Abstract

In the first of this series of papers [J. Opt. Soc. Am. B 26, 1736 (2009) ], a new kinetic model, which includes most of the major photochemical and nonlocal photopolymerization driven diffusion effects, was proposed. Predictions made using the model were presented, and the numerical convergence of these simulations were examined when retaining higher-concentration harmonics. The validity and generality of the model is examined by applying it to fit experimental data for two different types of photopolymer material appearing in the literature. The first of these photopolymer materials involves an acrylamide monomer in a polyvinylalcohol matrix. The second is a more complex photopolymer in an epoxy resin matrix. Using the new model, key material parameters are extracted by numerically fitting experimentally obtained diffraction efficiency growth curves. The growth curves used include data captured both during exposure and post-exposure, allowing examination and analysis of “dark reactions.”

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. General model,” J. Opt. Soc. Am. B 26, 1736-1745 (2009).
    [CrossRef]
  2. J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449-463 (2001).
    [CrossRef]
  3. M. R. Gleeson, J. V. Kelly, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
    [CrossRef]
  4. T. Trentler, J. Boyd, and V. Colvin, “Epoxy resin photopolymer composites for volume holography,” Chem. Mater. 12, 1431-1438 (2000).
    [CrossRef]
  5. M. R. Gleeson, “Analysis of the photochemical kinetics in photopolymers for holographic data storage and hybrid photonic circuits,” Ph.D. thesis (University College Dublin, 2008).
  6. M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396-406 (2008).
    [CrossRef]
  7. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990-7004 (2005).
    [CrossRef] [PubMed]
  8. V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913-5923 (1997).
    [CrossRef]
  9. I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465-1477 (1998).
    [CrossRef]
  10. L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Belendez, and A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37, 4496-4499 (1998).
    [CrossRef]
  11. M. R. Gleeson, S. Liu, S. O'Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
    [CrossRef]
  12. S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behavior of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528-536 (2009).
    [CrossRef]
  13. G. Odian, Principles of Polymerization (Wiley, 1991).
  14. A. C. Sullivan, M. W. Grabowski, and R. R. McLeod, “Three-dimensional direct-write lithography into photopolymer,” Appl. Opt. 46, 295-301 (2007).
    [CrossRef] [PubMed]
  15. J. Jakubiak and J. F. Rabek, “Photoinitiators for visible light polymerisation,” Polimery 44, 447-461 (1999).
  16. S. H. Lin, Y.-N. Hsiao, and K. Y. Hsu, “Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A, Pure Appl. Opt. 11, 024012 (2009).
    [CrossRef]
  17. D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photokinetic study of Irgacure 784,” Proc. SPIE 7358, 735804 ( 2009).
    [CrossRef]
  18. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2945 (1969).
  19. M. D. Goodner, H. R. Lee, and C. N. Bowman, “Method for determining the kinetic parameters in diffusion-controlled free-radical homo-polymerizations,” Ind. Eng. Chem. Res. 36, 1247-1252 (1997).
    [CrossRef]
  20. G. H. Zhao and P. Mouroulis, “Diffusion-model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929-1939 (1994).
    [CrossRef]
  21. J. H. Kwon, H. C. Hwang, and K. C. Woo, “Analysis of temporal behavior of beams diffracted by volume gratings formed in photopolymers,” J. Opt. Soc. Am. B 16, 1651-1657 (1999).
    [CrossRef]
  22. J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108-1114 (2000).
    [CrossRef]
  23. J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Adjusted intensity nonlocal diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B 19, 621-629 (2002).
    [CrossRef]
  24. C. Decker, B. Elzaouk, and D. Decker, “Kinetic study of ultrafast photopolymerizations reactions,” J. Macromol. Sci., Pure Appl. Chem. A33, 173-190 (1996).
  25. H. M. Karpov, V. V. Obukhovsky, and T. N. Smirnova, “Generalized model of holographic recording in photopolymer materials,” Semicond. Phys., Quantum Electron. Optoelectron. 2, 66-70 (1999).
  26. M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku, “Analysis of photopolymer media of holographic data storage using non-local polymerization driven diffusion model,” Japanese J. Appl. Phys. Part 1 46, 3438-3447 (2007).
    [CrossRef]
  27. M. Toishi, T. Takeda, K. Tanaka, T. Tanaka, A. Fukumoto, and K. Watanabe, “Two-dimensional simulation of holographic data storage medium for multiplexed recording,” Opt. Express 16, 2829-2839 (2008).
    [CrossRef] [PubMed]
  28. R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, “Microholographic multiplayer optical disk data storage,” Appl. Opt. 44, 3197-3207 (2005).
    [CrossRef] [PubMed]
  29. InPhase Technologies, “www.inphase-technologies.com” Tapestry Media, (2007).
  30. S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639-662 (2003).
    [CrossRef]
  31. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
    [CrossRef]
  32. F. T. O'Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40, 4129-4132 (2005).
    [CrossRef]
  33. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951-965 (2004).
    [CrossRef]

2009

M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. General model,” J. Opt. Soc. Am. B 26, 1736-1745 (2009).
[CrossRef]

S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behavior of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528-536 (2009).
[CrossRef]

S. H. Lin, Y.-N. Hsiao, and K. Y. Hsu, “Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A, Pure Appl. Opt. 11, 024012 (2009).
[CrossRef]

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photokinetic study of Irgacure 784,” Proc. SPIE 7358, 735804 ( 2009).
[CrossRef]

2008

2007

M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku, “Analysis of photopolymer media of holographic data storage using non-local polymerization driven diffusion model,” Japanese J. Appl. Phys. Part 1 46, 3438-3447 (2007).
[CrossRef]

M. R. Gleeson, J. V. Kelly, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[CrossRef]

A. C. Sullivan, M. W. Grabowski, and R. R. McLeod, “Three-dimensional direct-write lithography into photopolymer,” Appl. Opt. 46, 295-301 (2007).
[CrossRef] [PubMed]

2006

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

2005

2004

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951-965 (2004).
[CrossRef]

2003

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639-662 (2003).
[CrossRef]

2002

2001

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449-463 (2001).
[CrossRef]

2000

T. Trentler, J. Boyd, and V. Colvin, “Epoxy resin photopolymer composites for volume holography,” Chem. Mater. 12, 1431-1438 (2000).
[CrossRef]

J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108-1114 (2000).
[CrossRef]

1999

H. M. Karpov, V. V. Obukhovsky, and T. N. Smirnova, “Generalized model of holographic recording in photopolymer materials,” Semicond. Phys., Quantum Electron. Optoelectron. 2, 66-70 (1999).

J. Jakubiak and J. F. Rabek, “Photoinitiators for visible light polymerisation,” Polimery 44, 447-461 (1999).

J. H. Kwon, H. C. Hwang, and K. C. Woo, “Analysis of temporal behavior of beams diffracted by volume gratings formed in photopolymers,” J. Opt. Soc. Am. B 16, 1651-1657 (1999).
[CrossRef]

1998

I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465-1477 (1998).
[CrossRef]

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Belendez, and A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37, 4496-4499 (1998).
[CrossRef]

1997

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913-5923 (1997).
[CrossRef]

M. D. Goodner, H. R. Lee, and C. N. Bowman, “Method for determining the kinetic parameters in diffusion-controlled free-radical homo-polymerizations,” Ind. Eng. Chem. Res. 36, 1247-1252 (1997).
[CrossRef]

1996

C. Decker, B. Elzaouk, and D. Decker, “Kinetic study of ultrafast photopolymerizations reactions,” J. Macromol. Sci., Pure Appl. Chem. A33, 173-190 (1996).

1994

G. H. Zhao and P. Mouroulis, “Diffusion-model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929-1939 (1994).
[CrossRef]

1969

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2945 (1969).

Acebal, P.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639-662 (2003).
[CrossRef]

Aubrecht, I.

I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465-1477 (1998).
[CrossRef]

Belendez, A.

Betsuyaku, K.

M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku, “Analysis of photopolymer media of holographic data storage using non-local polymerization driven diffusion model,” Japanese J. Appl. Phys. Part 1 46, 3438-3447 (2007).
[CrossRef]

Blaya, S.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639-662 (2003).
[CrossRef]

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Belendez, and A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37, 4496-4499 (1998).
[CrossRef]

Bowman, C. N.

M. D. Goodner, H. R. Lee, and C. N. Bowman, “Method for determining the kinetic parameters in diffusion-controlled free-radical homo-polymerizations,” Ind. Eng. Chem. Res. 36, 1247-1252 (1997).
[CrossRef]

Boyd, J.

T. Trentler, J. Boyd, and V. Colvin, “Epoxy resin photopolymer composites for volume holography,” Chem. Mater. 12, 1431-1438 (2000).
[CrossRef]

Bunning, T. J.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951-965 (2004).
[CrossRef]

Carr, A. J.

F. T. O'Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40, 4129-4132 (2005).
[CrossRef]

Carretero, L.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639-662 (2003).
[CrossRef]

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Belendez, and A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37, 4496-4499 (1998).
[CrossRef]

Close, C. E.

Colvin, V.

T. Trentler, J. Boyd, and V. Colvin, “Epoxy resin photopolymer composites for volume holography,” Chem. Mater. 12, 1431-1438 (2000).
[CrossRef]

Colvin, V. L.

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913-5923 (1997).
[CrossRef]

Daiber, A. J.

Daniels, S. M.

F. T. O'Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40, 4129-4132 (2005).
[CrossRef]

Decker, C.

C. Decker, B. Elzaouk, and D. Decker, “Kinetic study of ultrafast photopolymerizations reactions,” J. Macromol. Sci., Pure Appl. Chem. A33, 173-190 (1996).

Decker, D.

C. Decker, B. Elzaouk, and D. Decker, “Kinetic study of ultrafast photopolymerizations reactions,” J. Macromol. Sci., Pure Appl. Chem. A33, 173-190 (1996).

Elzaouk, B.

C. Decker, B. Elzaouk, and D. Decker, “Kinetic study of ultrafast photopolymerizations reactions,” J. Macromol. Sci., Pure Appl. Chem. A33, 173-190 (1996).

Fimia, A.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639-662 (2003).
[CrossRef]

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Belendez, and A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37, 4496-4499 (1998).
[CrossRef]

Fukumoto, A.

Gallego, S.

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990-7004 (2005).
[CrossRef] [PubMed]

Gleeson, M. R.

M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. General model,” J. Opt. Soc. Am. B 26, 1736-1745 (2009).
[CrossRef]

S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behavior of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528-536 (2009).
[CrossRef]

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photokinetic study of Irgacure 784,” Proc. SPIE 7358, 735804 ( 2009).
[CrossRef]

M. R. Gleeson, S. Liu, S. O'Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396-406 (2008).
[CrossRef]

M. R. Gleeson, J. V. Kelly, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

F. T. O'Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40, 4129-4132 (2005).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990-7004 (2005).
[CrossRef] [PubMed]

M. R. Gleeson, “Analysis of the photochemical kinetics in photopolymers for holographic data storage and hybrid photonic circuits,” Ph.D. thesis (University College Dublin, 2008).

Goodner, M. D.

M. D. Goodner, H. R. Lee, and C. N. Bowman, “Method for determining the kinetic parameters in diffusion-controlled free-radical homo-polymerizations,” Ind. Eng. Chem. Res. 36, 1247-1252 (1997).
[CrossRef]

Grabowski, M. W.

Harris, A. L.

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913-5923 (1997).
[CrossRef]

Hesselink, L.

Hsiao, Y.-N.

S. H. Lin, Y.-N. Hsiao, and K. Y. Hsu, “Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A, Pure Appl. Opt. 11, 024012 (2009).
[CrossRef]

Hsu, K. Y.

S. H. Lin, Y.-N. Hsiao, and K. Y. Hsu, “Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A, Pure Appl. Opt. 11, 024012 (2009).
[CrossRef]

Hwang, H. C.

Jakubiak, J.

J. Jakubiak and J. F. Rabek, “Photoinitiators for visible light polymerisation,” Polimery 44, 447-461 (1999).

Karpov, H. M.

H. M. Karpov, V. V. Obukhovsky, and T. N. Smirnova, “Generalized model of holographic recording in photopolymer materials,” Semicond. Phys., Quantum Electron. Optoelectron. 2, 66-70 (1999).

Kelly, J. V.

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396-406 (2008).
[CrossRef]

M. R. Gleeson, J. V. Kelly, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

F. T. O'Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40, 4129-4132 (2005).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990-7004 (2005).
[CrossRef] [PubMed]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2945 (1969).

Koudela, I.

I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465-1477 (1998).
[CrossRef]

Kwon, J. H.

Larson, R. G.

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913-5923 (1997).
[CrossRef]

Lawrence, J. R.

F. T. O'Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40, 4129-4132 (2005).
[CrossRef]

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Adjusted intensity nonlocal diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B 19, 621-629 (2002).
[CrossRef]

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449-463 (2001).
[CrossRef]

J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108-1114 (2000).
[CrossRef]

Lee, H. R.

M. D. Goodner, H. R. Lee, and C. N. Bowman, “Method for determining the kinetic parameters in diffusion-controlled free-radical homo-polymerizations,” Ind. Eng. Chem. Res. 36, 1247-1252 (1997).
[CrossRef]

Lin, S. H.

S. H. Lin, Y.-N. Hsiao, and K. Y. Hsu, “Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A, Pure Appl. Opt. 11, 024012 (2009).
[CrossRef]

Liu, S.

Madrigal, R. F.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639-662 (2003).
[CrossRef]

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Belendez, and A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37, 4496-4499 (1998).
[CrossRef]

Mallavia, R.

McDonald, M. E.

McLeod, R. R.

Miler, M.

I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465-1477 (1998).
[CrossRef]

Mouroulis, P.

G. H. Zhao and P. Mouroulis, “Diffusion-model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929-1939 (1994).
[CrossRef]

Natarajan, L. V.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951-965 (2004).
[CrossRef]

Neipp, C.

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990-7004 (2005).
[CrossRef] [PubMed]

Obukhovsky, V. V.

H. M. Karpov, V. V. Obukhovsky, and T. N. Smirnova, “Generalized model of holographic recording in photopolymer materials,” Semicond. Phys., Quantum Electron. Optoelectron. 2, 66-70 (1999).

Odian, G.

G. Odian, Principles of Polymerization (Wiley, 1991).

O'Duill, S.

M. R. Gleeson, S. Liu, S. O'Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

O'Neill, F. T.

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

F. T. O'Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40, 4129-4132 (2005).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990-7004 (2005).
[CrossRef] [PubMed]

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Adjusted intensity nonlocal diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B 19, 621-629 (2002).
[CrossRef]

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449-463 (2001).
[CrossRef]

Rabek, J. F.

J. Jakubiak and J. F. Rabek, “Photoinitiators for visible light polymerisation,” Polimery 44, 447-461 (1999).

Robertson, T. L.

Sabol, D.

Schilling, M. L.

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913-5923 (1997).
[CrossRef]

Sheridan, J. T.

M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. General model,” J. Opt. Soc. Am. B 26, 1736-1745 (2009).
[CrossRef]

S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behavior of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528-536 (2009).
[CrossRef]

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photokinetic study of Irgacure 784,” Proc. SPIE 7358, 735804 ( 2009).
[CrossRef]

M. R. Gleeson, S. Liu, S. O'Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396-406 (2008).
[CrossRef]

M. R. Gleeson, J. V. Kelly, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

F. T. O'Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40, 4129-4132 (2005).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990-7004 (2005).
[CrossRef] [PubMed]

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Adjusted intensity nonlocal diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B 19, 621-629 (2002).
[CrossRef]

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449-463 (2001).
[CrossRef]

J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108-1114 (2000).
[CrossRef]

Slagle, T.

Smirnova, T. N.

H. M. Karpov, V. V. Obukhovsky, and T. N. Smirnova, “Generalized model of holographic recording in photopolymer materials,” Semicond. Phys., Quantum Electron. Optoelectron. 2, 66-70 (1999).

Sochava, S. L.

Sullivan, A. C.

Sutherland, R. L.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951-965 (2004).
[CrossRef]

Takeda, T.

Tanaka, K.

Tanaka, T.

M. Toishi, T. Takeda, K. Tanaka, T. Tanaka, A. Fukumoto, and K. Watanabe, “Two-dimensional simulation of holographic data storage medium for multiplexed recording,” Opt. Express 16, 2829-2839 (2008).
[CrossRef] [PubMed]

M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku, “Analysis of photopolymer media of holographic data storage using non-local polymerization driven diffusion model,” Japanese J. Appl. Phys. Part 1 46, 3438-3447 (2007).
[CrossRef]

Toishi, M.

M. Toishi, T. Takeda, K. Tanaka, T. Tanaka, A. Fukumoto, and K. Watanabe, “Two-dimensional simulation of holographic data storage medium for multiplexed recording,” Opt. Express 16, 2829-2839 (2008).
[CrossRef] [PubMed]

M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku, “Analysis of photopolymer media of holographic data storage using non-local polymerization driven diffusion model,” Japanese J. Appl. Phys. Part 1 46, 3438-3447 (2007).
[CrossRef]

Tondiglia, V. P.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951-965 (2004).
[CrossRef]

Trentler, T.

T. Trentler, J. Boyd, and V. Colvin, “Epoxy resin photopolymer composites for volume holography,” Chem. Mater. 12, 1431-1438 (2000).
[CrossRef]

Ulibarrena, M.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639-662 (2003).
[CrossRef]

Watanabe, K.

M. Toishi, T. Takeda, K. Tanaka, T. Tanaka, A. Fukumoto, and K. Watanabe, “Two-dimensional simulation of holographic data storage medium for multiplexed recording,” Opt. Express 16, 2829-2839 (2008).
[CrossRef] [PubMed]

M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku, “Analysis of photopolymer media of holographic data storage using non-local polymerization driven diffusion model,” Japanese J. Appl. Phys. Part 1 46, 3438-3447 (2007).
[CrossRef]

Woo, K. C.

Zhao, G. H.

G. H. Zhao and P. Mouroulis, “Diffusion-model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929-1939 (1994).
[CrossRef]

Appl. Opt.

Appl. Phys. B

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639-662 (2003).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2945 (1969).

Chem. Mater.

T. Trentler, J. Boyd, and V. Colvin, “Epoxy resin photopolymer composites for volume holography,” Chem. Mater. 12, 1431-1438 (2000).
[CrossRef]

Ind. Eng. Chem. Res.

M. D. Goodner, H. R. Lee, and C. N. Bowman, “Method for determining the kinetic parameters in diffusion-controlled free-radical homo-polymerizations,” Ind. Eng. Chem. Res. 36, 1247-1252 (1997).
[CrossRef]

J. Appl. Phys.

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O'Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

M. R. Gleeson, J. V. Kelly, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951-965 (2004).
[CrossRef]

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913-5923 (1997).
[CrossRef]

M. R. Gleeson, S. Liu, S. O'Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

J. Macromol. Sci., Pure Appl. Chem.

C. Decker, B. Elzaouk, and D. Decker, “Kinetic study of ultrafast photopolymerizations reactions,” J. Macromol. Sci., Pure Appl. Chem. A33, 173-190 (1996).

J. Mater. Sci.

F. T. O'Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40, 4129-4132 (2005).
[CrossRef]

J. Mod. Opt.

G. H. Zhao and P. Mouroulis, “Diffusion-model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929-1939 (1994).
[CrossRef]

I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465-1477 (1998).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

S. H. Lin, Y.-N. Hsiao, and K. Y. Hsu, “Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” J. Opt. A, Pure Appl. Opt. 11, 024012 (2009).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Japanese J. Appl. Phys. Part 1

M. Toishi, T. Tanaka, K. Watanabe, and K. Betsuyaku, “Analysis of photopolymer media of holographic data storage using non-local polymerization driven diffusion model,” Japanese J. Appl. Phys. Part 1 46, 3438-3447 (2007).
[CrossRef]

Opt. Express

Optik (Stuttgart)

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449-463 (2001).
[CrossRef]

Polimery

J. Jakubiak and J. F. Rabek, “Photoinitiators for visible light polymerisation,” Polimery 44, 447-461 (1999).

Proc. SPIE

D. Sabol, M. R. Gleeson, S. Liu, and J. T. Sheridan, “Photokinetic study of Irgacure 784,” Proc. SPIE 7358, 735804 ( 2009).
[CrossRef]

Semicond. Phys., Quantum Electron. Optoelectron.

H. M. Karpov, V. V. Obukhovsky, and T. N. Smirnova, “Generalized model of holographic recording in photopolymer materials,” Semicond. Phys., Quantum Electron. Optoelectron. 2, 66-70 (1999).

Other

InPhase Technologies, “www.inphase-technologies.com” Tapestry Media, (2007).

G. Odian, Principles of Polymerization (Wiley, 1991).

M. R. Gleeson, “Analysis of the photochemical kinetics in photopolymers for holographic data storage and hybrid photonic circuits,” Ph.D. thesis (University College Dublin, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Fit (solid line) to an experimentally obtained growth curve (dots) in the AA/PVA based photopolymer material with a continuous exposure of intensity 2 mW cm 2 , using the 4-harmonic model.

Fig. 2
Fig. 2

Short exposure growth curves of t 1 = 1 s , t 2 = 2 s , and t 5 = 5 s , showing post-exposure effects (dark reactions) in the AA/PVA based photopolymer.

Fig. 3
Fig. 3

(a) Experimental data (dots) and theoretical fit (long dashed curve) of the post-exposure dark reactions for a 5 s short exposure with 2 mW cm 2 in the epoxy resin photopolymer material. (b) Zoomed-in window of the experimental data (dots) and theoretical fit (dashed curve) presented in (a) for a 5 s short exposure with 2 mW cm 2 in the epoxy resin photopolymer material.

Fig. 4
Fig. 4

Experimental data (dots) and theoretical fit (long dashed curve) of the post-exposure dark reactions for short exposures of t exp = 3 s , t exp = 6 s , and t exp = 10 s in the epoxy resin photopolymer material with an exposure intensity of 2 mW cm 2 .

Tables (7)

Tables Icon

Table 1 Functions and Amounts of Each of the Individual Components Needed to Prepare the Epoxy Resin Photopolymer Material [4]

Tables Icon

Table 2 Volume Fractions of the Main Components in the Epoxy Resin Photopolymer Material [4]

Tables Icon

Table 3 Refractive Index Values for the Main Components of the Epoxy Resin Photopolymer Material Measured and Calculated at λ = 633 nm

Tables Icon

Table 4 Parameter Values Estimated from Transmittance Curves for a Range of Intensities and Constant Layer Thickness d = 1 mm in the Epoxy Resin Photopolymer

Tables Icon

Table 5 Parameter Estimations for Fits to Experimentally Obtained Short Exposure Growth Curves in the AA/PVA Based Photopolymer

Tables Icon

Table 6 Extracted Parameters from Fits to Short Holographic Exposures in the Epoxy Resin Photopolymer Material

Tables Icon

Table 7 Extracted Parameters from Fits to Short Holographic Exposures in the Epoxy Resin Photopolymer Material for an Exposure Intensity of 2 mW cm 2

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n 1 ( t ) = ( n dark 2 + 2 ) 2 6 n dark [ φ 1 ( m ) ( t ) ( n m 2 1 n m 2 + 2 n b 2 1 n b 2 + 2 ) + φ 1 ( p ) ( t ) ( n p 2 1 n p 2 + 2 n b 2 1 n b 2 + 2 ) ] .
R i ( x , t ) = R i ( t ) [ 1 + V cos ( K x ) ] = 2 Φ I a ( t ) [ 1 + V cos ( K x ) ] ,
I a ( t ) = I 0 d { [ exp ( ε d A 0 ) 1 ] exp ( ε φ I 0 t ) 1 + [ exp ( ε d A 0 ) 1 ] exp ( ε φ I 0 t ) } ,
d u ( x , t ) d t = d d x [ D m ( x , t ) d u ( x , t ) d x ] 0 t G ( x , x ; t , t ) F ( x , t ) × [ u ( x , t ) ] β d t d x ,
T ( t t ) = 1 τ n exp [ ( t t ) τ n ] ,

Metrics