi, K. Fujii, H. Ohtake, and T. Hirosumi, “Excitation wavelength dependence of terahertz emission from semiconductor surface,” Appl. Phys. Lett. 89, 091111 (2006).
    [CrossRef]
  17. M. Nakajima, Y. Oda, T. Suemoto, and S. Saito, “Polarity reversal of the magnetic field induced component of terahertz radiation from InAs surfaces at high density excitation,” Appl. Phys. Lett. 85, 4597-4599 (2004).
    [CrossRef]
  18. H. Takahashi, A. Quema, R. Yoshioka, S. Ono, and N. Sarukura, “Terahertz radiation mechanism from femtosecond-laser-irradiated InAs (100) surface,” Appl. Phys. Lett. 83, 1068-1070 (2003).
    [CrossRef]
  19. M. Migita and M. Hangyo, “Pump-power dependence of THz radiation from InAs surfaces under magnetic fields excited by ultrashort laser pulses,” Appl. Phys. Lett. 79, 3437-3439 (2001).
    [CrossRef]
  20. A. Corchia, R. McLaughlin, M. B. Johnston, D. M. Whittaker, D. D. Arnone, E. H. Linfield, A. G. Davis, and M. Pepper, “Effects of magnetic field and optical fluence on terahertz emission in gallium arsenide,” Phys. Rev. B 64, 205204 (2001).
    [CrossRef]
  21. W. van Roosbroeck, “Theory of the photomagnetic effect in semiconductors,” Phys. Rev. 101, 1713-1725 (1956).
    [CrossRef]
  22. J. R. Dixon, “Photoelectromagnetic effect in indium arsenide,” Phys. Rev. 107, 374-378 (1957).
    [CrossRef]
  23. N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, “High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics,” J. Appl. Phys. 84, 654-656 (1998).
    [CrossRef]
  24. C. Weiss, R. Wallenstein, and R. Beigang, “Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces,” Appl. Phys. Lett. 77, 4160-4162 (2000).
    [CrossRef]
  25. J. Shan, C. Weiss, R. Wallenstein, R. Beigang, and C. F. Heinz, “Origin of magnetic field enhancement in the generation of terahertz radiation from semiconductor surfaces,” Opt. Lett. 26, 849-851 (2001).
    [CrossRef]
  26. E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, C. Ponseca Jr., R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) InAs,” Appl. Phys. Lett. 90, 151915 (2007).
    [CrossRef]
  27. R. Inoue, Y. Ohno, and M. Tonouchi, “Development of fiber-coupled compact terahertz time-domain spectroscopy imaging head,” Jpn. J. Appl. Phys., Part 1 45, 7928-7932 (2006).
    [CrossRef]
  28. J. Z. Xu and X.-C. Zhang, “Optical rectification in an area with a diameter comparable to or smaller than the center wavelength of terahertz radiation,” Opt. Lett. 27, 1067-1069 (2002).
    [CrossRef]
  29. A. Sommerfeld, Ann. Phys. 28, 665-736 (1909).
    [CrossRef]
  30. H. Weyl, Ann. Phys. 81, 481-500 (1919).
    [CrossRef]
  31. J. A. Stratton, Electromagnetic Theory, Chap. 9 (McGraw-Hill, 1941).
  32. W. Lukosz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation,” J. Opt. Soc. Am. 69, 1495-1503 (1979).
    [CrossRef]
  33. X.-C. Zhang, Y. Jin, T. D. Hewitt, T. Sangsiri, L. E. Kingsley, and M. Weiner, “Magnetic switching of THz beams,” Appl. Phys. Lett. 62, 2003-2005 (1993).
    [CrossRef]
  34. J. D. Jackson, Classical Electrodynamics, Chap. 9 (Wiley, 1975).

2007 (1)

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, C. Ponseca Jr., R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) InAs,” Appl. Phys. Lett. 90, 151915 (2007).
[CrossRef]

2006 (4)

R. Inoue, Y. Ohno, and M. Tonouchi, “Development of fiber-coupled compact terahertz time-domain spectroscopy imaging head,” Jpn. J. Appl. Phys., Part 1 45, 7928-7932 (2006).
[CrossRef]

R. Inoue, N. Uchida, and M. Tonouchi, “Scanning probe laser terahertz emission microscopy system,” Jpn. J. Appl. Phys., Part 1 45, L824-L826 (2006).
[CrossRef]

M. Suzuki, M. Tonouchi, K. Fujii, H. Ohtake, and T. Hirosumi, “Excitation wavelength dependence of terahertz emission from semiconductor surface,” Appl. Phys. Lett. 89, 091111 (2006).
[CrossRef]

K. Liu, J. Xu, T. Yuan, and X.-C. Zhang, “Terahertz radiation from InAs induced by carrier diffusion and drift,” Phys. Rev. B 73, 155330 (2006).
[CrossRef]

2005 (1)

M. Reid and R. Fedosejevs, “Terahertz emission from (100) InAs surfaces at high excitation fluences,” Appl. Phys. Lett. 86, 011906 (2005).
[CrossRef]

2004 (3)

K. J. Chau and A. Y. Elezzabi, “Two-dimensional drift-diffusion analysis of magnetic field enhanced THz emission from semiconductor surfaces,” Opt. Commun. 242, 295-304 (2004).
[CrossRef]

M. Nakajima, Y. Oda, T. Suemoto, and S. Saito, “Polarity reversal of the magnetic field induced component of terahertz radiation from InAs surfaces at high density excitation,” Appl. Phys. Lett. 85, 4597-4599 (2004).
[CrossRef]

C. A. Schmuttenmaer, “Exploring dynamics in the far-infrared with terahertz spectroscopy,” Chem. Rev. (Washington, D.C.) 104, 1759-1779 (2004).

2003 (4)

T. Kiwa, M. Tonouchi, M. Yamashita, and K. Kawase, “Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits,” Opt. Lett. 28, 2058-2060 (2003).
[CrossRef] [PubMed]

H. Takahashi, A. Quema, R. Yoshioka, S. Ono, and N. Sarukura, “Terahertz radiation mechanism from femtosecond-laser-irradiated InAs (100) surface,” Appl. Phys. Lett. 83, 1068-1070 (2003).
[CrossRef]

J. N. Heyman, N. Coates, A. Reinhardt, and G. Strasser, “Diffusion and drift in terahertz emission at GaAs surfaces,” Appl. Phys. Lett. 83, 5476-5478 (2003).
[CrossRef]

M. Nakajima, M. Hangyo, M. Ohta, and H. Miyazaki, “Polarity reversal of terahertz waves radiated from semi-insulating InP surfaces induced by temperature,” Phys. Rev. B 67, 195308 (2003).
[CrossRef]

2002 (3)

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91, 5533-5537 (2002).
[CrossRef]

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[CrossRef]

J. Z. Xu and X.-C. Zhang, “Optical rectification in an area with a diameter comparable to or smaller than the center wavelength of terahertz radiation,” Opt. Lett. 27, 1067-1069 (2002).
[CrossRef]

2001 (5)

J. Shan, C. Weiss, R. Wallenstein, R. Beigang, and C. F. Heinz, “Origin of magnetic field enhancement in the generation of terahertz radiation from semiconductor surfaces,” Opt. Lett. 26, 849-851 (2001).
[CrossRef]

P. Y. Han and X.-C. Zhang, “Free-space coherent broadband terahertz time-domain spectroscopy,” Meas. Sci. Technol. 12, 1747-1756 (2001).
[CrossRef]

M. Migita and M. Hangyo, “Pump-power dependence of THz radiation from InAs surfaces under magnetic fields excited by ultrashort laser pulses,” Appl. Phys. Lett. 79, 3437-3439 (2001).
[CrossRef]

A. Corchia, R. McLaughlin, M. B. Johnston, D. M. Whittaker, D. D. Arnone, E. H. Linfield, A. G. Davis, and M. Pepper, “Effects of magnetic field and optical fluence on terahertz emission in gallium arsenide,” Phys. Rev. B 64, 205204 (2001).
[CrossRef]

J. N. Heyman, P. Neocleous, D. Hebert, P. A. Crowell, T. Müller, and K. Unterrainer, “Terahertz emission from GaAs and InAs in a magnetic field,” Phys. Rev. B 64, 085202 (2001).
[CrossRef]

2000 (1)

C. Weiss, R. Wallenstein, and R. Beigang, “Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces,” Appl. Phys. Lett. 77, 4160-4162 (2000).
[CrossRef]

1998 (1)

N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, “High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics,” J. Appl. Phys. 84, 654-656 (1998).
[CrossRef]

1996 (1)

T. Dekorsy, H. Auer, H. J. Bakker, H. G. Roskos, and H. Kurz, “THz electromagnetic emission by coherent infrared-active phonons,” Phys. Rev. B 53, 4005-4014 (1996).
[CrossRef]

1993 (1)

X.-C. Zhang, Y. Jin, T. D. Hewitt, T. Sangsiri, L. E. Kingsley, and M. Weiner, “Magnetic switching of THz beams,” Appl. Phys. Lett. 62, 2003-2005 (1993).
[CrossRef]

1992 (1)

X.-C. Zhang and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys. 71, 326-338 (1992).
[CrossRef]

1991 (1)

S. L. Chuang, S. Schmitt-Rink, B. I. Greene, P. N. Saeta, and A. F. J. Levi, “Optical rectification at semiconductor surfaces,” Phys. Rev. Lett. 68, 102-105 (1991).
[CrossRef]

1979 (1)

1957 (1)

J. R. Dixon, “Photoelectromagnetic effect in indium arsenide,” Phys. Rev. 107, 374-378 (1957).
[CrossRef]

1956 (1)

W. van Roosbroeck, “Theory of the photomagnetic effect in semiconductors,” Phys. Rev. 101, 1713-1725 (1956).
[CrossRef]

1919 (1)

H. Weyl, Ann. Phys. 81, 481-500 (1919).
[CrossRef]

1909 (1)

A. Sommerfeld, Ann. Phys. 28, 665-736 (1909).
[CrossRef]

Arnone, D. D.

A. Corchia, R. McLaughlin, M. B. Johnston, D. M. Whittaker, D. D. Arnone, E. H. Linfield, A. G. Davis, and M. Pepper, “Effects of magnetic field and optical fluence on terahertz emission in gallium arsenide,” Phys. Rev. B 64, 205204 (2001).
[CrossRef]

Auer, H.

T. Dekorsy, H. Auer, H. J. Bakker, H. G. Roskos, and H. Kurz, “THz electromagnetic emission by coherent infrared-active phonons,” Phys. Rev. B 53, 4005-4014 (1996).
[CrossRef]

Auston, D. H.

X.-C. Zhang and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys. 71, 326-338 (1992).
[CrossRef]

Bakker, H. J.

T. Dekorsy, H. Auer, H. J. Bakker, H. G. Roskos, and H. Kurz, “THz electromagnetic emission by coherent infrared-active phonons,” Phys. Rev. B 53, 4005-4014 (1996).
[CrossRef]

Beigang, R.

J. Shan, C. Weiss, R. Wallenstein, R. Beigang, and C. F. Heinz, “Origin of magnetic field enhancement in the generation of terahertz radiation from semiconductor surfaces,” Opt. Lett. 26, 849-851 (2001).
[CrossRef]

C. Weiss, R. Wallenstein, and R. Beigang, “Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces,” Appl. Phys. Lett. 77, 4160-4162 (2000).
[CrossRef]

Chau, K. J.

K. J. Chau and A. Y. Elezzabi, “Two-dimensional drift-diffusion analysis of magnetic field enhanced THz emission from semiconductor surfaces,” Opt. Commun. 242, 295-304 (2004).
[CrossRef]

Chuang, S. L.

S. L. Chuang, S. Schmitt-Rink, B. I. Greene, P. N. Saeta, and A. F. J. Levi, “Optical rectification at semiconductor surfaces,” Phys. Rev. Lett. 68, 102-105 (1991).
[CrossRef]

Coates, N.

J. N. Heyman, N. Coates, A. Reinhardt, and G. Strasser, “Diffusion and drift in terahertz emission at GaAs surfaces,” Appl. Phys. Lett. 83, 5476-5478 (2003).
[CrossRef]

Corchia, A.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[CrossRef]

A. Corchia, R. McLaughlin, M. B. Johnston, D. M. Whittaker, D. D. Arnone, E. H. Linfield, A. G. Davis, and M. Pepper, “Effects of magnetic field and optical fluence on terahertz emission in gallium arsenide,” Phys. Rev. B 64, 205204 (2001).
[CrossRef]

Crowell, P. A.

J. N. Heyman, P. Neocleous, D. Hebert, P. A. Crowell, T. Müller, and K. Unterrainer, “Terahertz emission from GaAs and InAs in a magnetic field,” Phys. Rev. B 64, 085202 (2001).
[CrossRef]

Davies, A. G.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[CrossRef]

Davis, A. G.

A. Corchia, R. McLaughlin, M. B. Johnston, D. M. Whittaker, D. D. Arnone, E. H. Linfield, A. G. Davis, and M. Pepper, “Effects of magnetic field and optical fluence on terahertz emission in gallium arsenide,” Phys. Rev. B 64, 205204 (2001).
[CrossRef]

Dekorsy, T.

T. Dekorsy, H. Auer, H. J. Bakker, H. G. Roskos, and H. Kurz, “THz electromagnetic emission by coherent infrared-active phonons,” Phys. Rev. B 53, 4005-4014 (1996).
[CrossRef]

Dixon, J. R.

J. R. Dixon, “Photoelectromagnetic effect in indium arsenide,” Phys. Rev. 107, 374-378 (1957).
[CrossRef]

Elezzabi, A. Y.

K. J. Chau and A. Y. Elezzabi, “Two-dimensional drift-diffusion analysis of magnetic field enhanced THz emission from semiconductor surfaces,” Opt. Commun. 242, 295-304 (2004).
[CrossRef]

Estacio, E.

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, C. Ponseca Jr., R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) InAs,” Appl. Phys. Lett. 90, 151915 (2007).
[CrossRef]

Fedosejevs, R.

M. Reid and R. Fedosejevs, “Terahertz emission from (100) InAs surfaces at high excitation fluences,” Appl. Phys. Lett. 86, 011906 (2005).
[CrossRef]

Fujii, K.

M. Suzuki, M. Tonouchi, K. Fujii, H. Ohtake, and T. Hirosumi, “Excitation wavelength dependence of terahertz emission from semiconductor surface,” Appl. Phys. Lett. 89, 091111 (2006).
[CrossRef]

Greene, B. I.

S. L. Chuang, S. Schmitt-Rink, B. I. Greene, P. N. Saeta, and A. F. J. Levi, “Optical rectification at semiconductor surfaces,” Phys. Rev. Lett. 68, 102-105 (1991).
[CrossRef]

Gu, P.

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91, 5533-5537 (2002).
[CrossRef]

Han, P. Y.

P. Y. Han and X.-C. Zhang, “Free-space coherent broadband terahertz time-domain spectroscopy,” Meas. Sci. Technol. 12, 1747-1756 (2001).
[CrossRef]

Hangyo, M.

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, C. Ponseca Jr., R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) InAs,” Appl. Phys. Lett. 90, 151915 (2007).
[CrossRef]

M. Nakajima, M. Hangyo, M. Ohta, and H. Miyazaki, “Polarity reversal of terahertz waves radiated from semi-insulating InP surfaces induced by temperature,” Phys. Rev. B 67, 195308 (2003).
[CrossRef]

M. Migita and M. Hangyo, “Pump-power dependence of THz radiation from InAs surfaces under magnetic fields excited by ultrashort laser pulses,” Appl. Phys. Lett. 79, 3437-3439 (2001).
[CrossRef]

Hebert, D.

J. N. Heyman, P. Neocleous, D. Hebert, P. A. Crowell, T. Müller, and K. Unterrainer, “Terahertz emission from GaAs and InAs in a magnetic field,” Phys. Rev. B 64, 085202 (2001).
[CrossRef]

Heinz, C. F.

Hewitt, T. D.

X.-C. Zhang, Y. Jin, T. D. Hewitt, T. Sangsiri, L. E. Kingsley, and M. Weiner, “Magnetic switching of THz beams,” Appl. Phys. Lett. 62, 2003-2005 (1993).
[CrossRef]

Heyman, J. N.

J. N. Heyman, N. Coates, A. Reinhardt, and G. Strasser, “Diffusion and drift in terahertz emission at GaAs surfaces,” Appl. Phys. Lett. 83, 5476-5478 (2003).
[CrossRef]

J. N. Heyman, P. Neocleous, D. Hebert, P. A. Crowell, T. Müller, and K. Unterrainer, “Terahertz emission from GaAs and InAs in a magnetic field,” Phys. Rev. B 64, 085202 (2001).
[CrossRef]

Hirosumi, T.

M. Suzuki, M. Tonouchi, K. Fujii, H. Ohtake, and T. Hirosumi, “Excitation wavelength dependence of terahertz emission from semiconductor surface,” Appl. Phys. Lett. 89, 091111 (2006).
[CrossRef]

Inoue, R.

R. Inoue, N. Uchida, and M. Tonouchi, “Scanning probe laser terahertz emission microscopy system,” Jpn. J. Appl. Phys., Part 1 45, L824-L826 (2006).
[CrossRef]

R. Inoue, Y. Ohno, and M. Tonouchi, “Development of fiber-coupled compact terahertz time-domain spectroscopy imaging head,” Jpn. J. Appl. Phys., Part 1 45, 7928-7932 (2006).
[CrossRef]

Izumida, S.

N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, “High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics,” J. Appl. Phys. 84, 654-656 (1998).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, Chap. 9 (Wiley, 1975).

Jin, Y.

X.-C. Zhang, Y. Jin, T. D. Hewitt, T. Sangsiri, L. E. Kingsley, and M. Weiner, “Magnetic switching of THz beams,” Appl. Phys. Lett. 62, 2003-2005 (1993).
[CrossRef]

Johnston, M. B.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[CrossRef]

A. Corchia, R. McLaughlin, M. B. Johnston, D. M. Whittaker, D. D. Arnone, E. H. Linfield, A. G. Davis, and M. Pepper, “Effects of magnetic field and optical fluence on terahertz emission in gallium arsenide,” Phys. Rev. B 64, 205204 (2001).
[CrossRef]

Kawase, K.

Kingsley, L. E.

X.-C. Zhang, Y. Jin, T. D. Hewitt, T. Sangsiri, L. E. Kingsley, and M. Weiner, “Magnetic switching of THz beams,” Appl. Phys. Lett. 62, 2003-2005 (1993).
[CrossRef]

Kiwa, T.

Kono, S.

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91, 5533-5537 (2002).
[CrossRef]

Kurz, H.

T. Dekorsy, H. Auer, H. J. Bakker, H. G. Roskos, and H. Kurz, “THz electromagnetic emission by coherent infrared-active phonons,” Phys. Rev. B 53, 4005-4014 (1996).
[CrossRef]

Levi, A. F. J.

S. L. Chuang, S. Schmitt-Rink, B. I. Greene, P. N. Saeta, and A. F. J. Levi, “Optical rectification at semiconductor surfaces,” Phys. Rev. Lett. 68, 102-105 (1991).
[CrossRef]

Linfield, E. H.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[CrossRef]

A. Corchia, R. McLaughlin, M. B. Johnston, D. M. Whittaker, D. D. Arnone, E. H. Linfield, A. G. Davis, and M. Pepper, “Effects of magnetic field and optical fluence on terahertz emission in gallium arsenide,” Phys. Rev. B 64, 205204 (2001).
[CrossRef]

Liu, K.

K. Liu, J. Xu, T. Yuan, and X.-C. Zhang, “Terahertz radiation from InAs induced by carrier diffusion and drift,” Phys. Rev. B 73, 155330 (2006).
[CrossRef]

Liu, Z.

N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, “High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics,” J. Appl. Phys. 84, 654-656 (1998).
[CrossRef]

Lukosz, W.

McLaughlin, R.

A. Corchia, R. McLaughlin, M. B. Johnston, D. M. Whittaker, D. D. Arnone, E. H. Linfield, A. G. Davis, and M. Pepper, “Effects of magnetic field and optical fluence on terahertz emission in gallium arsenide,” Phys. Rev. B 64, 205204 (2001).
[CrossRef]

Migita, M.

M. Migita and M. Hangyo, “Pump-power dependence of THz radiation from InAs surfaces under magnetic fields excited by ultrashort laser pulses,” Appl. Phys. Lett. 79, 3437-3439 (2001).
[CrossRef]

Miyazaki, H.

M. Nakajima, M. Hangyo, M. Ohta, and H. Miyazaki, “Polarity reversal of terahertz waves radiated from semi-insulating InP surfaces induced by temperature,” Phys. Rev. B 67, 195308 (2003).
[CrossRef]

Müller, T.

J. N. Heyman, P. Neocleous, D. Hebert, P. A. Crowell, T. Müller, and K. Unterrainer, “Terahertz emission from GaAs and InAs in a magnetic field,” Phys. Rev. B 64, 085202 (2001).
[CrossRef]

Murakami, H.

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, C. Ponseca Jr., R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) InAs,” Appl. Phys. Lett. 90, 151915 (2007).
[CrossRef]

Nakajima, M.

M. Nakajima, Y. Oda, T. Suemoto, and S. Saito, “Polarity reversal of the magnetic field induced component of terahertz radiation from InAs surfaces at high density excitation,” Appl. Phys. Lett. 85, 4597-4599 (2004).
[CrossRef]

M. Nakajima, M. Hangyo, M. Ohta, and H. Miyazaki, “Polarity reversal of terahertz waves radiated from semi-insulating InP surfaces induced by temperature,” Phys. Rev. B 67, 195308 (2003).
[CrossRef]

Neocleous, P.

J. N. Heyman, P. Neocleous, D. Hebert, P. A. Crowell, T. Müller, and K. Unterrainer, “Terahertz emission from GaAs and InAs in a magnetic field,” Phys. Rev. B 64, 085202 (2001).
[CrossRef]

Oda, Y.

M. Nakajima, Y. Oda, T. Suemoto, and S. Saito, “Polarity reversal of the magnetic field induced component of terahertz radiation from InAs surfaces at high density excitation,” Appl. Phys. Lett. 85, 4597-4599 (2004).
[CrossRef]

Ohno, Y.

R. Inoue, Y. Ohno, and M. Tonouchi, “Development of fiber-coupled compact terahertz time-domain spectroscopy imaging head,” Jpn. J. Appl. Phys., Part 1 45, 7928-7932 (2006).
[CrossRef]

Ohta, M.

M. Nakajima, M. Hangyo, M. Ohta, and H. Miyazaki, “Polarity reversal of terahertz waves radiated from semi-insulating InP surfaces induced by temperature,” Phys. Rev. B 67, 195308 (2003).
[CrossRef]

Ohtake, H.

M. Suzuki, M. Tonouchi, K. Fujii, H. Ohtake, and T. Hirosumi, “Excitation wavelength dependence of terahertz emission from semiconductor surface,” Appl. Phys. Lett. 89, 091111 (2006).
[CrossRef]

N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, “High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics,” J. Appl. Phys. 84, 654-656 (1998).
[CrossRef]

Ono, S.

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, C. Ponseca Jr., R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) InAs,” Appl. Phys. Lett. 90, 151915 (2007).
[CrossRef]

H. Takahashi, A. Quema, R. Yoshioka, S. Ono, and N. Sarukura, “Terahertz radiation mechanism from femtosecond-laser-irradiated InAs (100) surface,” Appl. Phys. Lett. 83, 1068-1070 (2003).
[CrossRef]

Pepper, M.

A. Corchia, R. McLaughlin, M. B. Johnston, D. M. Whittaker, D. D. Arnone, E. H. Linfield, A. G. Davis, and M. Pepper, “Effects of magnetic field and optical fluence on terahertz emission in gallium arsenide,” Phys. Rev. B 64, 205204 (2001).
[CrossRef]

Pobre, R.

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, C. Ponseca Jr., R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) InAs,” Appl. Phys. Lett. 90, 151915 (2007).
[CrossRef]

Ponseca, C.

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, C. Ponseca Jr., R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) InAs,” Appl. Phys. Lett. 90, 151915 (2007).
[CrossRef]

Quema, A.

H. Takahashi, A. Quema, R. Yoshioka, S. Ono, and N. Sarukura, “Terahertz radiation mechanism from femtosecond-laser-irradiated InAs (100) surface,” Appl. Phys. Lett. 83, 1068-1070 (2003).
[CrossRef]

Quiroga, R.

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, C. Ponseca Jr., R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) InAs,” Appl. Phys. Lett. 90, 151915 (2007).
[CrossRef]

Reid, M.

M. Reid and R. Fedosejevs, “Terahertz emission from (100) InAs surfaces at high excitation fluences,” Appl. Phys. Lett. 86, 011906 (2005).
[CrossRef]

Reinhardt, A.

J. N. Heyman, N. Coates, A. Reinhardt, and G. Strasser, “Diffusion and drift in terahertz emission at GaAs surfaces,” Appl. Phys. Lett. 83, 5476-5478 (2003).
[CrossRef]

Roskos, H. G.

T. Dekorsy, H. Auer, H. J. Bakker, H. G. Roskos, and H. Kurz, “THz electromagnetic emission by coherent infrared-active phonons,” Phys. Rev. B 53, 4005-4014 (1996).
[CrossRef]

Saeta, P. N.

S. L. Chuang, S. Schmitt-Rink, B. I. Greene, P. N. Saeta, and A. F. J. Levi, “Optical rectification at semiconductor surfaces,” Phys. Rev. Lett. 68, 102-105 (1991).
[CrossRef]

Saito, S.

M. Nakajima, Y. Oda, T. Suemoto, and S. Saito, “Polarity reversal of the magnetic field induced component of terahertz radiation from InAs surfaces at high density excitation,” Appl. Phys. Lett. 85, 4597-4599 (2004).
[CrossRef]

Sakai, K.

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91, 5533-5537 (2002).
[CrossRef]

Sangsiri, T.

X.-C. Zhang, Y. Jin, T. D. Hewitt, T. Sangsiri, L. E. Kingsley, and M. Weiner, “Magnetic switching of THz beams,” Appl. Phys. Lett. 62, 2003-2005 (1993).
[CrossRef]

Sarukura, N.

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, C. Ponseca Jr., R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) InAs,” Appl. Phys. Lett. 90, 151915 (2007).
[CrossRef]

H. Takahashi, A. Quema, R. Yoshioka, S. Ono, and N. Sarukura, “Terahertz radiation mechanism from femtosecond-laser-irradiated InAs (100) surface,” Appl. Phys. Lett. 83, 1068-1070 (2003).
[CrossRef]

N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, “High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics,” J. Appl. Phys. 84, 654-656 (1998).
[CrossRef]

Schmitt-Rink, S.

S. L. Chuang, S. Schmitt-Rink, B. I. Greene, P. N. Saeta, and A. F. J. Levi, “Optical rectification at semiconductor surfaces,” Phys. Rev. Lett. 68, 102-105 (1991).
[CrossRef]

Schmuttenmaer, C. A.

C. A. Schmuttenmaer, “Exploring dynamics in the far-infrared with terahertz spectroscopy,” Chem. Rev. (Washington, D.C.) 104, 1759-1779 (2004).

Shan, J.

Sommerfeld, A.

A. Sommerfeld, Ann. Phys. 28, 665-736 (1909).
[CrossRef]

Strasser, G.

J. N. Heyman, N. Coates, A. Reinhardt, and G. Strasser, “Diffusion and drift in terahertz emission at GaAs surfaces,” Appl. Phys. Lett. 83, 5476-5478 (2003).
[CrossRef]

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory, Chap. 9 (McGraw-Hill, 1941).

Suemoto, T.

M. Nakajima, Y. Oda, T. Suemoto, and S. Saito, “Polarity reversal of the magnetic field induced component of terahertz radiation from InAs surfaces at high density excitation,” Appl. Phys. Lett. 85, 4597-4599 (2004).
[CrossRef]

Sumikura, H.

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, C. Ponseca Jr., R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) InAs,” Appl. Phys. Lett. 90, 151915 (2007).
[CrossRef]

Suzuki, M.

M. Suzuki, M. Tonouchi, K. Fujii, H. Ohtake, and T. Hirosumi, “Excitation wavelength dependence of terahertz emission from semiconductor surface,” Appl. Phys. Lett. 89, 091111 (2006).
[CrossRef]

Takahashi, H.

H. Takahashi, A. Quema, R. Yoshioka, S. Ono, and N. Sarukura, “Terahertz radiation mechanism from femtosecond-laser-irradiated InAs (100) surface,” Appl. Phys. Lett. 83, 1068-1070 (2003).
[CrossRef]

Tani, M.

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, C. Ponseca Jr., R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) InAs,” Appl. Phys. Lett. 90, 151915 (2007).
[CrossRef]

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91, 5533-5537 (2002).
[CrossRef]

Tonouchi, M.

R. Inoue, N. Uchida, and M. Tonouchi, “Scanning probe laser terahertz emission microscopy system,” Jpn. J. Appl. Phys., Part 1 45, L824-L826 (2006).
[CrossRef]

M. Suzuki, M. Tonouchi, K. Fujii, H. Ohtake, and T. Hirosumi, “Excitation wavelength dependence of terahertz emission from semiconductor surface,” Appl. Phys. Lett. 89, 091111 (2006).
[CrossRef]

R. Inoue, Y. Ohno, and M. Tonouchi, “Development of fiber-coupled compact terahertz time-domain spectroscopy imaging head,” Jpn. J. Appl. Phys., Part 1 45, 7928-7932 (2006).
[CrossRef]

T. Kiwa, M. Tonouchi, M. Yamashita, and K. Kawase, “Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits,” Opt. Lett. 28, 2058-2060 (2003).
[CrossRef] [PubMed]

Uchida, N.

R. Inoue, N. Uchida, and M. Tonouchi, “Scanning probe laser terahertz emission microscopy system,” Jpn. J. Appl. Phys., Part 1 45, L824-L826 (2006).
[CrossRef]

Unterrainer, K.

J. N. Heyman, P. Neocleous, D. Hebert, P. A. Crowell, T. Müller, and K. Unterrainer, “Terahertz emission from GaAs and InAs in a magnetic field,” Phys. Rev. B 64, 085202 (2001).
[CrossRef]

van Roosbroeck, W.

W. van Roosbroeck, “Theory of the photomagnetic effect in semiconductors,” Phys. Rev. 101, 1713-1725 (1956).
[CrossRef]

Wallenstein, R.

J. Shan, C. Weiss, R. Wallenstein, R. Beigang, and C. F. Heinz, “Origin of magnetic field enhancement in the generation of terahertz radiation from semiconductor surfaces,” Opt. Lett. 26, 849-851 (2001).
[CrossRef]

C. Weiss, R. Wallenstein, and R. Beigang, “Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces,” Appl. Phys. Lett. 77, 4160-4162 (2000).
[CrossRef]

Weiner, M.

X.-C. Zhang, Y. Jin, T. D. Hewitt, T. Sangsiri, L. E. Kingsley, and M. Weiner, “Magnetic switching of THz beams,” Appl. Phys. Lett. 62, 2003-2005 (1993).
[CrossRef]

Weiss, C.

J. Shan, C. Weiss, R. Wallenstein, R. Beigang, and C. F. Heinz, “Origin of magnetic field enhancement in the generation of terahertz radiation from semiconductor surfaces,” Opt. Lett. 26, 849-851 (2001).
[CrossRef]

C. Weiss, R. Wallenstein, and R. Beigang, “Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces,” Appl. Phys. Lett. 77, 4160-4162 (2000).
[CrossRef]

Weyl, H.

H. Weyl, Ann. Phys. 81, 481-500 (1919).
[CrossRef]

Whittaker, D. M.

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[CrossRef]

A. Corchia, R. McLaughlin, M. B. Johnston, D. M. Whittaker, D. D. Arnone, E. H. Linfield, A. G. Davis, and M. Pepper, “Effects of magnetic field and optical fluence on terahertz emission in gallium arsenide,” Phys. Rev. B 64, 205204 (2001).
[CrossRef]

Xu, J.

K. Liu, J. Xu, T. Yuan, and X.-C. Zhang, “Terahertz radiation from InAs induced by carrier diffusion and drift,” Phys. Rev. B 73, 155330 (2006).
[CrossRef]

Xu, J. Z.

Yamashita, M.

Yoshioka, R.

H. Takahashi, A. Quema, R. Yoshioka, S. Ono, and N. Sarukura, “Terahertz radiation mechanism from femtosecond-laser-irradiated InAs (100) surface,” Appl. Phys. Lett. 83, 1068-1070 (2003).
[CrossRef]

Yuan, T.

K. Liu, J. Xu, T. Yuan, and X.-C. Zhang, “Terahertz radiation from InAs induced by carrier diffusion and drift,” Phys. Rev. B 73, 155330 (2006).
[CrossRef]

Zhang, X.-C.

K. Liu, J. Xu, T. Yuan, and X.-C. Zhang, “Terahertz radiation from InAs induced by carrier diffusion and drift,” Phys. Rev. B 73, 155330 (2006).
[CrossRef]

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91, 5533-5537 (2002).
[CrossRef]

J. Z. Xu and X.-C. Zhang, “Optical rectification in an area with a diameter comparable to or smaller than the center wavelength of terahertz radiation,” Opt. Lett. 27, 1067-1069 (2002).
[CrossRef]

P. Y. Han and X.-C. Zhang, “Free-space coherent broadband terahertz time-domain spectroscopy,” Meas. Sci. Technol. 12, 1747-1756 (2001).
[CrossRef]

X.-C. Zhang, Y. Jin, T. D. Hewitt, T. Sangsiri, L. E. Kingsley, and M. Weiner, “Magnetic switching of THz beams,” Appl. Phys. Lett. 62, 2003-2005 (1993).
[CrossRef]

X.-C. Zhang and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys. 71, 326-338 (1992).
[CrossRef]

Ann. Phys. (2)

A. Sommerfeld, Ann. Phys. 28, 665-736 (1909).
[CrossRef]

H. Weyl, Ann. Phys. 81, 481-500 (1919).
[CrossRef]

Appl. Phys. Lett. (9)

E. Estacio, H. Sumikura, H. Murakami, M. Tani, N. Sarukura, M. Hangyo, C. Ponseca Jr., R. Pobre, R. Quiroga, and S. Ono, “Magnetic-field-induced fourfold azimuthal angle dependence in the terahertz radiation power of (100) InAs,” Appl. Phys. Lett. 90, 151915 (2007).
[CrossRef]

C. Weiss, R. Wallenstein, and R. Beigang, “Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces,” Appl. Phys. Lett. 77, 4160-4162 (2000).
[CrossRef]

X.-C. Zhang, Y. Jin, T. D. Hewitt, T. Sangsiri, L. E. Kingsley, and M. Weiner, “Magnetic switching of THz beams,” Appl. Phys. Lett. 62, 2003-2005 (1993).
[CrossRef]

J. N. Heyman, N. Coates, A. Reinhardt, and G. Strasser, “Diffusion and drift in terahertz emission at GaAs surfaces,” Appl. Phys. Lett. 83, 5476-5478 (2003).
[CrossRef]

M. Reid and R. Fedosejevs, “Terahertz emission from (100) InAs surfaces at high excitation fluences,” Appl. Phys. Lett. 86, 011906 (2005).
[CrossRef]

M. Suzuki, M. Tonouchi, K. Fujii, H. Ohtake, and T. Hirosumi, “Excitation wavelength dependence of terahertz emission from semiconductor surface,” Appl. Phys. Lett. 89, 091111 (2006).
[CrossRef]

M. Nakajima, Y. Oda, T. Suemoto, and S. Saito, “Polarity reversal of the magnetic field induced component of terahertz radiation from InAs surfaces at high density excitation,” Appl. Phys. Lett. 85, 4597-4599 (2004).
[CrossRef]

H. Takahashi, A. Quema, R. Yoshioka, S. Ono, and N. Sarukura, “Terahertz radiation mechanism from femtosecond-laser-irradiated InAs (100) surface,” Appl. Phys. Lett. 83, 1068-1070 (2003).
[CrossRef]

M. Migita and M. Hangyo, “Pump-power dependence of THz radiation from InAs surfaces under magnetic fields excited by ultrashort laser pulses,” Appl. Phys. Lett. 79, 3437-3439 (2001).
[CrossRef]

Chem. Rev. (Washington, D.C.) (1)

C. A. Schmuttenmaer, “Exploring dynamics in the far-infrared with terahertz spectroscopy,” Chem. Rev. (Washington, D.C.) 104, 1759-1779 (2004).

J. Appl. Phys. (3)

N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, “High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics,” J. Appl. Phys. 84, 654-656 (1998).
[CrossRef]

X.-C. Zhang and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics,” J. Appl. Phys. 71, 326-338 (1992).
[CrossRef]

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91, 5533-5537 (2002).
[CrossRef]

J. Opt. Soc. Am. (1)

Jpn. J. Appl. Phys., Part 1 (2)

R. Inoue, N. Uchida, and M. Tonouchi, “Scanning probe laser terahertz emission microscopy system,” Jpn. J. Appl. Phys., Part 1 45, L824-L826 (2006).
[CrossRef]

R. Inoue, Y. Ohno, and M. Tonouchi, “Development of fiber-coupled compact terahertz time-domain spectroscopy imaging head,” Jpn. J. Appl. Phys., Part 1 45, 7928-7932 (2006).
[CrossRef]

Meas. Sci. Technol. (1)

P. Y. Han and X.-C. Zhang, “Free-space coherent broadband terahertz time-domain spectroscopy,” Meas. Sci. Technol. 12, 1747-1756 (2001).
[CrossRef]

Opt. Commun. (1)

K. J. Chau and A. Y. Elezzabi, “Two-dimensional drift-diffusion analysis of magnetic field enhanced THz emission from semiconductor surfaces,” Opt. Commun. 242, 295-304 (2004).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. (2)

W. van Roosbroeck, “Theory of the photomagnetic effect in semiconductors,” Phys. Rev. 101, 1713-1725 (1956).
[CrossRef]

J. R. Dixon, “Photoelectromagnetic effect in indium arsenide,” Phys. Rev. 107, 374-378 (1957).
[CrossRef]

Phys. Rev. B (6)

J. N. Heyman, P. Neocleous, D. Hebert, P. A. Crowell, T. Müller, and K. Unterrainer, “Terahertz emission from GaAs and InAs in a magnetic field,” Phys. Rev. B 64, 085202 (2001).
[CrossRef]

A. Corchia, R. McLaughlin, M. B. Johnston, D. M. Whittaker, D. D. Arnone, E. H. Linfield, A. G. Davis, and M. Pepper, “Effects of magnetic field and optical fluence on terahertz emission in gallium arsenide,” Phys. Rev. B 64, 205204 (2001).
[CrossRef]

M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, “Simulation of terahertz generation at semiconductor surfaces,” Phys. Rev. B 65, 165301 (2002).
[CrossRef]

K. Liu, J. Xu, T. Yuan, and X.-C. Zhang, “Terahertz radiation from InAs induced by carrier diffusion and drift,” Phys. Rev. B 73, 155330 (2006).
[CrossRef]

T. Dekorsy, H. Auer, H. J. Bakker, H. G. Roskos, and H. Kurz, “THz electromagnetic emission by coherent infrared-active phonons,” Phys. Rev. B 53, 4005-4014 (1996).
[CrossRef]

M. Nakajima, M. Hangyo, M. Ohta, and H. Miyazaki, “Polarity reversal of terahertz waves radiated from semi-insulating InP surfaces induced by temperature,” Phys. Rev. B 67, 195308 (2003).
[CrossRef]

Phys. Rev. Lett. (1)

S. L. Chuang, S. Schmitt-Rink, B. I. Greene, P. N. Saeta, and A. F. J. Levi, “Optical rectification at semiconductor surfaces,” Phys. Rev. Lett. 68, 102-105 (1991).
[CrossRef]

Other (2)

J. D. Jackson, Classical Electrodynamics, Chap. 9 (Wiley, 1975).

J. A. Stratton, Electromagnetic Theory, Chap. 9 (McGraw-Hill, 1941).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental configuration around the measured sample.

Fig. 2
Fig. 2

(a) Time-domain waveform and (b) frequency spectrum of a typical THz pulse emitted from p - In As . The detector is fixed at the reflection angle of the optical beam.

Fig. 3
Fig. 3

(a) Time-domain waveform and (b) frequency spectrum of a typical THz pulse emitted from p - In As . The detector is fixed at the reflection angle of the optical beam.

Fig. 4
Fig. 4

Amplitude of THz wave emission from si - Ga As surface as a function of angle and frequency. Diameter of the excitation beam is 9.3 μ m in (a) and 274 μ m in (b), respectively. Incident angle ( ϑ in ) is 30°, and magnetic field ( B ) is 0 T .

Fig. 5
Fig. 5

Amplitude of THz wave emission from p - In As surface as a function of angle and frequency. Diameter of the excitation beam is 9.3 μ m in (a) and 274 μ m in (b), respectively. Incident angle ( ϑ in ) is 30°, and magnetic field ( B ) is 0 T .

Fig. 6
Fig. 6

Amplitude of THz wave emission from si - Ga As surface in the presence of applied magnetic field. Values of the magnetic field are (a) B = + 0.4 T , (b) B = 0 T , and (c) B = 0.4 T , respectively. Diameter of the excitation beam is 9.3 μ m and incident angle ( ϑ in ) is 45°.

Fig. 7
Fig. 7

Amplitude of THz wave emission from p - In As surface in the presence of applied magnetic field. Values of the magnetic field are (a) B = + 0.4 T , (b) B = 0 T , and (c) B = 0.4 T , respectively. Diameter of the excitation beam is 9.3 μ m and incident angle ( ϑ in ) is 45°.

Fig. 8
Fig. 8

Emission amplitude from electric dipole moments located on the semiconductor surface as a function of detected angle ( ϑ ) and tilt angle of the dipole moment ( χ ) as calculated from Eq. (1). Inset is a schematic representation of the relation between the detected angle ( ϑ ) and the tilt angle ( χ ) . The refractive index of the semiconductor is assumed to be 3.7.

Fig. 9
Fig. 9

(a) THz peak amplitude as a function of detected angle ( ϑ ) . (b) Modified amplitude ( B e ( p ) ) defined in Eq. (2) as a function of the emitted angle inside the semiconductor ( ϑ ) . Inset of (b) is a schematic representation of the relation between the detected angle ( ϑ ) and the emitted angle inside the semiconductor ( ϑ ) . The fitting results are shown as solid curves in both figures. See the text.

Fig. 10
Fig. 10

THz peak amplitudes as functions of detected angle in (a) si - Ga As and (b) p - In As under magnetic fields. Solid curves represent the fitting results.

Fig. 11
Fig. 11

Tilt angle of the electric dipole moment χ as a function of magnetic field.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

A e ( p ) cos ϑ sin ( ϑ + χ ) cos ϑ + n cos ϑ .
B e ( p ) = A e ( p ) cos ϑ + n cos ϑ cos ϑ ,
m * v ̇ x ( t ) = e E D e B v y ( t ) ,
m * v ̇ y ( t ) = + e B v x ( t ) .
χ tan χ = ( v x e B m * ) ( e E D m * ) + ( v y e B m * ) v x B E D .
A m ( p ) cos ϑ cos ϑ + n cos ϑ .

Metrics