Abstract

Two-dimensional electromagnetic cloaking devices with infinite optic constants at the inner boundary are investigated. Numerical simulations of this class of ideal cloak, performed with the transmission line modeling method, confirm the fundamental importance of such extreme values in the efficiency of the cloak in some situations. This is illustrated by using the concept of the anticloak, which was shown to be capable of defeating the non-ideal cloak. We numerically show that the presence of a layer with extreme constitutive parameters renders the anticloak unable to produce its effect. Furthermore, we propose a simple theoretical model that leads to the same conclusion if the cloak is slightly dissipative.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).
    [CrossRef] [PubMed]
  2. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
    [CrossRef] [PubMed]
  3. F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, “Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect,” Opt. Lett. 32, 1069-1071 (2007).
    [CrossRef] [PubMed]
  4. H. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 063903 (2007).
    [CrossRef] [PubMed]
  5. Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99, 113903 (2007).
    [CrossRef] [PubMed]
  6. B. Zhang, H. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, “Response of a cylindrical invisibility cloak to electromagnetic waves,” Phys. Rev. B 76, 121101(R) (2007).
    [CrossRef]
  7. H. Chen, Z. Liang, P. Yao, X. Jiang, H. Ma, and C. T. Chan, “Extending the bandwidth of electromagnetic cloaks,” Phys. Rev. B 76, 241104(R) (2007).
    [CrossRef]
  8. M. Yan, Z. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett. 99, 233901 (2007).
    [CrossRef]
  9. A. Nicolet, F. Zolla, and S. Guenneau, “Electromagnetic analysis of cylindrical cloaks of an arbitrary cross section,” Opt. Lett. 33, 1584-1586 (2008).
    [CrossRef] [PubMed]
  10. B. Zhang, H. Chen, B.-I. Wu, and J. A. Kong, “Extraordinary surface voltage effect in the invisibility cloak with an active device inside,” Phys. Rev. Lett. 100, 063904 (2008).
    [CrossRef] [PubMed]
  11. S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
    [CrossRef]
  12. C. Blanchard, J. A. Portí, B.-I. Wu, J. A. Morente, A. Salinas, and J. A. Kong, “Time-domain simulation of electromagnetic cloaking structures with TLM method,” Opt. Express 16, 6461-6470 (2008).
    [CrossRef] [PubMed]
  13. Z. Liang, P. Yao, X. Sun, and X. Jiang, “The physical picture and the essential elements of the dynamical process for dispersive cloaking structures,” Appl. Phys. Lett. 92, 131118 (2008).
    [CrossRef]
  14. Y. Zhao, C. Argyropoulos, and Y. Hao, “Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures,” Opt. Express 16, 6717-6730 (2008).
    [CrossRef] [PubMed]
  15. H. Chen, X. Luo, H. Ma, and C. T. Chan, “The anti-cloak,” Opt. Express 16, 14603-14608 (2008).
    [CrossRef] [PubMed]
  16. G. Castaldi, I. Gallina, V. Galdi, A. Alùç, and N. Engheta, “Cloak/anticloak interactions,” Opt. Express 17, 3101-3114 (2009).
    [CrossRef] [PubMed]
  17. P. B. Johns and R. L. Beurle, “Numerical solution of 2-dimensional scattering problems using a transmission-line matrix,” Proc. Inst. Electr. Eng. 118, 1203-1208 (1971).
    [CrossRef]
  18. P. B. Johns, “A symmetrical condensed node for the TLM method,” IEEE Trans. Microwave Theory Tech. 35, 370-377 (1987).
    [CrossRef]
  19. J. A. Portí, J. A. Morente, A. Salinas, M. Rodriguez-Sola, and C. Blanchard, “On the circuit description of TLM nodes,” Int. J. Electron. 93, 479-491 (2006).
    [CrossRef]
  20. P. P. M. So, H. Du, and W. J. R. Hoefer, “Modeling of metamaterials with negative refractive index using 2-D shunt and 3-D SCN TLM networks,” IEEE Trans. Microwave Theory Tech. 53, 1496-1505 (2005).
    [CrossRef]
  21. C. Blanchard, J. A. Portí, J. A. Morente, A. Salinas, and B.-I. Wu, “Numerical determination of frequency behavior in cloaking structures based on L-C distributed networks with TLM method,” Opt. Express 16, 9344-9350 (2008).
    [CrossRef] [PubMed]
  22. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).

2009 (1)

2008 (7)

2007 (6)

F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, “Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect,” Opt. Lett. 32, 1069-1071 (2007).
[CrossRef] [PubMed]

H. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99, 113903 (2007).
[CrossRef] [PubMed]

B. Zhang, H. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, “Response of a cylindrical invisibility cloak to electromagnetic waves,” Phys. Rev. B 76, 121101(R) (2007).
[CrossRef]

H. Chen, Z. Liang, P. Yao, X. Jiang, H. Ma, and C. T. Chan, “Extending the bandwidth of electromagnetic cloaks,” Phys. Rev. B 76, 241104(R) (2007).
[CrossRef]

M. Yan, Z. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett. 99, 233901 (2007).
[CrossRef]

2006 (4)

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

J. A. Portí, J. A. Morente, A. Salinas, M. Rodriguez-Sola, and C. Blanchard, “On the circuit description of TLM nodes,” Int. J. Electron. 93, 479-491 (2006).
[CrossRef]

2005 (1)

P. P. M. So, H. Du, and W. J. R. Hoefer, “Modeling of metamaterials with negative refractive index using 2-D shunt and 3-D SCN TLM networks,” IEEE Trans. Microwave Theory Tech. 53, 1496-1505 (2005).
[CrossRef]

1987 (1)

P. B. Johns, “A symmetrical condensed node for the TLM method,” IEEE Trans. Microwave Theory Tech. 35, 370-377 (1987).
[CrossRef]

1971 (1)

P. B. Johns and R. L. Beurle, “Numerical solution of 2-dimensional scattering problems using a transmission-line matrix,” Proc. Inst. Electr. Eng. 118, 1203-1208 (1971).
[CrossRef]

Alùç, A.

Argyropoulos, C.

Balanis, C. A.

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).

Beurle, R. L.

P. B. Johns and R. L. Beurle, “Numerical solution of 2-dimensional scattering problems using a transmission-line matrix,” Proc. Inst. Electr. Eng. 118, 1203-1208 (1971).
[CrossRef]

Blanchard, C.

Castaldi, G.

Chan, C. T.

H. Chen, X. Luo, H. Ma, and C. T. Chan, “The anti-cloak,” Opt. Express 16, 14603-14608 (2008).
[CrossRef] [PubMed]

H. Chen, Z. Liang, P. Yao, X. Jiang, H. Ma, and C. T. Chan, “Extending the bandwidth of electromagnetic cloaks,” Phys. Rev. B 76, 241104(R) (2007).
[CrossRef]

Chen, H.

H. Chen, X. Luo, H. Ma, and C. T. Chan, “The anti-cloak,” Opt. Express 16, 14603-14608 (2008).
[CrossRef] [PubMed]

B. Zhang, H. Chen, B.-I. Wu, and J. A. Kong, “Extraordinary surface voltage effect in the invisibility cloak with an active device inside,” Phys. Rev. Lett. 100, 063904 (2008).
[CrossRef] [PubMed]

B. Zhang, H. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, “Response of a cylindrical invisibility cloak to electromagnetic waves,” Phys. Rev. B 76, 121101(R) (2007).
[CrossRef]

H. Chen, Z. Liang, P. Yao, X. Jiang, H. Ma, and C. T. Chan, “Extending the bandwidth of electromagnetic cloaks,” Phys. Rev. B 76, 241104(R) (2007).
[CrossRef]

H. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[CrossRef]

Du, H.

P. P. M. So, H. Du, and W. J. R. Hoefer, “Modeling of metamaterials with negative refractive index using 2-D shunt and 3-D SCN TLM networks,” IEEE Trans. Microwave Theory Tech. 53, 1496-1505 (2005).
[CrossRef]

Engheta, N.

Galdi, V.

Gallina, I.

Guenneau, S.

Hao, Y.

Hoefer, W. J. R.

P. P. M. So, H. Du, and W. J. R. Hoefer, “Modeling of metamaterials with negative refractive index using 2-D shunt and 3-D SCN TLM networks,” IEEE Trans. Microwave Theory Tech. 53, 1496-1505 (2005).
[CrossRef]

Jiang, X.

Z. Liang, P. Yao, X. Sun, and X. Jiang, “The physical picture and the essential elements of the dynamical process for dispersive cloaking structures,” Appl. Phys. Lett. 92, 131118 (2008).
[CrossRef]

H. Chen, Z. Liang, P. Yao, X. Jiang, H. Ma, and C. T. Chan, “Extending the bandwidth of electromagnetic cloaks,” Phys. Rev. B 76, 241104(R) (2007).
[CrossRef]

Johns, P. B.

P. B. Johns, “A symmetrical condensed node for the TLM method,” IEEE Trans. Microwave Theory Tech. 35, 370-377 (1987).
[CrossRef]

P. B. Johns and R. L. Beurle, “Numerical solution of 2-dimensional scattering problems using a transmission-line matrix,” Proc. Inst. Electr. Eng. 118, 1203-1208 (1971).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Kong, J. A.

B. Zhang, H. Chen, B.-I. Wu, and J. A. Kong, “Extraordinary surface voltage effect in the invisibility cloak with an active device inside,” Phys. Rev. Lett. 100, 063904 (2008).
[CrossRef] [PubMed]

C. Blanchard, J. A. Portí, B.-I. Wu, J. A. Morente, A. Salinas, and J. A. Kong, “Time-domain simulation of electromagnetic cloaking structures with TLM method,” Opt. Express 16, 6461-6470 (2008).
[CrossRef] [PubMed]

B. Zhang, H. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, “Response of a cylindrical invisibility cloak to electromagnetic waves,” Phys. Rev. B 76, 121101(R) (2007).
[CrossRef]

H. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

Liang, Z.

Z. Liang, P. Yao, X. Sun, and X. Jiang, “The physical picture and the essential elements of the dynamical process for dispersive cloaking structures,” Appl. Phys. Lett. 92, 131118 (2008).
[CrossRef]

H. Chen, Z. Liang, P. Yao, X. Jiang, H. Ma, and C. T. Chan, “Extending the bandwidth of electromagnetic cloaks,” Phys. Rev. B 76, 241104(R) (2007).
[CrossRef]

Luo, X.

Luo, Y.

B. Zhang, H. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, “Response of a cylindrical invisibility cloak to electromagnetic waves,” Phys. Rev. B 76, 121101(R) (2007).
[CrossRef]

Ma, H.

H. Chen, X. Luo, H. Ma, and C. T. Chan, “The anti-cloak,” Opt. Express 16, 14603-14608 (2008).
[CrossRef] [PubMed]

H. Chen, Z. Liang, P. Yao, X. Jiang, H. Ma, and C. T. Chan, “Extending the bandwidth of electromagnetic cloaks,” Phys. Rev. B 76, 241104(R) (2007).
[CrossRef]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Morente, J. A.

Neff, C. W.

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99, 113903 (2007).
[CrossRef] [PubMed]

Nicolet, A.

Pendry, J. B.

F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, “Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect,” Opt. Lett. 32, 1069-1071 (2007).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[CrossRef]

Popa, B.-I.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[CrossRef]

Portí, J. A.

Qiu, M.

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99, 113903 (2007).
[CrossRef] [PubMed]

M. Yan, Z. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett. 99, 233901 (2007).
[CrossRef]

Ran, L.

B. Zhang, H. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, “Response of a cylindrical invisibility cloak to electromagnetic waves,” Phys. Rev. B 76, 121101(R) (2007).
[CrossRef]

Rodriguez-Sola, M.

J. A. Portí, J. A. Morente, A. Salinas, M. Rodriguez-Sola, and C. Blanchard, “On the circuit description of TLM nodes,” Int. J. Electron. 93, 479-491 (2006).
[CrossRef]

Ruan, Z.

M. Yan, Z. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett. 99, 233901 (2007).
[CrossRef]

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99, 113903 (2007).
[CrossRef] [PubMed]

Salinas, A.

Schurig, D.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[CrossRef]

So, P. P. M.

P. P. M. So, H. Du, and W. J. R. Hoefer, “Modeling of metamaterials with negative refractive index using 2-D shunt and 3-D SCN TLM networks,” IEEE Trans. Microwave Theory Tech. 53, 1496-1505 (2005).
[CrossRef]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Sun, X.

Z. Liang, P. Yao, X. Sun, and X. Jiang, “The physical picture and the essential elements of the dynamical process for dispersive cloaking structures,” Appl. Phys. Lett. 92, 131118 (2008).
[CrossRef]

Wu, B.-I.

B. Zhang, H. Chen, B.-I. Wu, and J. A. Kong, “Extraordinary surface voltage effect in the invisibility cloak with an active device inside,” Phys. Rev. Lett. 100, 063904 (2008).
[CrossRef] [PubMed]

C. Blanchard, J. A. Portí, B.-I. Wu, J. A. Morente, A. Salinas, and J. A. Kong, “Time-domain simulation of electromagnetic cloaking structures with TLM method,” Opt. Express 16, 6461-6470 (2008).
[CrossRef] [PubMed]

C. Blanchard, J. A. Portí, J. A. Morente, A. Salinas, and B.-I. Wu, “Numerical determination of frequency behavior in cloaking structures based on L-C distributed networks with TLM method,” Opt. Express 16, 9344-9350 (2008).
[CrossRef] [PubMed]

H. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

B. Zhang, H. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, “Response of a cylindrical invisibility cloak to electromagnetic waves,” Phys. Rev. B 76, 121101(R) (2007).
[CrossRef]

Yan, M.

M. Yan, Z. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett. 99, 233901 (2007).
[CrossRef]

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99, 113903 (2007).
[CrossRef] [PubMed]

Yao, P.

Z. Liang, P. Yao, X. Sun, and X. Jiang, “The physical picture and the essential elements of the dynamical process for dispersive cloaking structures,” Appl. Phys. Lett. 92, 131118 (2008).
[CrossRef]

H. Chen, Z. Liang, P. Yao, X. Jiang, H. Ma, and C. T. Chan, “Extending the bandwidth of electromagnetic cloaks,” Phys. Rev. B 76, 241104(R) (2007).
[CrossRef]

Zhang, B.

B. Zhang, H. Chen, B.-I. Wu, and J. A. Kong, “Extraordinary surface voltage effect in the invisibility cloak with an active device inside,” Phys. Rev. Lett. 100, 063904 (2008).
[CrossRef] [PubMed]

B. Zhang, H. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, “Response of a cylindrical invisibility cloak to electromagnetic waves,” Phys. Rev. B 76, 121101(R) (2007).
[CrossRef]

H. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

Zhao, Y.

Zolla, F.

Appl. Phys. Lett. (1)

Z. Liang, P. Yao, X. Sun, and X. Jiang, “The physical picture and the essential elements of the dynamical process for dispersive cloaking structures,” Appl. Phys. Lett. 92, 131118 (2008).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

P. B. Johns, “A symmetrical condensed node for the TLM method,” IEEE Trans. Microwave Theory Tech. 35, 370-377 (1987).
[CrossRef]

P. P. M. So, H. Du, and W. J. R. Hoefer, “Modeling of metamaterials with negative refractive index using 2-D shunt and 3-D SCN TLM networks,” IEEE Trans. Microwave Theory Tech. 53, 1496-1505 (2005).
[CrossRef]

Int. J. Electron. (1)

J. A. Portí, J. A. Morente, A. Salinas, M. Rodriguez-Sola, and C. Blanchard, “On the circuit description of TLM nodes,” Int. J. Electron. 93, 479-491 (2006).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. B (2)

B. Zhang, H. Chen, B.-I. Wu, Y. Luo, L. Ran, and J. A. Kong, “Response of a cylindrical invisibility cloak to electromagnetic waves,” Phys. Rev. B 76, 121101(R) (2007).
[CrossRef]

H. Chen, Z. Liang, P. Yao, X. Jiang, H. Ma, and C. T. Chan, “Extending the bandwidth of electromagnetic cloaks,” Phys. Rev. B 76, 241104(R) (2007).
[CrossRef]

Phys. Rev. E (1)

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006).
[CrossRef]

Phys. Rev. Lett. (4)

M. Yan, Z. Ruan, and M. Qiu, “Cylindrical invisibility cloak with simplified material parameters is inherently visible,” Phys. Rev. Lett. 99, 233901 (2007).
[CrossRef]

B. Zhang, H. Chen, B.-I. Wu, and J. A. Kong, “Extraordinary surface voltage effect in the invisibility cloak with an active device inside,” Phys. Rev. Lett. 100, 063904 (2008).
[CrossRef] [PubMed]

H. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99, 113903 (2007).
[CrossRef] [PubMed]

Proc. Inst. Electr. Eng. (1)

P. B. Johns and R. L. Beurle, “Numerical solution of 2-dimensional scattering problems using a transmission-line matrix,” Proc. Inst. Electr. Eng. 118, 1203-1208 (1971).
[CrossRef]

Science (2)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).
[CrossRef] [PubMed]

Other (1)

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Upper view of a two-dimensional node for TE modes in cylindrical coordinates. Four link lines (with admittance Y 0 ) are connected to the four adjacent nodes and allow the propagation of the pulses into the mesh. The four other stub lines are connected at the node center without being connected to any other lines; the capacitive stub (with normalized admittance Y z ) is an open circuit; the two inductive stubs (with normalized impedance Z r and Z φ ) are short circuits; and the lossy stub (with normalized admittance G z ) is infinite.

Fig. 2
Fig. 2

Electric field mapping for four configurations. (a) Non-ideal ( c = 0.001 ) cloaking structure with free space in the extended layer; (b) non-ideal ( c = 0.001 ) cloaking structure with anticloak in the extended layer; (c) ideal ( c = 0 ) cloaking structure with anticloak in the extended layer; (d) PEC cylinder with radius d. Five regions are apparent: (1) PEC cylinder; (2) extended layer; (3) cloaking shell; (4) free space; (5) scattered field region.

Fig. 3
Fig. 3

Simple model illustrating why a normally incident wave cannot penetrate a slightly dispersive ideal cloak/anticloak double-layered slab.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

r = ( r R 2 ) R 2 R 1 R 2 c + R 2 , φ = φ , z = z ,
ε r = μ r = r a r ,
ε φ = μ φ = r r a ,
ε z = μ z = ( R 2 c R 2 R 1 ) 2 r a r ,
r = ( r d ) R 0 R 1 d c + R 0 , φ = φ , z = z ,
ε r = μ r = r b r ,
ε φ = μ φ = r r b ,
ε z = μ z = ( d c R 0 R 1 ) 2 r b r ,
S = [ a r c b r c g i r 0 c a φ c b φ g 0 i φ b r c a r c g i r 0 c b φ c a φ g 0 i φ c c c c f 0 0 e r 0 e r 0 0 h r 0 0 e φ 0 e φ 0 0 h φ ] .
Z r = 2 μ r μ 0 Z 0 Δ t r Δ φ Δ z Δ r 2 ,
Z φ = 2 μ φ μ 0 Z 0 Δ t Δ r Δ z r Δ φ 2 ,
Y z = 2 ε z ε 0 Y 0 Δ t r Δ φ Δ r Δ z 4 ,
a k = 2 4 + Y z + G z 2 2 + Z k , f = Y z G z 4 Y z + G z + 4 ,
b k = 2 4 + Y z + G z Z k 2 + Z k , g = 2 Y z 4 + Y z + G z ,
c = 2 4 + Y z + G z , h k = 2 Z k 2 + Z k ,
e k = 2 Z k 2 + Z k , i k = 2 2 + Z k ,

Metrics