Abstract

We experimentally compared the performance of semi-insulating (SI)-GaAs stripline antennas with different gaps, electrode widths, and electrode materials. Large gap antennas have high electrical-to-terahertz (THz) and optical-to-THz conversion efficiencies. The peak frequency slightly decreases with the increase of the antenna gap. The stability of an antenna with narrower electrodes is less than that of an antenna with wider electrodes because the wider electrodes can remove more heat from the antenna. We made and placed two metal pads beside the electrodes to act as a heat sink, which caused the performance of the antenna to be much more stable. The antenna with AuGeNi electrodes has a higher breakdown voltage and better stability than the antenna with TiAu electrodes. The dynamic range of an antenna with a 150μm gap, 100μm AuGeNi electrodes, and a heat sink is 6300 without purging.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Gürtler, C. Winnewisser, H. Helm, and P. U. Jepsen, “Terahertz pulse propagation in the near field and the far field,” J. Opt. Soc. Am. A 17, 74-83 (2000).
    [CrossRef]
  2. B. Salem, D. Morris, V. Aimez, J. Beerens, J. Beauvais, and D. Houde, “Pulsed photoconductive antenna terahertz sources made on ion-implanted GaAs substrates,” J. Phys.: Condens. Matter 17, 7327-7333 (2005).
    [CrossRef]
  3. K. Shimada, Y. Terai, S. Takemoto, K. Hidaka, Y. Fujiwara, M. Suzuki, and M. Tonouchi, “Terahertz radiation from Er, O-codoped GaAs surface grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 92, 111115 (2008).
    [CrossRef]
  4. V. P. Wallace, E. MacPherson, J. A. Zeitler, and C. Reid, “Three-dimensional imaging of optically opaque materials using nonionizing terahertz radiation,” J. Opt. Soc. Am. A 25, 3120-3133 (2008).
    [CrossRef]
  5. N. Karpowicz, H. Zhong, J. Xu, K. Lin, J. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging” Semicond. Sci. Technol. 20, S293-S299 (2005).
    [CrossRef]
  6. Y. Chen, H. Liu, Y. Deng, D. Veksler, M. Shur, and X.-C. Zhang, “Spectroscopic characterization of explosives in the far infrared region,” Proc. SPIE 5411, 1-8 (2004).
    [CrossRef]
  7. H. Liu, Y. Chen, G. J. Bastiaans, and X.-C. Zhang, “Detection and identification of explosive RDX by THz diffuse reflection spectroscopy,” Opt. Express 14, 415-423 (2006).
    [CrossRef] [PubMed]
  8. J. O'Hara and D. Grischkowsky, “Quasi-optic synthetic phased-array terahertz imaging,” J. Opt. Soc. Am. B 21, 1178-1191 (2004).
    [CrossRef]
  9. R. A. Cheville, R. W. McGowan, and D. Grischkowsky, “Time-resolved measurements which isolate the mechanisms responsible for terahertz glory scattering from dielectric spheres,” Phys. Rev. Lett. 80, 269-272 (1998).
    [CrossRef]
  10. http://www.zomega-terahertz.com/.
  11. J. Darmo, G. Strasser, T. Müller, R. Bratschitsch, and K. Unterrainer, “Surface-modified GaAs terahertz plasmon emitter,” Appl. Phys. Lett. 81, 871-873 (2002).
    [CrossRef]
  12. E. Castro-Camus, J. Lloyd-Hughes, L. Fu, H. H. Tan, C. Jagadish, and M. B. Johnston, “An ion-implanted InP receiver for polarization resolved terahertz spectroscopy,” Opt. Express 15, 7047-7057 (2007).
    [CrossRef] [PubMed]
  13. J. N. Heyman, P. Neocleous, D. Hebert, P. A. Crowell, T. Müller, and K. Unterrainer, “Terahertz emission from GaAs and InAs in a magnetic field,” Phys. Rev. B 64, 085202 (2001).
    [CrossRef]
  14. M. Reid and R. Fedosejevsa, “Terahertz emission from (100) InAs surfaces at high excitation fluences,” Appl. Phys. Lett. 86, 011906 (2005).
    [CrossRef]
  15. G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98, 026803 (2007).
    [CrossRef] [PubMed]
  16. A. Rice, Y. Jin, X. F. Ma, and X.-C. Zhang, “Terahertz optical rectification from <110> zinc-blend crystals,” Appl. Phys. Lett. 64, 1324-1326 (1994).<<
    [CrossRef]
  17. F. Kadlec, P. Kuzel, and J. Coutaz, “Study of terahertz radiation generated by optical rectification on thin gold films,” Opt. Lett. 30, 1402-1404 (2005).
    [CrossRef] [PubMed]
  18. X.-C. Zhang, “Generation and detection of terahertz electromagnetic pulses from semiconductors with femtosecond optics,” J. Lumin. 66-67, 488-492 (1996).
  19. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114 (2005).
    [CrossRef]
  20. P. C. M. Planken, C. E. W. M. van Rijmenam, and R. N. Schouten, “Opto-electronic pulsed THz systems” Semicond. Sci. Technol. 20, S121-S127 (2005).
    [CrossRef]
  21. J. T. Darrow, X.-C. Zhang, D. H. Auston, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28, 1607-1616 (1992).
    [CrossRef]
  22. W. Shi, W. L. Jia, L. Hou, J. Z. Xu, X.-C. Zhang, “Terahertz radiation from large aperture bulk semi-insulating GaAs photoconductive dipole antenna,” Chin. Phys. Lett. 21, 1842-1844 (2004).
    [CrossRef]
  23. D. S. Kim, “Efficient terahertz generation using trap-enhanced fields in semi-insulating photoconductors by spatially broadened excitation,” J. Appl. Phys. 101, 053105 (2007).
    [CrossRef]
  24. D. S. Kim and D. S. Citrin, “Coulomb and radiation screening in photoconductive terahertz source,” Appl. Phys. Lett. 88, 161117 (2006).
    [CrossRef]
  25. A. G. Baca, F. Ren, J. C. Zolper, R. D. Briggs, and S. J. Pearton, “A survey of ohmic contacts to III-V compound semiconductors,” Thin Solid Films 308-309, 599-606 (1997).
    [CrossRef]
  26. R. V. Ghita, C. Logofatu, C. Negrila, A. S. Manea, M. Cernea, and M. F. Lazarescu, “Studies ohmic contact and Schottky barriers on Au-Ge/GaAs and Au-Ti/GaAs,” J. Optoelectron. Adv. Mater. 7, 3033-3037 (2005).
  27. M. Ogawa, “Alloying of Ni/Au-Ge films on GaAs,” J. Appl. Phys. 51, 406-412 (1980).
    [CrossRef]
  28. N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H.-W. Hübers, and M. Koch, “Impact of the contact metallization on the performance of photoconductive THz antennas,” Opt. Express 24, 19695-19705 (2008).
    [CrossRef]
  29. R. Williams, Modern GaAs Processing Methods (Artech House, 1990), p. 217.
  30. C. Fattinger and D. Grischkowsky, “Terahertz beam,” Appl. Phys. Lett. 54, 490-492 (1989).
    [CrossRef]

2008 (3)

K. Shimada, Y. Terai, S. Takemoto, K. Hidaka, Y. Fujiwara, M. Suzuki, and M. Tonouchi, “Terahertz radiation from Er, O-codoped GaAs surface grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 92, 111115 (2008).
[CrossRef]

V. P. Wallace, E. MacPherson, J. A. Zeitler, and C. Reid, “Three-dimensional imaging of optically opaque materials using nonionizing terahertz radiation,” J. Opt. Soc. Am. A 25, 3120-3133 (2008).
[CrossRef]

N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H.-W. Hübers, and M. Koch, “Impact of the contact metallization on the performance of photoconductive THz antennas,” Opt. Express 24, 19695-19705 (2008).
[CrossRef]

2007 (3)

D. S. Kim, “Efficient terahertz generation using trap-enhanced fields in semi-insulating photoconductors by spatially broadened excitation,” J. Appl. Phys. 101, 053105 (2007).
[CrossRef]

E. Castro-Camus, J. Lloyd-Hughes, L. Fu, H. H. Tan, C. Jagadish, and M. B. Johnston, “An ion-implanted InP receiver for polarization resolved terahertz spectroscopy,” Opt. Express 15, 7047-7057 (2007).
[CrossRef] [PubMed]

G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98, 026803 (2007).
[CrossRef] [PubMed]

2006 (2)

H. Liu, Y. Chen, G. J. Bastiaans, and X.-C. Zhang, “Detection and identification of explosive RDX by THz diffuse reflection spectroscopy,” Opt. Express 14, 415-423 (2006).
[CrossRef] [PubMed]

D. S. Kim and D. S. Citrin, “Coulomb and radiation screening in photoconductive terahertz source,” Appl. Phys. Lett. 88, 161117 (2006).
[CrossRef]

2005 (7)

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114 (2005).
[CrossRef]

P. C. M. Planken, C. E. W. M. van Rijmenam, and R. N. Schouten, “Opto-electronic pulsed THz systems” Semicond. Sci. Technol. 20, S121-S127 (2005).
[CrossRef]

R. V. Ghita, C. Logofatu, C. Negrila, A. S. Manea, M. Cernea, and M. F. Lazarescu, “Studies ohmic contact and Schottky barriers on Au-Ge/GaAs and Au-Ti/GaAs,” J. Optoelectron. Adv. Mater. 7, 3033-3037 (2005).

B. Salem, D. Morris, V. Aimez, J. Beerens, J. Beauvais, and D. Houde, “Pulsed photoconductive antenna terahertz sources made on ion-implanted GaAs substrates,” J. Phys.: Condens. Matter 17, 7327-7333 (2005).
[CrossRef]

N. Karpowicz, H. Zhong, J. Xu, K. Lin, J. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging” Semicond. Sci. Technol. 20, S293-S299 (2005).
[CrossRef]

F. Kadlec, P. Kuzel, and J. Coutaz, “Study of terahertz radiation generated by optical rectification on thin gold films,” Opt. Lett. 30, 1402-1404 (2005).
[CrossRef] [PubMed]

M. Reid and R. Fedosejevsa, “Terahertz emission from (100) InAs surfaces at high excitation fluences,” Appl. Phys. Lett. 86, 011906 (2005).
[CrossRef]

2004 (3)

Y. Chen, H. Liu, Y. Deng, D. Veksler, M. Shur, and X.-C. Zhang, “Spectroscopic characterization of explosives in the far infrared region,” Proc. SPIE 5411, 1-8 (2004).
[CrossRef]

J. O'Hara and D. Grischkowsky, “Quasi-optic synthetic phased-array terahertz imaging,” J. Opt. Soc. Am. B 21, 1178-1191 (2004).
[CrossRef]

W. Shi, W. L. Jia, L. Hou, J. Z. Xu, X.-C. Zhang, “Terahertz radiation from large aperture bulk semi-insulating GaAs photoconductive dipole antenna,” Chin. Phys. Lett. 21, 1842-1844 (2004).
[CrossRef]

2002 (1)

J. Darmo, G. Strasser, T. Müller, R. Bratschitsch, and K. Unterrainer, “Surface-modified GaAs terahertz plasmon emitter,” Appl. Phys. Lett. 81, 871-873 (2002).
[CrossRef]

2001 (1)

J. N. Heyman, P. Neocleous, D. Hebert, P. A. Crowell, T. Müller, and K. Unterrainer, “Terahertz emission from GaAs and InAs in a magnetic field,” Phys. Rev. B 64, 085202 (2001).
[CrossRef]

2000 (1)

1998 (1)

R. A. Cheville, R. W. McGowan, and D. Grischkowsky, “Time-resolved measurements which isolate the mechanisms responsible for terahertz glory scattering from dielectric spheres,” Phys. Rev. Lett. 80, 269-272 (1998).
[CrossRef]

1997 (1)

A. G. Baca, F. Ren, J. C. Zolper, R. D. Briggs, and S. J. Pearton, “A survey of ohmic contacts to III-V compound semiconductors,” Thin Solid Films 308-309, 599-606 (1997).
[CrossRef]

1996 (1)

X.-C. Zhang, “Generation and detection of terahertz electromagnetic pulses from semiconductors with femtosecond optics,” J. Lumin. 66-67, 488-492 (1996).

1994 (1)

A. Rice, Y. Jin, X. F. Ma, and X.-C. Zhang, “Terahertz optical rectification from <110> zinc-blend crystals,” Appl. Phys. Lett. 64, 1324-1326 (1994).<<
[CrossRef]

1992 (1)

J. T. Darrow, X.-C. Zhang, D. H. Auston, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28, 1607-1616 (1992).
[CrossRef]

1989 (1)

C. Fattinger and D. Grischkowsky, “Terahertz beam,” Appl. Phys. Lett. 54, 490-492 (1989).
[CrossRef]

1980 (1)

M. Ogawa, “Alloying of Ni/Au-Ge films on GaAs,” J. Appl. Phys. 51, 406-412 (1980).
[CrossRef]

Aimez, V.

B. Salem, D. Morris, V. Aimez, J. Beerens, J. Beauvais, and D. Houde, “Pulsed photoconductive antenna terahertz sources made on ion-implanted GaAs substrates,” J. Phys.: Condens. Matter 17, 7327-7333 (2005).
[CrossRef]

Auston, D. H.

J. T. Darrow, X.-C. Zhang, D. H. Auston, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28, 1607-1616 (1992).
[CrossRef]

Baca, A. G.

A. G. Baca, F. Ren, J. C. Zolper, R. D. Briggs, and S. J. Pearton, “A survey of ohmic contacts to III-V compound semiconductors,” Thin Solid Films 308-309, 599-606 (1997).
[CrossRef]

Bastiaans, G. J.

Beauvais, J.

B. Salem, D. Morris, V. Aimez, J. Beerens, J. Beauvais, and D. Houde, “Pulsed photoconductive antenna terahertz sources made on ion-implanted GaAs substrates,” J. Phys.: Condens. Matter 17, 7327-7333 (2005).
[CrossRef]

Beerens, J.

B. Salem, D. Morris, V. Aimez, J. Beerens, J. Beauvais, and D. Houde, “Pulsed photoconductive antenna terahertz sources made on ion-implanted GaAs substrates,” J. Phys.: Condens. Matter 17, 7327-7333 (2005).
[CrossRef]

Bratschitsch, R.

J. Darmo, G. Strasser, T. Müller, R. Bratschitsch, and K. Unterrainer, “Surface-modified GaAs terahertz plasmon emitter,” Appl. Phys. Lett. 81, 871-873 (2002).
[CrossRef]

Briggs, R. D.

A. G. Baca, F. Ren, J. C. Zolper, R. D. Briggs, and S. J. Pearton, “A survey of ohmic contacts to III-V compound semiconductors,” Thin Solid Films 308-309, 599-606 (1997).
[CrossRef]

Castro-Camus, E.

Cernea, M.

R. V. Ghita, C. Logofatu, C. Negrila, A. S. Manea, M. Cernea, and M. F. Lazarescu, “Studies ohmic contact and Schottky barriers on Au-Ge/GaAs and Au-Ti/GaAs,” J. Optoelectron. Adv. Mater. 7, 3033-3037 (2005).

Chen, Y.

H. Liu, Y. Chen, G. J. Bastiaans, and X.-C. Zhang, “Detection and identification of explosive RDX by THz diffuse reflection spectroscopy,” Opt. Express 14, 415-423 (2006).
[CrossRef] [PubMed]

Y. Chen, H. Liu, Y. Deng, D. Veksler, M. Shur, and X.-C. Zhang, “Spectroscopic characterization of explosives in the far infrared region,” Proc. SPIE 5411, 1-8 (2004).
[CrossRef]

Cheville, R. A.

R. A. Cheville, R. W. McGowan, and D. Grischkowsky, “Time-resolved measurements which isolate the mechanisms responsible for terahertz glory scattering from dielectric spheres,” Phys. Rev. Lett. 80, 269-272 (1998).
[CrossRef]

Citrin, D. S.

D. S. Kim and D. S. Citrin, “Coulomb and radiation screening in photoconductive terahertz source,” Appl. Phys. Lett. 88, 161117 (2006).
[CrossRef]

Coutaz, J.

Crowell, P. A.

J. N. Heyman, P. Neocleous, D. Hebert, P. A. Crowell, T. Müller, and K. Unterrainer, “Terahertz emission from GaAs and InAs in a magnetic field,” Phys. Rev. B 64, 085202 (2001).
[CrossRef]

Darmo, J.

J. Darmo, G. Strasser, T. Müller, R. Bratschitsch, and K. Unterrainer, “Surface-modified GaAs terahertz plasmon emitter,” Appl. Phys. Lett. 81, 871-873 (2002).
[CrossRef]

Darrow, J. T.

J. T. Darrow, X.-C. Zhang, D. H. Auston, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28, 1607-1616 (1992).
[CrossRef]

Dekorsy, T.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114 (2005).
[CrossRef]

Deng, Y.

Y. Chen, H. Liu, Y. Deng, D. Veksler, M. Shur, and X.-C. Zhang, “Spectroscopic characterization of explosives in the far infrared region,” Proc. SPIE 5411, 1-8 (2004).
[CrossRef]

Dreyhaupt, A.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114 (2005).
[CrossRef]

Ezdi, K.

N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H.-W. Hübers, and M. Koch, “Impact of the contact metallization on the performance of photoconductive THz antennas,” Opt. Express 24, 19695-19705 (2008).
[CrossRef]

Fattinger, C.

C. Fattinger and D. Grischkowsky, “Terahertz beam,” Appl. Phys. Lett. 54, 490-492 (1989).
[CrossRef]

Fedosejevsa, R.

M. Reid and R. Fedosejevsa, “Terahertz emission from (100) InAs surfaces at high excitation fluences,” Appl. Phys. Lett. 86, 011906 (2005).
[CrossRef]

Fu, L.

Fujiwara, Y.

K. Shimada, Y. Terai, S. Takemoto, K. Hidaka, Y. Fujiwara, M. Suzuki, and M. Tonouchi, “Terahertz radiation from Er, O-codoped GaAs surface grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 92, 111115 (2008).
[CrossRef]

Ghita, R. V.

R. V. Ghita, C. Logofatu, C. Negrila, A. S. Manea, M. Cernea, and M. F. Lazarescu, “Studies ohmic contact and Schottky barriers on Au-Ge/GaAs and Au-Ti/GaAs,” J. Optoelectron. Adv. Mater. 7, 3033-3037 (2005).

Grischkowsky, D.

J. O'Hara and D. Grischkowsky, “Quasi-optic synthetic phased-array terahertz imaging,” J. Opt. Soc. Am. B 21, 1178-1191 (2004).
[CrossRef]

R. A. Cheville, R. W. McGowan, and D. Grischkowsky, “Time-resolved measurements which isolate the mechanisms responsible for terahertz glory scattering from dielectric spheres,” Phys. Rev. Lett. 80, 269-272 (1998).
[CrossRef]

C. Fattinger and D. Grischkowsky, “Terahertz beam,” Appl. Phys. Lett. 54, 490-492 (1989).
[CrossRef]

Gürtler, A.

Hebert, D.

J. N. Heyman, P. Neocleous, D. Hebert, P. A. Crowell, T. Müller, and K. Unterrainer, “Terahertz emission from GaAs and InAs in a magnetic field,” Phys. Rev. B 64, 085202 (2001).
[CrossRef]

Helm, H.

Helm, M.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114 (2005).
[CrossRef]

Heyman, J. N.

J. N. Heyman, P. Neocleous, D. Hebert, P. A. Crowell, T. Müller, and K. Unterrainer, “Terahertz emission from GaAs and InAs in a magnetic field,” Phys. Rev. B 64, 085202 (2001).
[CrossRef]

Hidaka, K.

K. Shimada, Y. Terai, S. Takemoto, K. Hidaka, Y. Fujiwara, M. Suzuki, and M. Tonouchi, “Terahertz radiation from Er, O-codoped GaAs surface grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 92, 111115 (2008).
[CrossRef]

Hou, L.

W. Shi, W. L. Jia, L. Hou, J. Z. Xu, X.-C. Zhang, “Terahertz radiation from large aperture bulk semi-insulating GaAs photoconductive dipole antenna,” Chin. Phys. Lett. 21, 1842-1844 (2004).
[CrossRef]

Houde, D.

B. Salem, D. Morris, V. Aimez, J. Beerens, J. Beauvais, and D. Houde, “Pulsed photoconductive antenna terahertz sources made on ion-implanted GaAs substrates,” J. Phys.: Condens. Matter 17, 7327-7333 (2005).
[CrossRef]

Hübers, H.-W.

N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H.-W. Hübers, and M. Koch, “Impact of the contact metallization on the performance of photoconductive THz antennas,” Opt. Express 24, 19695-19705 (2008).
[CrossRef]

Hunt, N. T.

G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98, 026803 (2007).
[CrossRef] [PubMed]

Hwang, J.

N. Karpowicz, H. Zhong, J. Xu, K. Lin, J. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging” Semicond. Sci. Technol. 20, S293-S299 (2005).
[CrossRef]

Jagadish, C.

Jepsen, P. U.

Jia, W. L.

W. Shi, W. L. Jia, L. Hou, J. Z. Xu, X.-C. Zhang, “Terahertz radiation from large aperture bulk semi-insulating GaAs photoconductive dipole antenna,” Chin. Phys. Lett. 21, 1842-1844 (2004).
[CrossRef]

Jin, Y.

A. Rice, Y. Jin, X. F. Ma, and X.-C. Zhang, “Terahertz optical rectification from <110> zinc-blend crystals,” Appl. Phys. Lett. 64, 1324-1326 (1994).<<
[CrossRef]

Johnston, M. B.

Kadlec, F.

Karpowicz, N.

N. Karpowicz, H. Zhong, J. Xu, K. Lin, J. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging” Semicond. Sci. Technol. 20, S293-S299 (2005).
[CrossRef]

Kim, D. S.

D. S. Kim, “Efficient terahertz generation using trap-enhanced fields in semi-insulating photoconductors by spatially broadened excitation,” J. Appl. Phys. 101, 053105 (2007).
[CrossRef]

D. S. Kim and D. S. Citrin, “Coulomb and radiation screening in photoconductive terahertz source,” Appl. Phys. Lett. 88, 161117 (2006).
[CrossRef]

Koch, M.

N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H.-W. Hübers, and M. Koch, “Impact of the contact metallization on the performance of photoconductive THz antennas,” Opt. Express 24, 19695-19705 (2008).
[CrossRef]

Kuzel, P.

Lazarescu, M. F.

R. V. Ghita, C. Logofatu, C. Negrila, A. S. Manea, M. Cernea, and M. F. Lazarescu, “Studies ohmic contact and Schottky barriers on Au-Ge/GaAs and Au-Ti/GaAs,” J. Optoelectron. Adv. Mater. 7, 3033-3037 (2005).

Lin, K.

N. Karpowicz, H. Zhong, J. Xu, K. Lin, J. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging” Semicond. Sci. Technol. 20, S293-S299 (2005).
[CrossRef]

Liu, H.

H. Liu, Y. Chen, G. J. Bastiaans, and X.-C. Zhang, “Detection and identification of explosive RDX by THz diffuse reflection spectroscopy,” Opt. Express 14, 415-423 (2006).
[CrossRef] [PubMed]

Y. Chen, H. Liu, Y. Deng, D. Veksler, M. Shur, and X.-C. Zhang, “Spectroscopic characterization of explosives in the far infrared region,” Proc. SPIE 5411, 1-8 (2004).
[CrossRef]

Lloyd-Hughes, J.

Logofatu, C.

R. V. Ghita, C. Logofatu, C. Negrila, A. S. Manea, M. Cernea, and M. F. Lazarescu, “Studies ohmic contact and Schottky barriers on Au-Ge/GaAs and Au-Ti/GaAs,” J. Optoelectron. Adv. Mater. 7, 3033-3037 (2005).

Ma, X. F.

A. Rice, Y. Jin, X. F. Ma, and X.-C. Zhang, “Terahertz optical rectification from <110> zinc-blend crystals,” Appl. Phys. Lett. 64, 1324-1326 (1994).<<
[CrossRef]

MacPherson, E.

Manea, A. S.

R. V. Ghita, C. Logofatu, C. Negrila, A. S. Manea, M. Cernea, and M. F. Lazarescu, “Studies ohmic contact and Schottky barriers on Au-Ge/GaAs and Au-Ti/GaAs,” J. Optoelectron. Adv. Mater. 7, 3033-3037 (2005).

McGowan, R. W.

R. A. Cheville, R. W. McGowan, and D. Grischkowsky, “Time-resolved measurements which isolate the mechanisms responsible for terahertz glory scattering from dielectric spheres,” Phys. Rev. Lett. 80, 269-272 (1998).
[CrossRef]

Mikulics, M.

N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H.-W. Hübers, and M. Koch, “Impact of the contact metallization on the performance of photoconductive THz antennas,” Opt. Express 24, 19695-19705 (2008).
[CrossRef]

Morris, D.

B. Salem, D. Morris, V. Aimez, J. Beerens, J. Beauvais, and D. Houde, “Pulsed photoconductive antenna terahertz sources made on ion-implanted GaAs substrates,” J. Phys.: Condens. Matter 17, 7327-7333 (2005).
[CrossRef]

Müller, T.

J. Darmo, G. Strasser, T. Müller, R. Bratschitsch, and K. Unterrainer, “Surface-modified GaAs terahertz plasmon emitter,” Appl. Phys. Lett. 81, 871-873 (2002).
[CrossRef]

J. N. Heyman, P. Neocleous, D. Hebert, P. A. Crowell, T. Müller, and K. Unterrainer, “Terahertz emission from GaAs and InAs in a magnetic field,” Phys. Rev. B 64, 085202 (2001).
[CrossRef]

Negrila, C.

R. V. Ghita, C. Logofatu, C. Negrila, A. S. Manea, M. Cernea, and M. F. Lazarescu, “Studies ohmic contact and Schottky barriers on Au-Ge/GaAs and Au-Ti/GaAs,” J. Optoelectron. Adv. Mater. 7, 3033-3037 (2005).

Neocleous, P.

J. N. Heyman, P. Neocleous, D. Hebert, P. A. Crowell, T. Müller, and K. Unterrainer, “Terahertz emission from GaAs and InAs in a magnetic field,” Phys. Rev. B 64, 085202 (2001).
[CrossRef]

Ogawa, M.

M. Ogawa, “Alloying of Ni/Au-Ge films on GaAs,” J. Appl. Phys. 51, 406-412 (1980).
[CrossRef]

O'Hara, J.

Pearton, S. J.

A. G. Baca, F. Ren, J. C. Zolper, R. D. Briggs, and S. J. Pearton, “A survey of ohmic contacts to III-V compound semiconductors,” Thin Solid Films 308-309, 599-606 (1997).
[CrossRef]

Planken, P. C. M.

P. C. M. Planken, C. E. W. M. van Rijmenam, and R. N. Schouten, “Opto-electronic pulsed THz systems” Semicond. Sci. Technol. 20, S121-S127 (2005).
[CrossRef]

Reid, C.

Reid, M.

M. Reid and R. Fedosejevsa, “Terahertz emission from (100) InAs surfaces at high excitation fluences,” Appl. Phys. Lett. 86, 011906 (2005).
[CrossRef]

Ren, F.

A. G. Baca, F. Ren, J. C. Zolper, R. D. Briggs, and S. J. Pearton, “A survey of ohmic contacts to III-V compound semiconductors,” Thin Solid Films 308-309, 599-606 (1997).
[CrossRef]

Rice, A.

A. Rice, Y. Jin, X. F. Ma, and X.-C. Zhang, “Terahertz optical rectification from <110> zinc-blend crystals,” Appl. Phys. Lett. 64, 1324-1326 (1994).<<
[CrossRef]

Salem, B.

B. Salem, D. Morris, V. Aimez, J. Beerens, J. Beauvais, and D. Houde, “Pulsed photoconductive antenna terahertz sources made on ion-implanted GaAs substrates,” J. Phys.: Condens. Matter 17, 7327-7333 (2005).
[CrossRef]

Scheller, M.

N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H.-W. Hübers, and M. Koch, “Impact of the contact metallization on the performance of photoconductive THz antennas,” Opt. Express 24, 19695-19705 (2008).
[CrossRef]

Schouten, R. N.

P. C. M. Planken, C. E. W. M. van Rijmenam, and R. N. Schouten, “Opto-electronic pulsed THz systems” Semicond. Sci. Technol. 20, S121-S127 (2005).
[CrossRef]

Shi, W.

W. Shi, W. L. Jia, L. Hou, J. Z. Xu, X.-C. Zhang, “Terahertz radiation from large aperture bulk semi-insulating GaAs photoconductive dipole antenna,” Chin. Phys. Lett. 21, 1842-1844 (2004).
[CrossRef]

Shimada, K.

K. Shimada, Y. Terai, S. Takemoto, K. Hidaka, Y. Fujiwara, M. Suzuki, and M. Tonouchi, “Terahertz radiation from Er, O-codoped GaAs surface grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 92, 111115 (2008).
[CrossRef]

Shur, M.

Y. Chen, H. Liu, Y. Deng, D. Veksler, M. Shur, and X.-C. Zhang, “Spectroscopic characterization of explosives in the far infrared region,” Proc. SPIE 5411, 1-8 (2004).
[CrossRef]

Strasser, G.

J. Darmo, G. Strasser, T. Müller, R. Bratschitsch, and K. Unterrainer, “Surface-modified GaAs terahertz plasmon emitter,” Appl. Phys. Lett. 81, 871-873 (2002).
[CrossRef]

Suzuki, M.

K. Shimada, Y. Terai, S. Takemoto, K. Hidaka, Y. Fujiwara, M. Suzuki, and M. Tonouchi, “Terahertz radiation from Er, O-codoped GaAs surface grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 92, 111115 (2008).
[CrossRef]

Takemoto, S.

K. Shimada, Y. Terai, S. Takemoto, K. Hidaka, Y. Fujiwara, M. Suzuki, and M. Tonouchi, “Terahertz radiation from Er, O-codoped GaAs surface grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 92, 111115 (2008).
[CrossRef]

Tan, H. H.

Terai, Y.

K. Shimada, Y. Terai, S. Takemoto, K. Hidaka, Y. Fujiwara, M. Suzuki, and M. Tonouchi, “Terahertz radiation from Er, O-codoped GaAs surface grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 92, 111115 (2008).
[CrossRef]

Tonouchi, M.

K. Shimada, Y. Terai, S. Takemoto, K. Hidaka, Y. Fujiwara, M. Suzuki, and M. Tonouchi, “Terahertz radiation from Er, O-codoped GaAs surface grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 92, 111115 (2008).
[CrossRef]

Unterrainer, K.

J. Darmo, G. Strasser, T. Müller, R. Bratschitsch, and K. Unterrainer, “Surface-modified GaAs terahertz plasmon emitter,” Appl. Phys. Lett. 81, 871-873 (2002).
[CrossRef]

J. N. Heyman, P. Neocleous, D. Hebert, P. A. Crowell, T. Müller, and K. Unterrainer, “Terahertz emission from GaAs and InAs in a magnetic field,” Phys. Rev. B 64, 085202 (2001).
[CrossRef]

van Rijmenam, C. E. W. M.

P. C. M. Planken, C. E. W. M. van Rijmenam, and R. N. Schouten, “Opto-electronic pulsed THz systems” Semicond. Sci. Technol. 20, S121-S127 (2005).
[CrossRef]

Veksler, D.

Y. Chen, H. Liu, Y. Deng, D. Veksler, M. Shur, and X.-C. Zhang, “Spectroscopic characterization of explosives in the far infrared region,” Proc. SPIE 5411, 1-8 (2004).
[CrossRef]

Vieweg, N.

N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H.-W. Hübers, and M. Koch, “Impact of the contact metallization on the performance of photoconductive THz antennas,” Opt. Express 24, 19695-19705 (2008).
[CrossRef]

Wallace, V. P.

Welsh, G. H.

G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98, 026803 (2007).
[CrossRef] [PubMed]

Wilk, R.

N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H.-W. Hübers, and M. Koch, “Impact of the contact metallization on the performance of photoconductive THz antennas,” Opt. Express 24, 19695-19705 (2008).
[CrossRef]

Williams, R.

R. Williams, Modern GaAs Processing Methods (Artech House, 1990), p. 217.

Winnerl, S.

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114 (2005).
[CrossRef]

Winnewisser, C.

Wynne, K.

G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98, 026803 (2007).
[CrossRef] [PubMed]

Xu, J.

N. Karpowicz, H. Zhong, J. Xu, K. Lin, J. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging” Semicond. Sci. Technol. 20, S293-S299 (2005).
[CrossRef]

Xu, J. Z.

W. Shi, W. L. Jia, L. Hou, J. Z. Xu, X.-C. Zhang, “Terahertz radiation from large aperture bulk semi-insulating GaAs photoconductive dipole antenna,” Chin. Phys. Lett. 21, 1842-1844 (2004).
[CrossRef]

Zeitler, J. A.

Zhang, X.-C.

H. Liu, Y. Chen, G. J. Bastiaans, and X.-C. Zhang, “Detection and identification of explosive RDX by THz diffuse reflection spectroscopy,” Opt. Express 14, 415-423 (2006).
[CrossRef] [PubMed]

N. Karpowicz, H. Zhong, J. Xu, K. Lin, J. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging” Semicond. Sci. Technol. 20, S293-S299 (2005).
[CrossRef]

Y. Chen, H. Liu, Y. Deng, D. Veksler, M. Shur, and X.-C. Zhang, “Spectroscopic characterization of explosives in the far infrared region,” Proc. SPIE 5411, 1-8 (2004).
[CrossRef]

W. Shi, W. L. Jia, L. Hou, J. Z. Xu, X.-C. Zhang, “Terahertz radiation from large aperture bulk semi-insulating GaAs photoconductive dipole antenna,” Chin. Phys. Lett. 21, 1842-1844 (2004).
[CrossRef]

X.-C. Zhang, “Generation and detection of terahertz electromagnetic pulses from semiconductors with femtosecond optics,” J. Lumin. 66-67, 488-492 (1996).

A. Rice, Y. Jin, X. F. Ma, and X.-C. Zhang, “Terahertz optical rectification from <110> zinc-blend crystals,” Appl. Phys. Lett. 64, 1324-1326 (1994).<<
[CrossRef]

J. T. Darrow, X.-C. Zhang, D. H. Auston, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28, 1607-1616 (1992).
[CrossRef]

Zhong, H.

N. Karpowicz, H. Zhong, J. Xu, K. Lin, J. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging” Semicond. Sci. Technol. 20, S293-S299 (2005).
[CrossRef]

Zolper, J. C.

A. G. Baca, F. Ren, J. C. Zolper, R. D. Briggs, and S. J. Pearton, “A survey of ohmic contacts to III-V compound semiconductors,” Thin Solid Films 308-309, 599-606 (1997).
[CrossRef]

Appl. Phys. Lett. (7)

K. Shimada, Y. Terai, S. Takemoto, K. Hidaka, Y. Fujiwara, M. Suzuki, and M. Tonouchi, “Terahertz radiation from Er, O-codoped GaAs surface grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 92, 111115 (2008).
[CrossRef]

J. Darmo, G. Strasser, T. Müller, R. Bratschitsch, and K. Unterrainer, “Surface-modified GaAs terahertz plasmon emitter,” Appl. Phys. Lett. 81, 871-873 (2002).
[CrossRef]

M. Reid and R. Fedosejevsa, “Terahertz emission from (100) InAs surfaces at high excitation fluences,” Appl. Phys. Lett. 86, 011906 (2005).
[CrossRef]

A. Rice, Y. Jin, X. F. Ma, and X.-C. Zhang, “Terahertz optical rectification from <110> zinc-blend crystals,” Appl. Phys. Lett. 64, 1324-1326 (1994).<<
[CrossRef]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114 (2005).
[CrossRef]

D. S. Kim and D. S. Citrin, “Coulomb and radiation screening in photoconductive terahertz source,” Appl. Phys. Lett. 88, 161117 (2006).
[CrossRef]

C. Fattinger and D. Grischkowsky, “Terahertz beam,” Appl. Phys. Lett. 54, 490-492 (1989).
[CrossRef]

Chin. Phys. Lett. (1)

W. Shi, W. L. Jia, L. Hou, J. Z. Xu, X.-C. Zhang, “Terahertz radiation from large aperture bulk semi-insulating GaAs photoconductive dipole antenna,” Chin. Phys. Lett. 21, 1842-1844 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. T. Darrow, X.-C. Zhang, D. H. Auston, “Saturation properties of large-aperture photoconducting antennas,” IEEE J. Quantum Electron. 28, 1607-1616 (1992).
[CrossRef]

J. Appl. Phys. (2)

D. S. Kim, “Efficient terahertz generation using trap-enhanced fields in semi-insulating photoconductors by spatially broadened excitation,” J. Appl. Phys. 101, 053105 (2007).
[CrossRef]

M. Ogawa, “Alloying of Ni/Au-Ge films on GaAs,” J. Appl. Phys. 51, 406-412 (1980).
[CrossRef]

J. Lumin. (1)

X.-C. Zhang, “Generation and detection of terahertz electromagnetic pulses from semiconductors with femtosecond optics,” J. Lumin. 66-67, 488-492 (1996).

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

J. Optoelectron. Adv. Mater. (1)

R. V. Ghita, C. Logofatu, C. Negrila, A. S. Manea, M. Cernea, and M. F. Lazarescu, “Studies ohmic contact and Schottky barriers on Au-Ge/GaAs and Au-Ti/GaAs,” J. Optoelectron. Adv. Mater. 7, 3033-3037 (2005).

J. Phys.: Condens. Matter (1)

B. Salem, D. Morris, V. Aimez, J. Beerens, J. Beauvais, and D. Houde, “Pulsed photoconductive antenna terahertz sources made on ion-implanted GaAs substrates,” J. Phys.: Condens. Matter 17, 7327-7333 (2005).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

J. N. Heyman, P. Neocleous, D. Hebert, P. A. Crowell, T. Müller, and K. Unterrainer, “Terahertz emission from GaAs and InAs in a magnetic field,” Phys. Rev. B 64, 085202 (2001).
[CrossRef]

Phys. Rev. Lett. (2)

G. H. Welsh, N. T. Hunt, and K. Wynne, “Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating,” Phys. Rev. Lett. 98, 026803 (2007).
[CrossRef] [PubMed]

R. A. Cheville, R. W. McGowan, and D. Grischkowsky, “Time-resolved measurements which isolate the mechanisms responsible for terahertz glory scattering from dielectric spheres,” Phys. Rev. Lett. 80, 269-272 (1998).
[CrossRef]

Proc. SPIE (1)

Y. Chen, H. Liu, Y. Deng, D. Veksler, M. Shur, and X.-C. Zhang, “Spectroscopic characterization of explosives in the far infrared region,” Proc. SPIE 5411, 1-8 (2004).
[CrossRef]

Semicond. Sci. Technol. (2)

N. Karpowicz, H. Zhong, J. Xu, K. Lin, J. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging” Semicond. Sci. Technol. 20, S293-S299 (2005).
[CrossRef]

P. C. M. Planken, C. E. W. M. van Rijmenam, and R. N. Schouten, “Opto-electronic pulsed THz systems” Semicond. Sci. Technol. 20, S121-S127 (2005).
[CrossRef]

Thin Solid Films (1)

A. G. Baca, F. Ren, J. C. Zolper, R. D. Briggs, and S. J. Pearton, “A survey of ohmic contacts to III-V compound semiconductors,” Thin Solid Films 308-309, 599-606 (1997).
[CrossRef]

Other (2)

R. Williams, Modern GaAs Processing Methods (Artech House, 1990), p. 217.

http://www.zomega-terahertz.com/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Bias voltage dependence of the THz intensity of antennas 1, 2, 3, and 4 with the exciting laser overlapping the gap. (b) Electrical field dependence of the THz intensity of antennas 1, 2, 3, and 4 with the exciting laser overlapping the gap. Antennas 1, 2, 3, and 4 have different gaps ( 50 μ m , 100 μ m , 150 μ m , and 200 μ m ) but the same electrode width ( 100 μ m ) .

Fig. 2
Fig. 2

(a) Gap dependence of the THz frequency of antennas 1, 2, 3, and 4 at 5 kV cm bias electrical field. The peak frequencies of antennas 1, 2, 3, and 4 are 0.86, 0.79, 0.77, and 0.76 THz , respectively. (b) THz spectra of antenna 3 with 150 μ m gap at different bias voltages of 50 V , 70 V , 90 V , and 110 V . The peak frequencies are 0.732, 0.750, 0.769, and 0.770 THz , respectively.

Fig. 3
Fig. 3

Stability of antennas 5, 6, and 7 with same gap ( 80 μ m ) and different electrode widths (10, 20, and 80 μ m ). The bias voltage of the three antennas changed at the scope of 60 to 65 V because the resistance of the antennas changed with the temperature.

Fig. 4
Fig. 4

Stability of antenna 3 (without heat sink) and antenna 8 (with heat sink). The bias voltage of antenna 3 is 95 V and the bias voltage of antenna 8 is 150 V . The inset is a schematic of antenna 8. The gap is 150 μ m and the width is 100 μ m .

Fig. 5
Fig. 5

THz intensity of antenna 8 (with AuGeNi electrodes) and antenna 9 (with Ti Au electrodes) at different voltages.

Fig. 6
Fig. 6

Stability of antenna 9 ( Ti Au electrodes, with heat sink) at a bias voltage of 100 V .

Fig. 7
Fig. 7

S/N ratio of antenna 8 (with AuGeNi electrodes and heat sink) at different voltages. The S/N ratio nearly linearly increases with the voltage. The DR of antenna 8 can be as high as 6300 without purging.

Tables (1)

Tables Icon

Table 1 Structural Parameters of Antennas Tested; Substrate is Commercial High-Resistivity ( > 10 7 Ω cm ) LEC-Grown, (100)-Oriented SI-GaAs Wafer

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E THz e μ E B d d t n ( t ) ,
E E c + E r = q 4 π ε ( R ̂ R 2 ) t r + q 4 π ε c 2 ( R ̂ × ( R ̂ × a ) R ) t r ,

Metrics