Abstract

Soliton formation during dispersive compression of chirped few-picosecond pulses at the microjoule level in a hollow-core photonic bandgap (HC-PBG) fiber is studied by numerical simulations. Long-pass filtering of the emerging frequency-shifted solitons is investigated with the objective of obtaining pedestal-free output pulses. Particular emphasis is placed on the influence of the air pressure in the HC-PBG fiber. It is found that a reduction in air pressure enables an increase in the fraction of power going into the most redshifted soliton and also improves the quality of the filtered pulse at high powers. This allows a scaling of the output pulse energy toward the microjoule level.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. S. De Matos, J. R. Taylor, T. P. Hansen, K. P. Hansen, and J. Broeng, “All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber,” Opt. Express 11, 2832-2837 (2003).
    [CrossRef] [PubMed]
  2. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, and A. Tunnermann, “All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber,” Opt. Express 11, 3332-3337 (2003).
    [CrossRef] [PubMed]
  3. C. K. Nielsen, K. G. Jespersen, and S. R. Keiding, “A 158 fs 5.3 nJ fiber-laser system at 1 μm using photonic bandgap fibers for dispersion control and pulse compression,” Opt. Express 14, 6063-6068 (2006).
    [CrossRef] [PubMed]
  4. C. Billet, J. M. Dudley, N. Joly, and J. C. Knight, “Intermediate asymptotic evolution and photonic bandgap fiber compression of optical similaritons around 1550 nm,” Opt. Express 13, 3236-3241 (2005).
    [CrossRef] [PubMed]
  5. J. Lægsgaard and P. J. Roberts, “Dispersive pulse compression in hollow-core photonic bandgap fibers,” Opt. Express 16, 9628-9644 (2008).
    [CrossRef] [PubMed]
  6. D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, “Soliton pulse compression in photonic band-gap fibers,” Opt. Express 13, 6153-6159 (2005).
    [CrossRef] [PubMed]
  7. F. Gerome, K. Cook, A. K. George, W. J. Wadsworth, and J. C. Knight, “Delivery of sub-100 fs pulses through 8 m of hollow-core fiber using soliton compression,” Opt. Express 15, 7126-7131 (2007).
    [CrossRef] [PubMed]
  8. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  9. J. Laegsgaard, “Soliton formation in hollow-core photonic bandgap fibers,” Appl. Phys. B 95, 293-300 (2009).
    [CrossRef]
  10. J. Lægsgaard and P. J. Roberts, “Compression of realistic laser pulses in hollow-core photonic bandgap fibers,” J. Opt. Soc. Am. B 26, 783-791 (2009).
    [CrossRef]
  11. F. Gérôme, J. Dupriez, J. C. Knight, and W. J. Wadsworth, “High power tunable femtosecond soliton source using hollow-core photonic bandgap fiber, and its use for frequency doubling,” Opt. Express 16, 2381-2386 (2008).
    [CrossRef] [PubMed]
  12. JCMwave GmbH, www.jcmwave.com.
  13. E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade, and A. Mysyrowicz, “Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses,” J. Opt. Soc. Am. B 14, 650-660 (1997).
    [CrossRef]
  14. M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett. 23, 382-384 (1998).
    [CrossRef]
  15. J. Lægsgaard, “Control of fiber laser mode-locking by narrow-band Bragg gratings,” J. Phys. B 41, 095401 (2008).
    [CrossRef]
  16. D. Turchinovich, X. Liu, and J. Laegsgaard, “Monolithic all-pm femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber,” Opt. Express 16, 14004-14014 (2008).
    [CrossRef] [PubMed]
  17. C. J. Hensley, M. A. Foster, B. Shim, and A. L. Gaeta, “Extremely high coupling and transmission of high-powered-femtosecond pulses in hollow-core photonic band-gap fiber,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, (Optical Society of America, 2008), paper JFG1.
    [PubMed]

2009

2008

2007

2006

2005

2003

1998

1997

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Billet, C.

Broeng, J.

Cook, K.

De Matos, C. J. S.

Dudley, J. M.

Dupriez, J.

Foster, M. A.

C. J. Hensley, M. A. Foster, B. Shim, and A. L. Gaeta, “Extremely high coupling and transmission of high-powered-femtosecond pulses in hollow-core photonic band-gap fiber,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, (Optical Society of America, 2008), paper JFG1.
[PubMed]

Franco, M. A.

Gaeta, A. L.

D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, “Soliton pulse compression in photonic band-gap fibers,” Opt. Express 13, 6153-6159 (2005).
[CrossRef] [PubMed]

C. J. Hensley, M. A. Foster, B. Shim, and A. L. Gaeta, “Extremely high coupling and transmission of high-powered-femtosecond pulses in hollow-core photonic band-gap fiber,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, (Optical Society of America, 2008), paper JFG1.
[PubMed]

Gallagher, M. T.

George, A. K.

Gerome, F.

Gérôme, F.

Grillon, G.

Hansen, K. P.

Hansen, T. P.

Hensley, C. J.

D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, “Soliton pulse compression in photonic band-gap fibers,” Opt. Express 13, 6153-6159 (2005).
[CrossRef] [PubMed]

C. J. Hensley, M. A. Foster, B. Shim, and A. L. Gaeta, “Extremely high coupling and transmission of high-powered-femtosecond pulses in hollow-core photonic band-gap fiber,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, (Optical Society of America, 2008), paper JFG1.
[PubMed]

Jespersen, K. G.

Joly, N.

Keiding, S. R.

Knight, J. C.

Koch, K. W.

Laegsgaard, J.

J. Laegsgaard, “Soliton formation in hollow-core photonic bandgap fibers,” Appl. Phys. B 95, 293-300 (2009).
[CrossRef]

Lægsgaard, J.

Laegsgaard, J.

Lægsgaard, J.

J. Lægsgaard, “Control of fiber laser mode-locking by narrow-band Bragg gratings,” J. Phys. B 41, 095401 (2008).
[CrossRef]

Limpert, J.

Liu, X.

Mlejnek, M.

Moloney, J. V.

Mysyrowicz, A.

Nibbering, E. T. J.

Nielsen, C. K.

Nolte, S.

Ouzounov, D. G.

Prade, B. S.

Roberts, P. J.

Schreiber, T.

Shim, B.

C. J. Hensley, M. A. Foster, B. Shim, and A. L. Gaeta, “Extremely high coupling and transmission of high-powered-femtosecond pulses in hollow-core photonic band-gap fiber,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, (Optical Society of America, 2008), paper JFG1.
[PubMed]

Taylor, J. R.

Tunnermann, A.

Turchinovich, D.

Venkateraman, N.

Wadsworth, W. J.

Wright, E. M.

Zellmer, H.

Appl. Phys. B

J. Laegsgaard, “Soliton formation in hollow-core photonic bandgap fibers,” Appl. Phys. B 95, 293-300 (2009).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. B

J. Lægsgaard, “Control of fiber laser mode-locking by narrow-band Bragg gratings,” J. Phys. B 41, 095401 (2008).
[CrossRef]

Opt. Express

D. Turchinovich, X. Liu, and J. Laegsgaard, “Monolithic all-pm femtosecond Yb-fiber laser stabilized with a narrow-band fiber Bragg grating and pulse-compressed in a hollow-core photonic crystal fiber,” Opt. Express 16, 14004-14014 (2008).
[CrossRef] [PubMed]

F. Gérôme, J. Dupriez, J. C. Knight, and W. J. Wadsworth, “High power tunable femtosecond soliton source using hollow-core photonic bandgap fiber, and its use for frequency doubling,” Opt. Express 16, 2381-2386 (2008).
[CrossRef] [PubMed]

C. J. S. De Matos, J. R. Taylor, T. P. Hansen, K. P. Hansen, and J. Broeng, “All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber,” Opt. Express 11, 2832-2837 (2003).
[CrossRef] [PubMed]

J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, and A. Tunnermann, “All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber,” Opt. Express 11, 3332-3337 (2003).
[CrossRef] [PubMed]

C. K. Nielsen, K. G. Jespersen, and S. R. Keiding, “A 158 fs 5.3 nJ fiber-laser system at 1 μm using photonic bandgap fibers for dispersion control and pulse compression,” Opt. Express 14, 6063-6068 (2006).
[CrossRef] [PubMed]

C. Billet, J. M. Dudley, N. Joly, and J. C. Knight, “Intermediate asymptotic evolution and photonic bandgap fiber compression of optical similaritons around 1550 nm,” Opt. Express 13, 3236-3241 (2005).
[CrossRef] [PubMed]

J. Lægsgaard and P. J. Roberts, “Dispersive pulse compression in hollow-core photonic bandgap fibers,” Opt. Express 16, 9628-9644 (2008).
[CrossRef] [PubMed]

D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, “Soliton pulse compression in photonic band-gap fibers,” Opt. Express 13, 6153-6159 (2005).
[CrossRef] [PubMed]

F. Gerome, K. Cook, A. K. George, W. J. Wadsworth, and J. C. Knight, “Delivery of sub-100 fs pulses through 8 m of hollow-core fiber using soliton compression,” Opt. Express 15, 7126-7131 (2007).
[CrossRef] [PubMed]

Opt. Lett.

Other

C. J. Hensley, M. A. Foster, B. Shim, and A. L. Gaeta, “Extremely high coupling and transmission of high-powered-femtosecond pulses in hollow-core photonic band-gap fiber,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, (Optical Society of America, 2008), paper JFG1.
[PubMed]

JCMwave GmbH, www.jcmwave.com.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Dispersion curve for the HC-PBG fiber investigated in the present work. Inset shows the modeled fiber structure.

Fig. 2
Fig. 2

Schematic of the fiber laser layout studied in the present work.

Fig. 3
Fig. 3

(a) Spectra and (b) temporal profiles of the amplified oscillator pulses launched into the HC-PBG compressor. The pulses have been scaled by the ratio between their energy and the lowest pulse energy (694 nJ) to facilitate comparison. The amplifier parameters used to obtain these pulses are given in Table 1.

Fig. 4
Fig. 4

(a) Spectra of the 3350 nJ pulse after HC-PBG propagation to z m a x , the point where the peak power of the long-pass filtered soliton was at a maximum. (b) Temporal profiles of the filtered pulses at z = z max . The pulses have been shifted to t = 0 to facilitate comparison. Inset shows the pulse profiles on a logarithmic scale.

Fig. 5
Fig. 5

(a) z m a x , the HC-PBG propagation distance maximizing the peak power of the long-pass filtered soliton as a function of HC-PBG air pressure for the different pulse energies. (b) Peak power at z m a x versus air pressure. (c) Soliton energy as a fraction of the total pulse energy at z m a x versus air pressure. (d) Temporal FWHM at z m a x versus air pressure.

Tables (1)

Tables Icon

Table 1 MOPA Parameters a

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

A ( z , ω ) z = i ω c exp ( i β ( ω ) z ) ν = 1 2 n 2 ( ν ) [ A e f f ( ν ) ( ω ) ] 1 / 4 1 ( 2 π ) 2 × d ω 1 2 A ̂ ( ν ) ( z , ω 1 ) A ̂ ( ν ) ( z , ω 2 ) A ̂ ( ν ) ( z , ω 1 + ω 2 ω ) R ν ( ω ω 1 ) ,
A ̂ ( ν ) ( z , ω ) = A ( z , ω ) exp ( i β ( ω ) z ) [ A e f f ( ν ) ( ω ) ] 1 / 4 ,
A e f f ( ν ) = μ 0 [ Re   d r e × h z ̂ ] 2 ε 0 n ν 2 ν d r | e ( r ) | 4 .
E ( r , t ) = 1 2 π d ω A ( z , ω ) e ( r , ω ) exp ( i ( β ( ω ) z ω t ) ) ,
R ν ( t ) = δ ( t ) + f ν τ 1 ν 2 + τ 2 ν 2 τ 1 ν τ 2 ν 2 sin ( t / τ 1 ν ) exp ( t / τ 2 ν ) ,
F ( λ ) = 1 exp [ ( λ f λ ) / Δ λ ] + 1 .
γ K ( ν ) = ω n 2 ( ν ) c A e f f ( ν ) ,     γ R ( ν ) = f ν γ K ( ν ) .

Metrics