Abstract

We studied the transmission characteristics of a one-dimensional metamaterial slab operating at the millimeter-wave regime. The double-negative nature was proven by using a normal incidence transmission study. A split-ring resonator based metamaterial flat lens with five layers at the propagation direction was constructed and illuminated with oblique incidence. From the scanning experiments, the shifting of the beam to the negative side was observed. The experimental results are in agreement with the Drude–Lorentz model based simulations. Two-dimensional field maps that were obtained from these simulations demonstrated negative refraction, negative phase velocity, and the reflected beam properties at 99GHz.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneous negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).
    [CrossRef] [PubMed]
  2. V. G. Veselago, “Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities,” Sov. Phys. Usp. 10, 509-516 (1968).
    [CrossRef]
  3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
    [CrossRef]
  4. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
    [CrossRef] [PubMed]
  5. E. Ozbay and K. Aydin, “Negative refraction and imaging beyond the diffraction limit by a two-dimensional left-handed metamaterial,” Photonics Nanostruct. Fundam. Appl. 6, 108-115 (2008).
    [CrossRef]
  6. M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849-851 (2001).
    [CrossRef] [PubMed]
  7. F. Bilotti, A. Alu, and L. Vegni, “Design of miniaturized metamaterial patch antennas with μ-negative loading,” IEEE Trans. Antennas Propag. 56, 1640-1647 (2008).
    [CrossRef]
  8. M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Experimental demonstration of a left-handed metamaterial operating at 100 GHz,” Phys. Rev. B 73, 193103 (2006).
    [CrossRef]
  9. K. B. Alici and E. Ozbay, “Characterization and tilted response of a fishnet metamaterial operating at 100 GHz,” J. Phys. D 41, 135011 (2008).
    [CrossRef]
  10. B. D. F. Casse, M. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90, 254106 (2007).
    [CrossRef]
  11. S. Linden, C. Enkrich, M. Wegener, J. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100terahertz,” Science 306, 1351-1353 (2004).
    [CrossRef] [PubMed]
  12. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
    [CrossRef] [PubMed]
  13. J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
    [CrossRef] [PubMed]
  14. K. Aydin and E. Ozbay, “Negative refraction through an impedance matched left-handed metamaterial slab,” J. Opt. Soc. Am. B 23, 415-418 (2006).
    [CrossRef]
  15. User Manual, Version 5.0, CST GmbH, Darmstadt, Germany, 2005, http://www.cst.de.
  16. E. Ozbay, K. Aydin, E. Cubukcu, and M. Bayindir, “Transmission and reflection properties of composite double negative metamaterials in free space,” IEEE Trans. Antennas Propag. 51, 2592-2595 (2003).
    [CrossRef]
  17. Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Effective medium theory of lefthanded materials,” Phys. Rev. Lett. 93, 107402 (2004).
    [CrossRef] [PubMed]
  18. K. B. Alici and E. Ozbay, “A planar metamaterial: polarization independent fishnet structure,” Photonics Nanostruct. Fundam. Appl. 6, 102-107 (2008).
    [CrossRef]
  19. http://www.home.agilent.com. Agilent N5250C Millimeter-Wave PNA Series vector network analyzer
  20. D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
    [CrossRef]
  21. K. B. Alici and E. Ozbay, “Oblique response of a split-ring-resonator-based left-handed metamaterial slab,” Opt. Lett. 34, 2294-2296 (2009).
    [CrossRef] [PubMed]

2009 (1)

2008 (4)

E. Ozbay and K. Aydin, “Negative refraction and imaging beyond the diffraction limit by a two-dimensional left-handed metamaterial,” Photonics Nanostruct. Fundam. Appl. 6, 108-115 (2008).
[CrossRef]

F. Bilotti, A. Alu, and L. Vegni, “Design of miniaturized metamaterial patch antennas with μ-negative loading,” IEEE Trans. Antennas Propag. 56, 1640-1647 (2008).
[CrossRef]

K. B. Alici and E. Ozbay, “Characterization and tilted response of a fishnet metamaterial operating at 100 GHz,” J. Phys. D 41, 135011 (2008).
[CrossRef]

K. B. Alici and E. Ozbay, “A planar metamaterial: polarization independent fishnet structure,” Photonics Nanostruct. Fundam. Appl. 6, 102-107 (2008).
[CrossRef]

2007 (1)

B. D. F. Casse, M. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90, 254106 (2007).
[CrossRef]

2006 (2)

K. Aydin and E. Ozbay, “Negative refraction through an impedance matched left-handed metamaterial slab,” J. Opt. Soc. Am. B 23, 415-418 (2006).
[CrossRef]

M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Experimental demonstration of a left-handed metamaterial operating at 100 GHz,” Phys. Rev. B 73, 193103 (2006).
[CrossRef]

2005 (3)

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[CrossRef]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

2004 (2)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100terahertz,” Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Effective medium theory of lefthanded materials,” Phys. Rev. Lett. 93, 107402 (2004).
[CrossRef] [PubMed]

2003 (1)

E. Ozbay, K. Aydin, E. Cubukcu, and M. Bayindir, “Transmission and reflection properties of composite double negative metamaterials in free space,” IEEE Trans. Antennas Propag. 51, 2592-2595 (2003).
[CrossRef]

2001 (1)

M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849-851 (2001).
[CrossRef] [PubMed]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneous negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

1968 (1)

V. G. Veselago, “Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities,” Sov. Phys. Usp. 10, 509-516 (1968).
[CrossRef]

Alici, K. B.

K. B. Alici and E. Ozbay, “Oblique response of a split-ring-resonator-based left-handed metamaterial slab,” Opt. Lett. 34, 2294-2296 (2009).
[CrossRef] [PubMed]

K. B. Alici and E. Ozbay, “A planar metamaterial: polarization independent fishnet structure,” Photonics Nanostruct. Fundam. Appl. 6, 102-107 (2008).
[CrossRef]

K. B. Alici and E. Ozbay, “Characterization and tilted response of a fishnet metamaterial operating at 100 GHz,” J. Phys. D 41, 135011 (2008).
[CrossRef]

Alu, A.

F. Bilotti, A. Alu, and L. Vegni, “Design of miniaturized metamaterial patch antennas with μ-negative loading,” IEEE Trans. Antennas Propag. 56, 1640-1647 (2008).
[CrossRef]

Aydin, K.

E. Ozbay and K. Aydin, “Negative refraction and imaging beyond the diffraction limit by a two-dimensional left-handed metamaterial,” Photonics Nanostruct. Fundam. Appl. 6, 108-115 (2008).
[CrossRef]

M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Experimental demonstration of a left-handed metamaterial operating at 100 GHz,” Phys. Rev. B 73, 193103 (2006).
[CrossRef]

K. Aydin and E. Ozbay, “Negative refraction through an impedance matched left-handed metamaterial slab,” J. Opt. Soc. Am. B 23, 415-418 (2006).
[CrossRef]

E. Ozbay, K. Aydin, E. Cubukcu, and M. Bayindir, “Transmission and reflection properties of composite double negative metamaterials in free space,” IEEE Trans. Antennas Propag. 51, 2592-2595 (2003).
[CrossRef]

Bahou, M.

B. D. F. Casse, M. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90, 254106 (2007).
[CrossRef]

Bayindir, M.

E. Ozbay, K. Aydin, E. Cubukcu, and M. Bayindir, “Transmission and reflection properties of composite double negative metamaterials in free space,” IEEE Trans. Antennas Propag. 51, 2592-2595 (2003).
[CrossRef]

Bilotti, F.

F. Bilotti, A. Alu, and L. Vegni, “Design of miniaturized metamaterial patch antennas with μ-negative loading,” IEEE Trans. Antennas Propag. 56, 1640-1647 (2008).
[CrossRef]

Bulu, I.

M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Experimental demonstration of a left-handed metamaterial operating at 100 GHz,” Phys. Rev. B 73, 193103 (2006).
[CrossRef]

Burger, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Casse, B. D. F.

B. D. F. Casse, M. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90, 254106 (2007).
[CrossRef]

Cubukcu, E.

E. Ozbay, K. Aydin, E. Cubukcu, and M. Bayindir, “Transmission and reflection properties of composite double negative metamaterials in free space,” IEEE Trans. Antennas Propag. 51, 2592-2595 (2003).
[CrossRef]

Economou, E. N.

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Effective medium theory of lefthanded materials,” Phys. Rev. Lett. 93, 107402 (2004).
[CrossRef] [PubMed]

Enkrich, C.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100terahertz,” Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Gilderdale, D. J.

M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849-851 (2001).
[CrossRef] [PubMed]

Gokkavas, M.

M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Experimental demonstration of a left-handed metamaterial operating at 100 GHz,” Phys. Rev. B 73, 193103 (2006).
[CrossRef]

Guven, K.

M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Experimental demonstration of a left-handed metamaterial operating at 100 GHz,” Phys. Rev. B 73, 193103 (2006).
[CrossRef]

Hajnal, J. V.

M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849-851 (2001).
[CrossRef] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Inglis, S.

B. D. F. Casse, M. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90, 254106 (2007).
[CrossRef]

Jian, L. K.

B. D. F. Casse, M. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90, 254106 (2007).
[CrossRef]

Kafesaki, M.

M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Experimental demonstration of a left-handed metamaterial operating at 100 GHz,” Phys. Rev. B 73, 193103 (2006).
[CrossRef]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Effective medium theory of lefthanded materials,” Phys. Rev. Lett. 93, 107402 (2004).
[CrossRef] [PubMed]

Koschny, Th.

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[CrossRef]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Effective medium theory of lefthanded materials,” Phys. Rev. Lett. 93, 107402 (2004).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100terahertz,” Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Larkman, D. J.

M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849-851 (2001).
[CrossRef] [PubMed]

Lee, J. W.

B. D. F. Casse, M. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90, 254106 (2007).
[CrossRef]

Linden, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100terahertz,” Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Moser, M. O.

B. D. F. Casse, M. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90, 254106 (2007).
[CrossRef]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneous negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Ozbay, E.

K. B. Alici and E. Ozbay, “Oblique response of a split-ring-resonator-based left-handed metamaterial slab,” Opt. Lett. 34, 2294-2296 (2009).
[CrossRef] [PubMed]

K. B. Alici and E. Ozbay, “A planar metamaterial: polarization independent fishnet structure,” Photonics Nanostruct. Fundam. Appl. 6, 102-107 (2008).
[CrossRef]

E. Ozbay and K. Aydin, “Negative refraction and imaging beyond the diffraction limit by a two-dimensional left-handed metamaterial,” Photonics Nanostruct. Fundam. Appl. 6, 108-115 (2008).
[CrossRef]

K. B. Alici and E. Ozbay, “Characterization and tilted response of a fishnet metamaterial operating at 100 GHz,” J. Phys. D 41, 135011 (2008).
[CrossRef]

M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Experimental demonstration of a left-handed metamaterial operating at 100 GHz,” Phys. Rev. B 73, 193103 (2006).
[CrossRef]

K. Aydin and E. Ozbay, “Negative refraction through an impedance matched left-handed metamaterial slab,” J. Opt. Soc. Am. B 23, 415-418 (2006).
[CrossRef]

E. Ozbay, K. Aydin, E. Cubukcu, and M. Bayindir, “Transmission and reflection properties of composite double negative metamaterials in free space,” IEEE Trans. Antennas Propag. 51, 2592-2595 (2003).
[CrossRef]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneous negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Penciu, R. S.

M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Experimental demonstration of a left-handed metamaterial operating at 100 GHz,” Phys. Rev. B 73, 193103 (2006).
[CrossRef]

Pendry, J. B.

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849-851 (2001).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

Schmidt, F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneous negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Smith, D. R.

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneous negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Soukoulis, C. M.

M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Experimental demonstration of a left-handed metamaterial operating at 100 GHz,” Phys. Rev. B 73, 193103 (2006).
[CrossRef]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[CrossRef]

Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Effective medium theory of lefthanded materials,” Phys. Rev. Lett. 93, 107402 (2004).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100terahertz,” Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Vegni, L.

F. Bilotti, A. Alu, and L. Vegni, “Design of miniaturized metamaterial patch antennas with μ-negative loading,” IEEE Trans. Antennas Propag. 56, 1640-1647 (2008).
[CrossRef]

Veselago, V. G.

V. G. Veselago, “Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities,” Sov. Phys. Usp. 10, 509-516 (1968).
[CrossRef]

Vier, D. C.

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneous negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Wegener, M.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100terahertz,” Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Wiltshire, M. C. K.

M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849-851 (2001).
[CrossRef] [PubMed]

Young, I. R.

M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849-851 (2001).
[CrossRef] [PubMed]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

Zhou, J.

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100terahertz,” Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

Zhou, J. F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Zschiedrich, L.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

B. D. F. Casse, M. O. Moser, J. W. Lee, M. Bahou, S. Inglis, and L. K. Jian, “Towards three-dimensional and multilayer rod-split-ring metamaterial structures by means of deep x-ray lithography,” Appl. Phys. Lett. 90, 254106 (2007).
[CrossRef]

IEEE Trans. Antennas Propag. (2)

E. Ozbay, K. Aydin, E. Cubukcu, and M. Bayindir, “Transmission and reflection properties of composite double negative metamaterials in free space,” IEEE Trans. Antennas Propag. 51, 2592-2595 (2003).
[CrossRef]

F. Bilotti, A. Alu, and L. Vegni, “Design of miniaturized metamaterial patch antennas with μ-negative loading,” IEEE Trans. Antennas Propag. 56, 1640-1647 (2008).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

K. B. Alici and E. Ozbay, “Characterization and tilted response of a fishnet metamaterial operating at 100 GHz,” J. Phys. D 41, 135011 (2008).
[CrossRef]

Opt. Lett. (1)

Photonics Nanostruct. Fundam. Appl. (2)

K. B. Alici and E. Ozbay, “A planar metamaterial: polarization independent fishnet structure,” Photonics Nanostruct. Fundam. Appl. 6, 102-107 (2008).
[CrossRef]

E. Ozbay and K. Aydin, “Negative refraction and imaging beyond the diffraction limit by a two-dimensional left-handed metamaterial,” Photonics Nanostruct. Fundam. Appl. 6, 108-115 (2008).
[CrossRef]

Phys. Rev. B (1)

M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, “Experimental demonstration of a left-handed metamaterial operating at 100 GHz,” Phys. Rev. B 73, 193103 (2006).
[CrossRef]

Phys. Rev. E (1)

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005).
[CrossRef]

Phys. Rev. Lett. (5)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773-4776 (1996).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneous negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Th. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Effective medium theory of lefthanded materials,” Phys. Rev. Lett. 93, 107402 (2004).
[CrossRef] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).
[CrossRef] [PubMed]

J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
[CrossRef] [PubMed]

Science (2)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100terahertz,” Science 306, 1351-1353 (2004).
[CrossRef] [PubMed]

M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, “Microstructured magnetic materials for RF flux guides in magnetic resonance imaging,” Science 291, 849-851 (2001).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, “Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities,” Sov. Phys. Usp. 10, 509-516 (1968).
[CrossRef]

Other (2)

User Manual, Version 5.0, CST GmbH, Darmstadt, Germany, 2005, http://www.cst.de.

http://www.home.agilent.com. Agilent N5250C Millimeter-Wave PNA Series vector network analyzer

Supplementary Material (1)

» Media 1: MPG (1031 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the designed split-ring resonator based metamaterial medium. Periodic configuration and SRR parameters are shown: g = w = s = 55 μ m , l = 440 μ m . The propagation direction was z direction, E-field was in the y direction and the H-field was in the x direction.

Fig. 2
Fig. 2

Transmission spectrum for three layered metamaterials in the propagation direction. (Left) The SRR (solid curve) and CRR (dashed curve). (Right) The CMM (solid curve) and shortened CMM (dashed curve), i.e., closed composite metamaterial (CCMM).

Fig. 3
Fig. 3

(a) Beam-shifting experiment geometry. (b) Retrieved effective refractive index for the oblique incidence for α = 22 ° .

Fig. 4
Fig. 4

Transmission spectra as a function of frequency and scanning distance. (a) Free space, (b) negative index metamaterial.

Fig. 5
Fig. 5

Frequency cuts at 99 GHz . (a) Experiment: free space (solid curve)–negative index metamaterial (NIM) (dashed curve). (b) Drude–Lorentz simulations.

Fig. 6
Fig. 6

(Media 1) Electric field magnitude in y direction at 99 GHz .

Metrics